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a b s t r a c t 

Price war, as an important factor in undercutting competitors and attracting customers, has spurred con- 

siderable work that analyzes such conflict situation. However, in most of these studies, quality of ser- 

vice (QoS), as an important decision-making criterion, has been neglected. Furthermore, with the rise of 

service-oriented architectures, where players may offer different levels of QoS for different prices, more 

studies are needed to examine the interaction among players within the service hierarchy. In this paper, 

we present a new approach to modeling price competition in (virtualized) service-oriented architectures, 

where there are multiple service levels. In our model, brokers, as intermediaries between end-users and 

service providers, offer different QoS by adapting the service that they obtain from lower-level providers 

so as to match the demands of their clients to the services of providers. To maximize profit, players, i.e. 

providers and brokers, at each level compete in a Bertrand game while they offer different QoS. To main- 

tain an oligopoly market, we then describe underlying dynamics which lead to a Bertrand game with 

price constraints at the providers’ level. We also study cooperation among a subset of brokers. Numerical 

simulations demonstrate the behavior of brokers and providers and the effect of price competition on 

their market shares. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In today’s highly competitive Internet service market, service

providers, in order to survive, should offer their customers more

flexibility in both their quality-of-service (QoS) and price offer-

ings, to meet a variety of customer needs and application require-

ments. Clearly, any successful solution for a service provider to stay

in the market, not only depends on supporting new and updated

technologies, but also involves economic aspects. However, pricing

the services of the network, even without considering quality dif-

ferentiation, is a challenging problem that involves several issues.

There have been many studies that attempted to address these is-

sues with or without considering differentiated QoS. Pricing ap-

proaches include Paris Metro Pricing [2] , congestion pricing [3,4] ,

rate-reliability pricing [5] , and fairness pricing [6] . On the other

hand, with the rise of service-oriented architectures, such as com-
� This paper extends our preliminary model in [1] by capturing competition 

among more than two brokers and analyzing the effect of such competition on ser- 

vice qualities and prices. We also study cooperation among a subset of brokers. The 

text and presentation have been substantially revised. 
∗ Corresponding author. 
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utational clouds and recursive networks [7] , network virtualiza-

ion such as CABO [8] , and service brokerage companies such as

oogle’s “Project Fi” [9] , there is a need for more advanced so-

utions that manage the interactions among service providers at

ultiple levels. The ultimate goal in service-oriented architectures

nd network virtualization is to decouple the services offered by

etwork providers from those of service providers which yield the

ayered structure of the network [10] . Also, brokers as the interme-

iaries between clients and lower-level providers, play a key role in

mproving the efficiency of service-oriented structures by match-

ng the demands of clients to the services of providers. They can

owngrade or upgrade a service by sharing it among customers

r by combining several services to satisfy customers’ demand. For

xample, in “Project Fi” [9] , Google offers a flat data rate of $10

er gigabyte of data that is provided by either T-Mobile or Sprint,

.e. , Google selects the best network provider based on factors such

s coverage and performance, thus adding flexibility and providing

he best service to its customers. Furthermore, Project Fi customers

an manage their costs based on their monthly needs. This is in

ontrast to network providers, e.g ., T-mobile and Sprint, which of-

er their customers fixed data plans regulated by a static contract. 

In this paper, we propose and dissect with extensive numeri-

al simulations a multi-layer network market model in which ser-
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ice brokers and service providers compete at different levels in an

ligopoly to maximize their profit. In our settings, brokers can pay

 cost to upgrade or downgrade the service that they buy from

lower-level) providers so as to offer a new service to the mar-

et (customers). The broker incurs costs when adapting a lower-

evel service as it expends resources to either enhance the service

xtended to its customers ( e.g. , by employing delay-jitter reduc-

ion or capacity allocation techniques over a best-effort service)

r degrade it ( e.g. , by multiplexing client demands over a guaran-

eed service). We consider the competition among providers and

mong brokers separately, while brokers impose some preference

onstraints on (infrastructure, cloud or service) providers. We also

onsider conditions that may lead to a monopoly market and study

ow players act under such conditions. We model service quality

ifferentiation after Hotelling’s location model [11] , where firms

ompete and price their products in only one dimension, geo-

raphic location. In our model, brokers and (lower-level) providers

ompete and price their services based on the quality of the ser-

ice that they offer. Our numerical results show that more service

ifferentiation generally yields more profit for all players. However,

esides quality differentiation, the cost that brokers undergo also

lays an important role and they should forgo maximum differ-

ntiation to reduce the cost, which leads to higher profit. Also, as

he number of brokers increases, the market gets more competitive

nd prices drop further. 

We start with the assumption that players are completely non-

ooperative. This profit-seeking nature of players leads to selfish

ehaviors that may have negative consequences and reduce their

rofits. So, it is reasonable to assume that a subset of players

iscuss possible cooperative strategies, form coalitions, and take

ctions that are beneficial to all members of the group. Coali-

ional games have been widely explored in different disciplines

uch as economics and political sciences. Recently, cooperation has

merged as a new strategy that has a huge impact on improv-

ng performance from the physical layer [12,13] up to the network

ayer [14] . The application of cooperative game theory in network

tudies has mostly focused on the traffic routing problem, net-

ork traffic engineering problems, and network connectivity prob-

ems [15–19] . In this paper, we also consider a two-layered market

n which a subset of the brokers cooperate with each other rather

han compete. Specifically, a new broker entering the market co-

perates with one of the existing brokers in competition with the

ther broker(s). We study the impact of this cooperation on the

uality that the new broker chooses, the other brokers’ prices, and

lso customers’ utility. While in most situations, collaboration im-

roves the cooperating brokers’ profit but with a negative impact

n customers’ utility, there are cases where both coalition brokers

nd customers benefit from the cooperation. In these cases, coop-

ration of two brokers divides the demand between the service

roviders in such a way that causes tougher competition, and con-

equently leads to lower prices, at the service providers’ level. 

.1. Contributions and paper outline 

We start by reviewing existing literature and positioning our

ork. We then introduce a novel two-layered network market

odel in which providers and brokers offer differentiated services

nd compete in a non-cooperative game at each layer ( Section 3 ).

e model the price selection based on the Hotelling’s location

odel [11] , and we characterize the competitive behavior of play-

rs at each level of the service hierarchy based on a Bertrand game.

e consider the market at the Nash Equilibrium point, where all

layers are in their steady state and solve the model using a two-

tage procedure. We also analyze the actions of players under a

onopoly setting. Our main results, obtained with an analytical

nalysis and with numerical simulations, show that, when there
re only two brokers, a higher quality differentiation leads to higher

rovider’s profit ( Section 4 ). We also find that, when there are mul-

iple brokers, the cost of converting the quality becomes an impor-

ant factor for profit maximization ( Section 4.4 ). We proceed with

onsidering cooperation among a subset of brokers in Section 5 .

n a non-cooperative game, all players try to maximize their own

rofit independently. When a new broker enters the market, the

ompetition gets more intense and there is a large drop in the

rofit of existing brokers. In Section 5 , we study the market where

he entering broker cooperates with one of the existing brokers.

e compare the profit and price of brokers (and service providers)

ith those achieved under the non-cooperative game. We also

onsider the effect of cooperation on the customers’ welfare. Fi-

ally, Section 6 concludes the paper. 

. Related work 

Game theory has been applied to a wide range of networking

roblems to capture the interaction of (selfish or cooperating) play-

rs seeking a maximum value for their (private) utility. The as-

umption is that every step (or move) toward the maximization

f such utility impacts the utility of other players in the model

or game). Given the connectivity nature of a network of agents, a

ide range of networking mechanisms have been modeled with

ame theory; from the physical ISO-OSI layer with transmission

ower utility games [20] or spectrum sharing [21,22] to Medium

ccess Control [23] to routing and packet forwarding [24,25] , both

n wireless [26] and wired [27] scenarios. 

Aside from modeling multi-agent protocol behaviors and the

arious resource allocation mechanisms, markets and pricing equi-

ibrium have further exemplified the synergy between game theory

and economics) and networked (cloud) systems [28,29] . In par-

icular, network economics has been a very active research area

n which both pricing and market regulation strategies have been

tudied widely. However, the exponential growth of Internet ser-

ices in hierarchical ( i.e. , multi-layer) markets requires a deeper

tudy of new market features that will become available. One of

he earliest work on layered networks [30] , identifies and discusses

ome difficult economic problems related to resale and complexity

f competition among multiple owners of physical networks. The

uthors study some integrated and unintegrated telecommunica-

ion companies and the services that they offer to create differen-

iated products to cover their costs. The paper does not suggest any

pecific architecture or policies for pricing as we do, but discusses

he need for a full economic model that features oligopolistic com-

etition among a few large companies that invest in the physical

nfrastructure as well as firms at the virtual network level. 

Pricing for single-level games has been studied extensively. He

nd Walrand [31] consider a self-regulated service model, where

arket demand determines the service quality, i.e. , higher demand

auses more congestion and consequently less quality. Unlike ours,

n their model there is a single Internet Service Provider (ISP) who

ffers two classes of service with different prices to manage con-

estion. They show that when the price does not match the service

uality, the system may end up in an equilibrium similar to the

risoner’s Dilemma game. Shetty et al . [22] compare the revenue

f a monopolist operator with and without service differentiation.

hey show that the revenue is higher when an operator offers two

ifferent services. Both Li et al. [32] and Fulp and Reeves [33] pro-

ide a traffic- sensitive pricing scheme for differentiated network

ervices. The focus of [33] is on maximizing the profit of the ser-

ice provider who buys a differentiated service connection from

omain brokers and sells it to users, whereas [32] focuses on pro-

iding economic incentives to users so as to maintain a given level

f traffic load. 
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Fig. 1. Game-theoretic Model of a Two-level Competition among Brokers and Ser- 

vice Providers. At each level, brokers and service providers are in a Bertrand com- 

petition with each other. The set of strategies are the service prices and each player 

tries to maximize her revenue. 
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Two-level games have also been studied more recently. Our

work is inspired by Zhang et al. [34] and Nagurney and Wolf [35] .

They propose an economic model for the interaction and com-

petition among service providers, network providers and users.

Both studies develop a two-stage (Stackelberg) game, where ser-

vice providers compete in a Cournot game, and network providers

compete in a Bertrand game. In [35] , the authors generalize the

market of [34] by considering different demand markets served

by any number of service providers and any number of network

providers in which network providers offer different levels of ser-

vice quality. Although our work shares the same two-level game

approach with [34,35] , in our framework we consider users and

providers at each level (viewed as “users” of lower-level providers),

having service preference based on quality and price, where at

each level providers compete in a Bertrand game ( i.e. , competition

on price). Also, Zhang et al. [34] study a market with two service

providers and two network providers offering the same level of

service quality. Our model, however, is more realistic as we con-

sider a market where players at both levels may offer different

qualities of service. 

Different game-theoretic models for differentiated service mar-

kets of users and service providers have also been proposed [36–

39] . In [38] , the authors propose a game-theoretic model where

service providers compete with duration-based contracts for dif-

ferentiated service. On the other hand, the authors in [37] con-

sider a joint price-quality market with a Stackelberg game where

providers are leaders and users are followers. In their model,

providers consider the migration of users when setting their price

and quality. In another study, Semret et al. [39] consider a retail

market where, for each network, three types of players interact: a

service provider, a broker and a set of end-users; their main con-

tribution is a decentralized auction-based bandwidth pricing for

differentiated Internet services. They show that Progressive Sec-

ond Price 1 provides a stable pricing in a market where service

providers receive most of the profits, and the brokers’ profit mar-

gin is small. Finally, the authors in [36] study a congestion-prone

market with usage-based pricing. They propose a model for users’

preference over their value and sensitivity to congestion, and based

on such model they characterize the market share and optimal

price for providers. 

Our model considers multi-layer differentiated service games

where the service obtained from the lower level can be upgraded

or downgraded, and hence can be sold to the higher level provider.

In our analysis, we apply price constraints when players’ optimal

price would lead to losing market share, and we also give insights

on how players should then update their price. 

We also consider cooperation among a subset of brokers in our

model. Cooperative games were introduced in the 1940s [41] , and

are considered an important branch of game theory. Since then,

many solutions for these games have been proposed [42–45] . Al-

though the Internet is considered as a set of autonomous agents

in game theoretic studies, there are studies that consider coali-

tions among players and study the effect of cooperation on the

problem at hand. Concepts and principles from cooperative game

theory have enriched our understanding of resource allocation in

wireless networks [46–49] , spectrum sharing among users [50,51] ,

and transmission at the physical layer [52,53] . 

Another line of work studies the effect of cooperation among

content providers and network service providers, and the profit

sharing mechanism, on resource pricing [54–57] . Most of these

studies either use Shapley value [58,59] or Nash bargaining

game [60] to model cooperation in network resource pricing.
1 PSP is a natural generalization of second-price auctions in the case of sharing 

an arbitrarily divisible resource [40] . 

t  

p  

s  

i  
hapley value emphasizes revenue distribution based on weighted

arginal contribution of each entity in a group, while Nash bar-

aining emphasizes the Pareto optimal property and symmetry.

n [54] , network users are assumed to have the same preference,

nd therefore the pricing problem degenerates to a game between

 single user and an ISP. The authors show that Nash bargaining

akes the system converge to the Pareto optimal point. The au-

hors in [56,61] study the economics of traditional transit providers

nd content providers and apply cooperative game theory to find

n optimal settlement between these entities. They use Shapley

alue profit distribution for a better engineered Internet. In [55] ,

rice theory is used to design a peer-assisted content distribution

ystem that manages ISP resources more efficiently. The authors

n [62] consider the interaction among ISPs at different levels –

ocal ISPs and transit ISPs – and show that for local ISPs, there ex-

sts an optimal scenario where all ISPs peer with each other and

ointly maximize their profit. The authors in [57,63] examine the

nterplay between traffic engineering and content distribution, and

tudy the relation between content providers (CP) and network

ervice providers. They show how ISPs and CPs can cooperate, and

hy such cooperation not only guarantees a fair profit distribution

mong providers, but also helps improve the economic efficiency

f the network system. In our study, only a subset of players (bro-

ers) cooperate with each other and they are focused on maximiz-

ng their own total revenue while competing with the rest of play-

rs. 

. Model and solution 

In this section, we present our model and analysis of a two-

evel game configuration and focus on the competition among

roviders and brokers and what emerges as pricing of their ser-

ices. Fig. 1 illustrates the game-theoreftic model: At the lower

evel, we have two service providers, while at the higher level,

e have m ≥ 2 service sellers or brokers that deal directly with

sers. Note that owning a network infrastructure is expensive, and

nly a few large companies can afford its cost. There are however

any brokerage companies. Our model’s goal is limited to analyz-

ng and understanding the dynamics of a market in a formal eco-

omic setting. To this aim, we start by considering only two net-

ork / lower-level providers in a simple oligopoly market compe-

ition. The exclusion of more complex relationships that may exist

n real markets keeps our model tractable while still producing in-

eresting results and insights. 

To model service quality differentiation, as in [11,64] , we model

he difference between products as differences in a product’s loca-

ion in a product space. The idea is widely used for both location

roblems [65–67] and quality differentiation [68–70] in network

tudies. In the Hotteling’s model [11] , there are two firms selling

dentical goods along a street. Customers are assumed to be uni-
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2 By definition, the Nash equilibrium of a game is a strategy profile (list of strate- 

gies, one for each player) with the property that no player can increase her payoff

by choosing a different action, given other players’ actions [73] . 
ormly distributed in the (geographical) space, and the transport

ost is a linear function of their distance to the selected firm. A

onsumer selects the firm that minimizes her cost of transporta-

ion to buy the product. Hotteling concluded that two firms would

ocate close to each other near the center. Later, D’Aspremont

t al . [64] changed the utility function from linear to quadratic

orm, leading to firms choosing to maximize their distance to the

pposite player, and reaching equilibrium for price competition.

renner [71] extended the game with the quadratic cost function

o more than two firms. He has shown that for more than two

rms, the “principle of maximum differentiation” does not hold,

nd corner firms would benefit from moving marginally toward

he market center. In our work, we model service quality differ-

ntiation after Hotteling’s product differentiation, where customers

ave different preference for service quality that is modeled by

heir willingness to pay for that quality. 

We start by presenting our notation and some basic settings,

hen we discuss some analytical and numerical results. 

.1. Model description 

Let us consider a system with a continuum of customers, m ser-

ice sellers (brokers), denoted by B i , i = 1 , . . . , m, and two service

roviders, S j , j = 1 , 2 . We assume that customers have different

reference for quality (utility) described by: 

q − p 

here θ is the customer’s marginal willingness to pay for qual-

ty q , and p is the price of service. There is a distribution of θ
mong customers. For simplicity, we assume that θ is uniformly

istributed on an interval θ ∈ [ θmin , θmax ] and θmax > 2 θmin . Cus-

omers seek a broker that maximizes their utility. 

Both brokers and service providers can offer services with dif-

erent qualities, but in this initial model we assume that each

layer only offers one class of quality [72] . The service quality

ffered by brokers is denoted by q i and lies in an interval q ∈
 q min , q max ] . The quality offered by service providers is denoted by

 j . Also, we assume that brokers and service providers compete

n an imperfectly competitive market. Furthermore, we assume that

here is no supply constraint and so there are enough resources to

eet each demand . We also assume that there is no geographical

r performance limitation on service providers and that brokers

an always get all their required services from the service provider

hat is more economically convenient. As we mentioned earlier, in

ur model, service providers have already incurred the cost of set-

ing up their infrastructure, so they intend to attract part of the

arket and stay in the market. So without loss of generality, we

ssume that service provider S 1 attempts to keep at least the bro-

er with the lowest quality ( B 1 ) as her buyer, and service provider

 2 attempts to keep the broker with the highest quality ( B m 

) as

er buyer (unless as we note in Section 3.6 , the market does not

upport this assumption), while other brokers choose the service

rovider that offers the lower cost. 

We assume that providers, and brokers, compete separately

ith each other in a Bertrand game. In this market structure,

he players compete with each other non-cooperatively to achieve

heir objectives ( i.e. , maximize profit) by controlling the price of

he their services. The decision of each player is influenced by

ther players’ actions and the action of a player may be observed

y all other players. The players are service providers at the lower

evel and brokers at the higher level. The strategy of each player is

he non- negative service price. The payoff (utility function) is the

rofit generated by selling the services. This game has a Nash equi-
ibrium 

2 . We solve the model using a two-stage procedure. First,

iven the service providers’ price, r i ’s, and demand as a function

f the brokers’ price, the brokers compete in a Bertrand game. The

ash equilibrium of the Bertrand game leads to an optimal price for

he brokers and therefore the demand becomes a function of the

ualities and the service providers’ price r i ’s. In the second stage,

ervice providers compete in a Bertrand game to maximize their

rofit by setting their price. Substituting r i ’s into the demand ob-

ained by the Nash equilibrium at the previous stage, we can deter-

ine the final optimal price for the service providers and brokers.

e describe the game in detail next. 

.2. Demand distribution 

Brokers first choose the quality of service that they will pro-

ide to customers, then they compete on prices. If the brokers

hoose the same quality, then the customers decide only based

n the price, and this leads to a Bertrand competition with iden-

ical goods, whose prices should be set equal to costs, and no one

akes profit. Thus the brokers should choose to offer different ser-

ice qualities to make profits. Without loss of generality, we as-

ume that there exists a strict order on quality values, that is,

 m 

> . . . > q 2 > q 1 , and also Q 2 > Q 1 . Therefore, customers with a

igh willingness to pay for quality will buy from B m 

, while cus-

omers with a low willingness will buy from B 1 . 

For simplicity, first let us assume that we have two brokers, B 1 
nd B 2 . We can characterize the demand for each broker by identi-

ying the customers who are indifferent between the two differen-

iated qualities. The indifferent customers, represented by θ ∗, sat-

sfy: 

∗q 1 − p 1 = θ ∗q 2 − p 2 ⇔ θ ∗ = 

p 2 − p 1 
q 2 − q 1 

(1)

Having uniformly distributed θ , the demand for each broker, B 1 
nd B 2 , is given by: 

 1 (p 1 , p 2 ) = 

θ ∗ − θmin 

�θ
= 

1 

�θ

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)

 2 (p 1 , p 2 ) = 

θmax − θ ∗

�θ
= 

1 

�θ

(
θmax − p 2 − p 1 

q 2 − q 1 

)
(2) 

here �θ ≡ θmax − θmin . 

For more than two brokers, we can generalize Eq. (1) to find

ndifferent customers θ ∗
i 

between any two brokers B i and B i +1 : 

∗
i q i − p i = θ ∗

i q i +1 − p i +1 ⇔ θ ∗
i = 

p i +1 − p i 
q i +1 − q i 

(3)

Consequently, the demand for each broker is given by: 

D 1 (p 1 , p 2 , . . . , p m 

) = 

θ ∗
1 − θmin 

�θ

D i (p 1 , p 2 , . . . , p m 

) = 

θ ∗
i 

− θ ∗
i −1 

�θ
1 < i < m 

 m 

(p 1 , p 2 , . . . , p m 

) = 

θmax − θ ∗
m −1 

�θ
(4) 

ote that in the above equations D i ’s assume values in the interval

0,1]. This means that if for broker B i the demand D i is negative,

hen B i is “out of the market”; more precisely, we can rewrite the

emand function as: 

 i = min 

{
max 

{
0 , 

θ ∗
i 

− θ ∗
i −1 

}
, 1 

}
for 1 ≤ i ≤ m (5) 
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3.3. Brokers’ profits 

Now that we have the demand distribution, we can calculate

broker i ’s profit, assuming that converting Q j to q i (whether to up-

grade or downgrade the service) has a marginal cost c i : 

�i = p i D i −
q i D i 

Q j 

r j − c i D i (Q j − q i ) 
2 (6)

where r j is the price of service that broker B i pays to service

provider S j , and 

q i D i 
Q j 

is the amount of service that B i needs to

buy to supply its own market. This is because, if we consider

that the quality of the service is given by the quantity of needed

resources, such as bandwidth or memory, then the required re-

sources that a broker needs to buy can be obtained from 

q i 
Q j 

D i . For

example, consider a broker’s QoS requirement of 10 Mbps ( q i ), and

a service provider offering 5 Mbps ( Q j ) channels; this would re-

sult in ( 
q i 
Q j 

) = 

10 
5 = 2 demand requests from the broker to the ser-

vice provider to combine two provider’s channels and upgrade the

lower-level service. On the other hand, if q i = 5 Mbps and Q j = 10

Mbps, then this results in 0.5 demand request and possibly lower

cost for the broker. We also assume that the cost to the broker,

c i , to convert the service quality that such a broker gets from the

service provider, is proportional to the square of the difference in

quality, (Q j − q i ) . Intuitively, the cost increases more rapidly as the

service quality increases, or alternatively, there is a diminishing re-

turn in service quality as more resources are allocated and cost in-

creases. For simplicity, we assume that c i = c. 

Since we assume that each broker buys just from one lower-

level provider that yields less cost for the broker, the following re-

sult holds: 

Theorem 1. (Oligopoly of Service Providers) 

Let us consider a market with two service providers and multiple

brokers. Let us assume that the two providers offer their services in

the same geographical area. To guarantee an oligopoly market at the

service provider level (which captures the attempt of service providers

to stay in the market), the broker with lowest quality buys from the

lower quality provider and the highest quality broker buys from the

higher quality provider. 

Proof. We need to show that if the broker with the lowest qual-

ity B 1 prefers to buy from the higher quality provider S 2 , then

the other brokers also prefer to buy from S 2 ; therefore no bro-

ker will buy from the lower quality provider S 1 , that is, we have

a monopoly market at the provider level. 

Let us assume that B 1 prefers to buy from S 2 , then the cost of

buying from S 1 must be greater than the cost of buying from S 2 : 

q 1 
Q 1 

r 1 + c(q 1 − Q 1 ) 
2 > 

q 1 
Q 2 

r 2 + c(q 1 − Q 2 ) 
2 

After expanding the quadratic terms and simplifying, we have: 

q 1 ( 
r 1 
Q 1 

− 2 cQ 1 ) + cQ 

2 
1 > q 1 

(
r 2 
Q 2 

− 2 cQ 2 

)
+ cQ 

2 
2 

Grouping the terms that have q 1 as a factor, we have: 

q 1 

(
r 1 
Q 1 

− 2 cQ 1 − r 2 
Q 2 

+ 2 cQ 2 

)
> c(Q 

2 
2 − Q 

2 
1 ) 

Giving that the quality of other brokers is higher than B 1 ( q i > q 1 ),

the derived inequality holds for other brokers as well. Even for

other brokers, buying from S 1 is more costly, therefore we have a

monopoly market (no broker buys from S 1). The same logic applies

if B m 

prefers to buy from S 1 . Hence we prove the claim. �

Now that we have the profit function for brokers, we can

find the optimal price for them. In the first stage, given the ser-

vice prices r j , and service qualities Q j , the brokers compete in a
ertrand game with differentiated goods. We present the results

or the case m = 2 , but all results can be similarly calculated for

eneral cases with more than two brokers. As we have seen, in a

ertrand game, players control the price to maximize their profit.

he solution to the Bertrand game is hence a Nash Equilibrium,

hich is obtained as follows: We substitute Eq. (2) into Eq. (6) ,

nd solve ∂ �i /∂ p i = 0 to obtain Nash equilibrium, that leads to

see Appendix for the detailed derivation): 

p 1 = 

1 

3 

( ( q 2 − q 1 ) ( θmax − 2 θmin ) + 

2 q 1 r 1 
Q 1 

+ 

q 2 r 2 
Q 2 

+ 2 c ( q 1 − Q 1 ) 
2 + c ( q 2 − Q 2 ) 

2 ) (7)

p 2 = 

1 

3 

( ( q 2 − q 1 ) ( 2 θmax − θmin ) + 

q 1 r 1 
Q 1 

+ 

2 q 2 r 2 
Q 2 

+ c ( q 1 − Q 1 ) 
2 + 2 c ( q 2 − Q 2 ) 

2 ) (8)

ow the brokers’ prices, p 1 and p 2 , are a function of the brokers’

nd providers’ service qualities, and providers’ prices r j ’s. The next

tep is to plug them into D i ’s to obtain the demand as a function

f r j ’s: 

 1 = 

1 

3�θ
( θmax − 2 θmin ) + 

q 2 r 2 
Q 2 

− q 1 r 1 
Q 1 

− c ( q 1 − Q 1 ) 
2 + c ( q 2 − Q 2 ) 

2 

3�θ( q 2 − q 1 ) 

(9)

 2 = 

1 

3�θ
( 2 θmax − θmin ) + 

q 1 r 1 
Q 1 

− q 2 r 2 
Q 2 

+ c ( q 1 − Q 1 ) 
2 − c ( q 2 − Q 2 ) 

2 

3�θ( q 2 − q 1 ) 

(10)

ow, D 1 and D 2 are dependent on service providers’ prices r j ’s,

hich shows the interaction between the two layers. Providers’

rices affect the cost for brokers and in turn affect the price of bro-

ers and consequently the demands of both brokers and providers.

n the next subsection we show how to find the optimal r j ’s. 

.4. Modeling providers’ profits 

At this stage, we have the total demand served by (service sold

y) each broker. To have an imperfectly competitive market at the

evel of service providers, the combination of their price and qual-

ty should be such that each broker prefers a different service

rovider. Assuming B 1 prefers S 1 and B 2 prefers S 2 , the following

nequalities should hold for B 1 and B 2 , respectively: 

q 1 
Q 1 

r 1 + c(q 1 − Q 1 ) 
2 < 

q 1 
Q 2 

r 2 + c(q 1 − Q 2 ) 
2 

q 2 
Q 2 

r 2 + c(q 2 − Q 2 ) 
2 < 

q 2 
Q 1 

r 1 + c(q 2 − Q 1 ) 
2 (11)

hese constraints ensure that broker B 1 chooses provider S 1 and B 2 
hooses S 1 , as the cost is lower than that of getting service from

he other provider. Later we will discuss the situation when one of

hese constraints is violated. 

For the general case, we assume that the first k brokers choose

rovider S 1 and the remaining brokers B k +1 to B m 

choose S 2 . Con-

traints (11) should hold for B k and B k +1 instead of B 1 and B 2 . 

In this stage of the game, service providers compete in another

ertrand game. The profit of each provider is defined as: 

 1 = 

k ∑ 

i =1 

D i q i 
Q 1 

(r 1 − f 1 ) − eQ 

2 
1 

 2 = 

n ∑ 

i = k +1 

D i q i 
Q 2 

(r 2 − f 2 ) − eQ 

2 
2 (12)
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here eQ 

2 
j 

is the cost of providing quality Q j , r j is the service

rice and f j represents some general cost (fee). After plugging Eqs.

9) and (10) into the providers’ profit, we obtain quadratic equa- 

ions in r j . To obtain the optimal solution (Nash equilibrium), we

olve ∂ U j /∂ r j = 0 which, for two providers, yields: 

 1 = 

2 f 1 
3 

+ 

f 2 q 2 Q 1 

3 q 1 Q 2 

+ 

Q 1 

3 q 1 
× [ c(q 2 − Q 2 ) 

2 − c(q 1 − Q 1 ) 
2 

− (q 1 − q 2 )(4 θmax − 5 θmin )] 

 2 = 

2 f 2 
3 

+ 

f 1 q 1 Q 2 

3 q 2 Q 1 

+ 

Q 2 

3 q 2 
× [ c(q 1 − Q 1 ) 

2 − c(q 2 − Q 2 ) 
2 

− (q 1 − q 2 )(5 θmax − 4 θmin )] 

y substituting r j ’s in Eqs. (7) and (8) , we get the final values for

 i ’s as functions of only user preferences and service qualities (be-

ides marginal costs/fees): 

p 1 = 

1 

9 

(
5 c(q 1 − Q 1 ) 

2 + 4 c(q 2 − Q 2 ) 
2 
)

+ 

4 f 2 q 2 Q 1 + 5 f 1 q 1 Q 2 

9 Q 1 Q 2 

+ 

1 

9 

(q 2 − q 1 )(16 θmax − 20 θmin ) 

p 2 = 

1 

9 

(
4 c(q 1 − Q 1 ) 

2 + 5 c(q 2 − Q 2 ) 
2 
)

+ 

5 f 2 q 2 Q 1 + 4 f 1 q 1 Q 2 

9 Q 1 Q 2 

+ 

1 

9 

(q 2 − q 1 )(20 θmax − 16 θmin ) 

e obtain the final values for D i ’s from Eqs. (9) and (10) : 

 1 = 

1 

9�θ
(4 θmax − 5 θmin ) + 

c(q 1 − Q 1 ) 
2 − c(q 2 − Q 2 ) 

2 

9�θ( q 1 − q 2 ) 

+ 

− f 2 q 2 Q 1 + Q 2 f 1 q 1 
9�θ(q 1 − q 2 ) Q 1 Q 2 

 2 = 

1 

9�θ
(5 θmax − 4 θmin ) + 

c(q 2 − Q 2 ) 
2 − c(q 1 − Q 1 ) 

2 

9�θ( q 1 − q 2 ) 

+ 

f 2 q 2 Q 1 − Q 2 f 1 q 1 
9�θ(q 1 − q 2 ) Q 1 Q 2 

.5. Positive utility 

In the previous setting we assumed that customers buy service

rom either B 1 or B 2 , even if their utility is negative. In this subsec-

ion we remove this assumption by solving a game with only posi-

ive utility customers, i.e. , customers whose value of θq − p is pos-

tive. Therefore, customers with zero utility provide a lower bound

n θ (we call it θ0 ), which can be found by solving θ0 q 1 − p 1 = 0 .

hus θmin is replaced by 
p 1 
q 1 

: 

D 1 (p 1 , . . . , p m 

) = 

θ ∗
1 −θ0 

�θ
= 

1 
�θ

(
p 2 −p 1 
q 2 −q 1 

− p 1 
q 1 

)
(13) 

As in our previous setting, this is a two-stage Bertrand game,

nd the Nash equilibrium for each game is found by replacing

he D i ’s into the profit functions and solving ∂ �i /∂ p i = 0 and

 U i /∂ r i = 0 . We discuss the difference between this positive util-

ty game and the previous (unconstrained utility) game later in

ection 4 . 

.6. Game with constraints 

At the lower level of service providers, the constraints (11) are

ot considered while calculating the equilibrium points. Therefore,

n some situations, one of the constraints might be violated. Let

s assume that after finding r ’s, the constraint for B is violated,
i 1 
.e. , 
q 1 
Q 1 

r 1 + c(q 1 − Q 1 ) 
2 ≥ q 1 

Q 2 
r 2 + c(q 1 − Q 2 ) 

2 . This means that, un-

er this condition, broker B 1 incurs more cost to buy service from

rovider S 1 than provider S 2 ; so if provider S 1 does not change

ts price, B 1 will get service from S 2 , and this situation leads to a

onopoly market at the providers’ level. 

To find an optimal point that also meets the constraints (11) ,

rovider S 1 should set its price such that 

 1 < 

Q 1 

q 1 

(
q 1 
Q 2 

r 2 + c(q 1 − Q 2 ) 
2 − c(q 1 − Q 1 ) 

2 
)

n response, provider S 2 updates its price by plugging r 1 into

 U 2 /∂ r 2 = 0 which leads to r 2 = F (r 1 ) , i.e., r 2 as a function of r 1 .

hus, S 1 can replace r 2 with F(r 1 ) in its inequality to calculate an

ptimal price that satisfies the constraint: 

 1 = 

Q 1 

q 1 

(
q 1 
Q 2 

F(r 1 ) + c(q 1 − Q 2 ) 
2 − c(q 1 − Q 1 ) 

2 
)

− ε

ε > 0 

n this stage of the game, S 1 should find a positive value for ε that

aximizes its profit. By substituting r 1 and r 2 as functions of ε,

 1 is a decreasing quadratic function of ε. Solving ∂ U 1 /∂ ε = 0 re-

ults in optimal ε. If ε < 0, it can be replaced with a small positive

umber close to zero. Since U 1 is decreasing with respect to ε, any

ther positive value larger than the chosen ε leads to less profit.

learly, the new set of prices for the service providers is an equi-

ibrium point for the game, since it maximizes the revenue of both

roviders while meeting the constraints, so each service provider

oes not lose its market ( i.e. , one of the two brokers stays as its

ustomer); therefore neither of the service providers has an incen-

ive to change its price independently. 

. Numerical analysis 

In this section we present some numerical results to illustrate

he effect of choosing different qualities of service by brokers. We

onsider settings with two, three and four brokers. We also study

he positive game model for two brokers. We show in detail how

he best strategy for any broker is to choose a quality level that

aximizes quality differentiation with other brokers. Also, when

here are more brokers, the higher competition leads to more rea-

onable prices and a lower probability of a monopoly market. In

he following subsections, we start with our main observations

ollowed by a detailed analysis of our results. Though we have

btained results for a wide range of parameters’ values, we only

resent in this paper a representative set of these results. 

.1. Two brokers 

bservation 1. All players (brokers and providers) make more

rofit as the gap between qualities of service offered by brokers

ncreases, i.e. , the maximum differentiation principle applies. 

bservation 2. When the qualities of service offered by brokers

re close to each other ( �q ≈ �p 
θmax 

) the demand mostly goes to

he lower quality service. In this situation, it is more likely that

onopoly happens at the service provider level. 

For the two brokers case, we consider a setting where θmax =
 . 5 , θmin = 0 . 2 , c = 0 . 1 , and f i = 0 . 01265 × Q 

1 . 5 
i 

. The service qual-

ties of the providers are set to Q 1 = 20 and Q 2 = 45 . For the bro-

ers, q 2 varies between 30 and 60, and we set q 1 to different val-

es such that it is less than, equal to, or larger than Q 1 to see how

he market changes under different conditions, although here we

how plots for only two different values of q 1 . Fig. 2 shows the re-

ults when B downgrades the quality of service obtained from S 
1 1 



150 M. Ghasemi, I. Matta and F. Esposito / Computer Networks 160 (2019) 144–164 

Fig. 2. Price, profit and demand distribution for brokers, and price of providers, B 1 
downgrading the quality, Q 1 = 20 , q 1 = 13 , Q 2 = 45 , 30 ≤ q 2 ≤ 60 , as the service 

quality offered by broker B 2 changes. 

Fig. 3. Price, profit and demand distribution for brokers, and price of providers, 

B 1 upgrading the quality, Q 1 = 20 , q 1 = 29 , Q 2 = 45 , 30 ≤ q 2 ≤ 60 , as the service 

quality offered by broker B 2 changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Price, profit and demand distribution for brokers, and price of providers, 

for the positive utility game, B 1 downgrading the quality Q 1 = 20 , q 1 = 13 , Q 2 = 

45 , 30 ≤ q 2 ≤ 60 , as the service quality offered by broker B 2 changes. 
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( q 1 = 13 ), whereas Fig. 3 shows the results when B 1 upgrades that

quality ( q 1 = 29 ). First, we note that the total demand constitutes

the whole market. So, when the demand for one broker/provider

side decreases, the demand for the other side increases, and vice

versa. But this is not the case for prices and profits – they increase

or decrease together. 

When broker B 1 downgrades the lower-level service obtained

from its provider S 1 ( i.e., q 1 < Q 1 ), we see from the brokers’ and

providers’ price plots ( Fig. 2 ) that all brokers and providers can of-

fer their service at higher prices and make more profit compared

to the case when B 1 upgrades the obtained service from S 1 ( Fig. 3 ).

Similarly, by comparing the behavior for higher values of q 2 , where

q 2 > Q 2 , with that for lower values where q 2 < Q 2 , we observe that

a better strategy for broker B 2 is to upgrade the lower-level service

that it obtains from S 2 ( i.e., q 2 > Q 2 ). This happens because upgrad-

ing q 2 or downgrading q 1 leads to a larger gap between q 1 and q 2 ,

therefore the two sets of broker and provider can offer more dif-

ferentiated services at higher prices. In fact, this follows the maxi-

mum differentiation principle. 

In this setting, since we have the least number of brokers to

compete, it is more likely that monopoly situations arise. For ex-

ample, for q 1 = 29 ( Fig. 3 ), the market exhibits abnormal behavior

when the gap between q 1 and q 2 is small, while the gap between

providers’ qualities and brokers’ qualities is large. Specifically, the

market approaches a monopoly where B has a small market share
2 
hen q 2 is closer to the service quality of S 1 ( Q 1 ). Observing the

esults when the values of q 2 are close to 30, we note that, al-

hough the providers’ game is a monopoly at some points (where

 2 ’s price r 2 = 0 ), the brokers’ game is not, and B 2 can have a small

hare of the market D 2 while it gets service from provider S 1 . This

s because when the gap between q 1 and q 2 is not significant, most

f the customers prefer the cheaper service provided by broker B 1 .

hen the market is a monopoly, the provider or broker who re-

ains in the market can increase its price while ensuring that the

ther competitor cannot enter the market even if that competitor

owers its price to equal its cost, thus there is no way for the com-

etitor to make profit and is prevented from entering the market. 

On the other hand, for q 1 = 29 , when broker B 2 is upgrading

he service quality obtained from S 2 , i.e., q 2 > Q 2 , as the gap be-

ween q 2 and Q 2 gets larger, S 2 starts to decrease its price to cover

he cost of the quality upgrade for B 2 so as not to lose its mar-

et share. Since the value of q 1 is somewhere between Q 1 and Q 2 ,

t is more economical for B 1 to buy service from S 2 rather than

 1 at the optimal prices, i.e. , the optimal price of S 1 violates con-

traints (11) and it should update its price r 1 as we explained in

ection 3.6 . Consequently, S 2 should also update its price. Since

here is a substantial gap between q 1 and q 2 , both providers can

ompete in the market. 

.2. Positive utility results 

bservation 3. In the positive utility game, increase in the profit

f one player is at the expense of the other player. 

We now consider the case of positive utility competition. In-

uitively, we expect to see some restriction on the prices for all

rokers and providers, otherwise they lose part of the market for

hich the utility ( θq − p) is negative. Therefore, it is a compro-

ise between price and demand. The numerical results confirm

his intuition. Comparing the prices of brokers and providers under

ositive utility and unconstrained utility, for the same conditions,

hows that the highest prices under positive utility are below half of

he prices in the latter case, while the demands are less as well ; com-

are plots in Figs. 2 and 3 with plots in Figs. 4 and 5 . 

Also, in this positive utility game, whether brokers upgrade or

owngrade the service obtained from their providers, the behavior

s different from that in the unconstrained utility game. Specifi-

ally, since the positive utility market is more sensitive to prices,

 smaller gap between the service quality offered by the bro-

er and the quality it gets from its provider yields more profit.
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Fig. 5. Price, profit and demand distribution for brokers, and price of providers, for 

the positive utility game, B 1 upgrading the quality Q 1 = 20 , q 1 = 13 , Q 2 = 45 , 30 ≤
q 2 ≤ 60 , as the service quality offered by broker B 2 changes. 

F  

o  

q  

p  

q

 

p  

s  

m  

i  

S

4

 

o  

n  

t  

c  

p  

w  

c  

i  

d  

o  

t  

r  

i  

t  

v  

i  

t  

f  

i  

k  

t  

b  

i  

(

d

o

t

r

B  

p

4

O  

t  

o  

v  

p

O  

t  

k  

d  

v  

f

 

k  

b  

h  

d  

t  

r  

t  

q  

k  

s  

o  

s  

l

4

 

S  

B  

q  

k  

p  

s  

t  

a  

q  

t  

v  

s  

o

 

h

c  

q  

d  

t  

i  

d  

a  

b  

o  
urthermore, while for both brokers, slightly upgrading the service

btained from lower-level providers (and in turn, selling a higher

uality service to customers) is generally more profitable (compare

rofit plots in Figs. 4 and 5 ), B 2 gains more profit from a larger

uality gap caused by lower q 1 . 

Unlike the unconstrained utility game, if profit increases for one

layer, profit decreases for the other player. Another interesting ob-

ervation from these plots arises when there is a monopoly in the

arket: while there are conditions under which broker B 1 can lose

ts market share ( D 1 = 0 when q 2 = 30 in Fig. 4 ), service provider

 1 can manage to stay in the market under all conditions. 

.3. Sensitivity to quality-conversion cost 

In our model, we assume that brokers can change the quality

f service that they buy from the service providers so they offer a

ew service that meets the requirements of customers. Modeling

he real cost function for converting the service quality is compli-

ated and our economic model clearly does not capture the com-

lex structure of the market. For the sake of analytical tractability,

e have chosen a quadratic function c(q i − Q i ) 
2 , that intuitively

aptures the reasonable assumption that the cost of service qual-

ty upgrade/downgrade by a broker increases more rapidly as (the

ifference in) service quality increases 3 . To study the sensitivity

f our results to this assumption, we have analyzed the effect of

his quality conversion cost by examining different values for c . For

elatively small values of c , brokers are able to change the qual-

ty of the obtained (lower-level) services as much as they want

o achieve more service differentiation from other brokers. As the

alue of c gets larger, the cost of converting the lower-level quality

ncreases, and consequently there is an optimal point for changing

hat quality as a broker maximizes service quality differentiation

rom other brokers. Specifically, while for a broker, picking a qual-

ty beyond that (optimal) point decreases the profit of that bro-

er – because of the high cost of converting the lower-level quality

hat it is getting – the profit of the other broker(s) still increases

ecause of maximum service quality differentiation. In our numer-

cal analysis, we assume that the service qualities which B 1 and
3 Consider, for example, the service offered by a Content Distribution Network 

CDN) provider who manages the degree of replicating content to meet a certain 

elivery delay requirement. In this case, the cost could be modeled as a function 

f the area over which the content is replicated, i.e. , the cost is proportional to 

he square of the radius/distance, where a larger distance reflects higher content 

eplication and thus lower delivery delay (higher/better quality of service). 

fi  

f

t  

a  

w  

t  
 m 

pick, are not beyond the optimal quality (that maximizes their

rofit). 

.4. Results with three and four brokers 

bservation 4. When there are more competitors in the market,

he gap between their service qualities decreases, the competition

n the price becomes tougher and brokers should offer their ser-

ices at lower prices to be able to attract customers and make

rofit. 

bservation 5. In the market with more than two brokers, though

he maximum differentiation between the service qualities of bro-

ers reduces the intensity of competition, the cost that brokers un-

ergo is also playing an important role. There are situations where

iolating the maximum differentiation rule in order to buy service

rom the other provider gives rise to higher broker’s profit. 

In this section we extend our setting to three and four bro-

ers to see if the maximum differentiation principle holds for more

rokers. We assume that two brokers offering the lowest and the

ighest quality of service to users are already in the market and

efine the range of feasible quality. We then let the other one or

wo brokers enter the market with a quality level chosen in such

ange. After fixing a quality level, the third (and fourth) broker ob-

ains service from the (lower-level) provider that minimizes the

uality difference between them. This in turn minimizes the bro-

er’s cost in providing service to its customers. As in previous case

tudies with only two brokers, we show results at the equilibrium

f the game by identifying indifferent customers between available

ervice qualities. We also apply all constraints on the providers’

evel to have an oligopoly market. 

.4.1. Results considering three brokers 

We consider the game with θmin = 1 , θmax = 70 , two providers

 1 and S 2 with Q 1 = 30 and Q 2 = 60 , and three brokers, B 1 , B 2 and

 3 , with qualities q 1 , q 2 and q 3 , respectively. We assume that the

uality levels of B 1 and B 3 are fixed and we let the quality of bro-

er B 2 change in the interval ( q 1 , q 3 ). Broker B 2 chooses the service

rovider with least quality difference to reduce its (service conver-

ion) cost. Given the above settings, we observe a tipping point for

he quality of broker B 2 ( q 2 ): for q 2 < 45, B 2 chooses provider S 1 ,

nd for q 2 > 45, B 2 chooses provider S 2 ; for the frontier value of

 2 = 45 , although there is no quality differentiation between the

wo (lower-level) providers, we observe that downgrading the ser-

ice has less cost than upgrading it, therefore B 2 chooses to get its

ervice from S 2 . The jump in profit at q 2 = 45 in Fig. 6 is because

f B 2 ’s switching provider. 

As we can see in Fig. 6 , for each of brokers B 1 and B 3 , which

ave been already in the market, it is more profitable if broker B 2 
hooses to offer a quality with the maximum difference from their

uality, while for broker B 2 it is more profitable to have maximum

ifference with both B 1 and B 3 . As we have observed in the case of

wo brokers, it is not advisable to choose a quality of service sim-

lar to that of other providers. Intuitively, this is because the more

ifference in the service quality that they offer customers, brokers

re more likely to serve customers at a higher price. We note this

y observing that the optimal quality for broker B 2 is the average

f the other fixed brokers’ qualities ( q 1 and q 3 ). For example, in the

rst plot from left in Fig. 6 , the optimal q 2 = 50 , which is obtained

rom (q 1 + q 3 ) / 2 = (10 + 90) / 2 . 

We also change the fixed service qualities of brokers B 1 and B 3 
oward the optimal quality for B 2 to see how the market changes

nd compare such results with those of Hotelling’s location model

ith more than two firms [71] . As we can see in Fig. 6 , unlike

he Hotelling’s model [71] where corner firms have a tendency to
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Fig. 6. Profit of each broker in a three-broker case varying q 2 . 

Fig. 7. Demand of each broker in a three-broker case varying q 2 . 
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move toward internal firms, here all brokers make less profit when

quality differentiation decreases. Although, for broker B 3 , its mar-

ket share increases ( Fig. 7 ), the effect of dropping the price is more

pronounced than the extra share of the market and leads to lower

profit. 

Main Result: This means that, unlike the Hotelling’s location

model, for three firms, the market follows the maximum differentia-

tion principle and brokers make more profit when their service qual-

ities are more different from each other. In the following setting we

study four brokers to see if this pattern repeats. 

4.4.2. Four brokers 

In this setting, we consider a scenario with two brokers, B 1 
and B already in the market and offering fixed service qualities
4 
 1 = 10 and q 4 = 90 , respectively, and two other brokers, B 2 and

 3 , that enter the market later. Without loss of generality, we as-

ume that q 2 < q 3 . Fig. 8 shows the changes in profit for brokers

 2 and B 3 . We omit the results for B 1 and B 4 since they follow the

ame pattern as in the previous case study with three brokers, i.e. ,

he more differentiation between their qualities and those we set

or B 2 and B 3 , the higher is their profit. This means that such bro-

ers are not the decision makers in this situation. 

As we observe in Fig. 8 , for broker B 3 , whose quality is be-

ween q 2 and q 4 , the optimal quality q 3 value is one that yields

aximum differentiation from both qualities q 2 and q 4 , which is

lose to the average of q 2 and q 4 . For broker B 2 we expect instead

hat the optimal quality level is around q 2 = 37 , that is, the quality

ith maximum difference from q 1 (10) and the optimal q 3 (which
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Fig. 8. Profit of brokers B 2 and B 3 in a four-broker setting. 
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entiation). 

4 All code related to analytical and numerical solutions can be found at https: 

//github.com/MaryGhasemi/Multi- Layer- Market 
quals 64 given maximum quality differentiation among all bro-

ers). However, we observe that the optimal quality for B 2 is at

 2 = 45 , when broker B 2 switches from provider S 1 to provider S 2 
nd instead of upgrading the quality, downgrades the service that

t obtains from provider S 2 (recall that Q 1 = 30 and Q 2 = 60 ). To

nderstand why B 2 violates the maximum differentiation rule, we

nalyze the situations under both q 2 = 37 and q 2 = 45 . 

For q 2 = 37 , the observed optimal value for B 3 is q 3 = 56 , and

ot the expected value of q 3 = 64 . To explain this situation, we

hould consider that in making profit, besides quality differentia-

ion with other competitors (brokers), the cost of buying the lower-

evel service is also important. In this case, broker B 3 makes more

rofit if it chooses q 3 = 56 and downgrades the service it obtains

rom S 2 (recall Q 2 = 60 ) instead of choosing q 3 = 64 and upgrad-

ng the service. Broker B 3 can then offer a quality-price combina-

ion that attracts more customers, while because of the sufficient

ap between q 2 and q 3 , the competition on the price is not tough.

owever, in this situation, broker B 2 is upgrading the service that

t obtains from provider S 1 (recall Q 1 = 30 ) and to compete with

roker B 3 , it cannot offer a high price, and the profit that it makes

s relatively low. 

On the other hand, for q 2 = 45 , the situation is reversed. B 2 
owngrades the service that it obtains from provider S 2 , while B 3 
t its optimal point is upgrading the service. So the combination

f quality-price of broker B 2 attracts more customers which leads

o making more profit. Therefore in this game, besides maximum

uality differentiation, the cost that brokers undergo is also play-

ng an important role and sometimes brokers should compromise

n maximum differentiation to reduce their cost and make more

rofit. 

Assuming rational players, i.e ., the two new brokers pick the

uality that maximizes their profit, we compare the price of the

ervice that such brokers offer for the case studies of three and

our brokers. In the case of three brokers, we observe that the op-

imal quality for broker B 2 is at q 2 = 50 while q 1 = 10 and q 3 = 90 .

he optimal price for brokers in this setting is p 1 = 2092 , p 2 =
203 and p 3 = 5447 , respectively. When four brokers are play-

ng the game, the optimal quality for broker B 2 is q 2 = 45 and

or broker B 3 is q 3 = 66 . In this situation, the optimal prices are
p 1 = 1746 , p 2 = 2535 , p 3 = 3442 and p 4 = 4869 . As we can see,

he price of service with quality 10 and 90 drops from 2092 and

447 to 1746 and 4869, respectively. 

.5. Generalized market and main results 

In previous sections we considered markets with up to four

rokers and analyzed them. However, modeling a real market with

ore brokers is very complex. While Eqs. (3) –(12) can be used to

erive all demands, prices, and profits so as to analyze a market

ith any number of brokers, as the number of variables (brokers)

ncreases, the complexity of finding a closed-form solution for each

lement of the market increases 4 . However, we describe here our

ain results for a generalized scenario: 

• If �q ( q max − q min ) increases, there is more room for brokers to

differentiate their quality, and therefore, prices can be higher;

this in turn leads to higher profit. 

• In general, the maximum differentiation principle applies to all

players, i.e. , players make more profit as the difference between

their quality and rivals’ qualities is higher. 

• An increase in the number of brokers leads to a lower differ-

entiation between the service quality offered by brokers; this

means that prices are lower compared to the situation in which

the market has a lower number of brokers. 

• When the competition level increases ( i.e. , larger number of

brokers, limited quality range, etc. ), the cost of converting qual-

ity obtained from lower-level service providers plays an impor-

tant role than what the maximum differentiation principle dic-

tates. This is true for a broker whose offered service deviates

almost equally from any of the service providers’ quality, i.e. ,

| q i − Q 1 | ≈ | q i − Q 2 | . In this situation, violating the maximum

differentiation principle in one direction, to get the service that

yields less cost, leads to more profit for the broker, though at

the expense of rival’s profit (because of a lower quality differ-

https://github.com/MaryGhasemi/Multi-Layer-Market
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Fig. 9. Price of each broker in a four-broker setting. 

Fig. 10. Profit of brokers in cooperative & non-coperative cases, for varying q 2 . 
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5. Cooperative game 

In Section 3 , we studied the pricing strategy in a two-layered

network market, where service providers and brokers compete at

different levels in an oligopoly market to maximize their profit. We

modeled a non-cooperative game, in which all players try to opti-

mize their own profit independently. The non-cooperative nature

of players might have a negative impact on the profit of players

and leads them to less profit in total. For example, in Fig. 6 , while

the optimal profit for the new broker ( B 2 ) is to pick a quality at

the middle of existing qualities, the total profit of brokers B 1 and

B 2 is maximized when B 2 picks a quality close to that of B 3 . 

In this section, we consider a partially cooperative game. In our

setting, there are two service providers with different qualities at
he lower level and two or more brokers on top of them. When

 new broker enters the market, it chooses the quality that max-

mizes its profit; however, it happens that the quality chosen by

he new broker is not the best for brokers that are already in the

arket. Here, we study the oligopoly market at the brokers’ level,

ith two or more brokers, where a new broker enters the market

nd cooperates with one of the existing brokers rather than com-

etes. We study the impact of this cooperation on the quality that

he new broker chooses, the prices set by players in the market

brokers and service providers), and also customers’ social welfare.

hile in most situations, cooperation helps brokers make more

rofit, albeit with a negative impact on customers’ utility, there are

ases where both coalition brokers and customers benefit from the

ooperation. 
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Fig. 11. Price of brokers in cooperative & non-coperative cases, for varying q 2 . 

Fig. 12. Price of service providers in cooperative & non-cooperative cases, for varying q 2 . 
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.1. Profit sharing policy 

We study a market with two service providers, and two or more

rokers, denoted by S i ’s and B i ’s, respectively, where a new broker

nters the market. Service providers and brokers compete in two

ifferent levels in a Bertrand competition to find their best strat-

gy. We consider the market under different situations where the

ew broker cooperates with one of the other brokers. We assume

hat the new broker picks a quality in the range of available quality

n the market. We define the demand function as Eq. (2) : 

 i (p 1 , p 2 , . . . , p m 

) = 

θ ∗
i 

− θ ∗
i −1 

�θ

here θ ∗
i 

= 

p i +1 −p i 
q −q . 
i +1 i m  
The profit function for broker B i who buys services from ser-

ice provider S k is also given as Eq. (6) . In this cooperative game,

hen two brokers cooperate, we assume that they maximize the

ummation of their profits, i.e. , �i + j = �i + � j . 

.1.1. Sharing proportional to demand 

One way of sharing the profit between cooperative brokers is

o divide it proportional to the demand that each broker supports,

.e. , �i = �i + j × D i 
D i + D j . 

Though this strategy seems to be fair, it leads to more com-

etition and less profit. This is because, in this setting, each of

ooperating brokers wants to have more share of the market

demand) to gain more profit. Although the cooperating brokers

ant to maximize their total profit, since each of them wants to

aximize its own revenue as well, this leads to a more com-
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Fig. 13. Demand of brokers in cooperative & non-cooperative cases, for varying q 2 . 

Fig. 14. Demand of providers in cooperative & non-cooperative cases, for varying q 2 . 
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petitive market and much lower prices compared to the non-

cooperative market. In the end, at steady state, the profit that each

broker gains is less than that under the non-cooperative game.

Therefore, it is not rational for brokers to cooperate under this

policy. 

5.1.2. Sharing proportional to profit at optimal point of 

non-cooperative game 

The other way of splitting the profit between cooperating bro-

kers is to share it proportional to their profit at the optimal so-

lution of the non-cooperative game. This policy also gives more

incentive to the broker that gains more from cooperation. So, for

cooperating broker B i , the profit is calculated by: 

�i = �i + j ×
�′ 

i 

�′ 
i 
+ �′ 

j 
here �′ 
i 

and �′ 
j 

are non-cooperation profits at equilibrium. To

nd the optimal price, like the non-cooperative game, every bro-

er B i solves ∂ �i /∂ p i = 0 . The game in the second stage, between

ervice providers, is again a Bertrand competition and follows the

ame settings as we discussed in Section 3 . 

.2. Experimental results 

We consider two different settings with 3 brokers and 4 bro-

ers. In both settings, the first and last brokers are in the market

ith the lowest and highest quality of service, respectively, and the

ther brokers enter the market with a quality between them. We

tudy the effect of cooperation between different brokers on bro-

ers’ utility as well as users’ utility. In the following subsections,

e start with our main observations followed by a detailed analy-

is of our results. 
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Fig. 15. Price of brokers in cooperative & non-cooperative cases, for varying α. 

Fig. 16. Price of providers in cooperative & non-cooperative cases, for varying α. 
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.2.1. Three brokers 

We consider a setting with 3 brokers, where B 1 and B 3 are in

he market with lowest and highest quality of services, which in

his case are q 1 = 10 and q 3 = 120 , and B 2 is entering the market.

he demand function is defined like in the non-cooperative game,

s well as the profit function for providers and brokers. Assuming

 2 picks a quality that maximizes its profit ( q 2 = 65 ; see Fig. 10 ),

he profit of brokers in the non-cooperative game at equilibrium

s �1 = 720 , �2 = 394 and �3 = 121 . We assume that the cooper-

ting brokers share their total profit proportional to these profits.

here are two different cooperation scenarios for broker B 2 : one is

ooperation with B 1 , and the other is cooperation with B 3 . We an-

lyze both cases to see how prices and profits change for brokers

nd providers. 
.2.1.1. B 1 and B 2 cooperate 

bservation 6. If broker B 2 picks a quality close to B 1 , all players

an offer their services at higher prices and make more profits. 

bservation 7. While all players in the market benefit from the

ooperation of B 1 and B 2 , customers pay much higher prices

or the same or lower quality services, compared to the non-

ooperative game. 

When B 1 and B 2 cooperate, if B 2 chooses quality q 2 closer to

 1 , they can offer their services at higher prices and make a sig-

ificantly larger profit compared to the non-cooperative game. In

his case, other players, including B 3 , S 1 and S 2 , can also offer their

ervices at higher prices, therefore the market is equilibrated at
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Fig. 17. Profit of brokers in non-cooperative game and B 1 − B 2 cooperation game, for varying α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Prices and profits of brokers and service providers at optimal 

quality q 2 in different scenarios and percentages of change com- 

pared to the non-cooperative case. 

Non-Coop B 1 & B 2 Cooperate B 2 & B 3 Cooperate 

q 2 
∗ 65 13 43 

p 1 2840 6761 138% 1522 −46 . 5% 

p 2 4664 6907 640% 2711 −13% 

p 3 8338 12520 50% 7199 −14% 

�1 720 2373 229% 512 −29% 

�2 394 1299 229% 969 145% 

�3 121 1021 743% 286 136% 

r 1 2974 3099 4% 856 −72% 

r 2 3446 4428 28% 1678 −52% 

U 1 403 688 69% 472 16% 

U 2 2737 3082 12% 919 −66% 
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higher prices. If broker B 2 picks a service with higher quality, i.e. ,

gets closer to the quality of broker B 3 , the competition between B 2 
and B 3 gets more serious. Consequently, B 2 should set its price in

a lower range, and so other players should do the same. The closer

q 2 gets to q 3 , the competition gets more tense and the prices get

closer to the prices in the non-cooperative game. The left plots

in Figs. 10 and 11 present the profit and price of brokers, and

Fig. 12 shows the price of providers, when B 1 and B 2 cooperate.

The plots in the center illustrate the non-cooperative competition.

As we observe in Fig. 10 , the optimal point for broker B 2 is at

quality q 2 = 13 where its profit is maximized. As Fig. 13 shows,

since broker B 1 has the lowest quality and price, it does not lose

its share of the market. 

5.2.1.2. B 2 and B 3 cooperate 

Observation 8. B 2 cannot pick a quality close to B 3 , nor they can

set their prices as high as the prices in the B 1 − B 2 cooperation. 

Observation 9. At the optimal point for B 2 and B 3 , while they

make more profit, they also offer their services at lower prices,

compared to the equilibrium point of the non-cooperative market.

The profit comes mostly from reducing the cost of obtaining the

service from lower-level providers. 

In the case of collaboration between B 2 and B 3 , unlike the col-

laboration of B 1 and B 2 , if B 2 picks a quality close to q 3 , they can-

not set high prices, otherwise no one would prefer to buy from B 3 
and broker B 3 is out of market. Therefore, the prices are close to

those of the non-cooperative market. On the other hand, if broker

B 2 chooses a lower quality with fair difference from q 3 , it gets into

competition with broker B 1 . Therefore, in this collaboration game,

the prices cannot be set too high, because either it causes broker

B 3 to get out of the market, or B 2 and B 1 get into competition to

increase their share of the market. However, in this setting, the

price of service providers is lower than that of the non-cooperative

game. This is because the prices chosen by B 2 and B 3 lead them to

less demand, and consequently less demand for S 2 as well (right

side plots in Figs. 13 and 14 ). This situation makes S 2 lower its

price to attract more demand, which makes S 1 pick a lower price

as well. The best strategy for B and B is to buy from different ser-
2 3 
ice providers, so force them into more competition. Also, the opti-

al quality for broker B 2 is at the highest quality in which buying

rom S 1 still has less cost than buying from S 2 . At this quality, the

roviders’ prices equilibrate at the lowest range and brokers can

enefit from that. 

Table 1 presents the prices and profits of brokers and service

roviders at the quality of q 2 in which the profit of broker B 2 is

ptimized, in different situations, i.e. , in the non-cooperative case

nd in the case of cooperation of B 2 with B 1 or B 3 . It also shows

he percentages of change compared to the non-cooperative val-

es. For the price and profit of broker B 2 , since the optimal qual-

ty q 2 changes in different situations, the shown percentages are

ased on changes per unit of quality. As we observe it Table 1 ,

very player benefits from cooperation of B 1 and B 2 by setting

 higher price. However, in the case of collaboration between B 2 
nd B 3 , only B 2 , B 3 and S 1 have a higher profit compared to the

on-cooperative case, but it is better economically for customers

s prices are lower. 

.2.2. Four brokers 

In this setting, we have four brokers along with two service

roviders S 1 and S 2 with Q 1 = 30 and Q 2 = 60 . Brokers B 1 and B 4
re in the market with the lowest and highest quality of q = 10
1 
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Fig. 18. Profit of brokers in non-cooperative game and B 2 − B 3 cooperation game, for varying α. 

Fig. 19. Profit of brokers in non-cooperative game and B 3 − B 4 cooperation game, for varying α. 
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nd q 4 = 150 , and B 2 and B 3 enter the market choosing a qual-

ty between q 1 and q 4 . Without loss of generality, we assume that

 2 < q 3 . To reduce the complexity of varying q 2 and q 3 , we intro-

uce a new variable α and set q 2 = q 1 + α and q 3 = q 4 − α. We

ary α from 8 to 
q 4 −q 1 

2 ; α is used to control the quality gap be-

ween q 1 and q 2 , and q 3 and q 4 
5 . Then, we monitor the changes in

he market as B 2 and B 3 change their qualities away from the qual-

ty endpoints ( q 1 and q 4 ) and toward the center, where they get

loser to each other. Since there are two brokers changing their

ualities, we do not have any single optimal point in the four-

rokers game, as we have in the three-brokers game, so we com-
5 If q 2 gets too close to q 1 , or q 3 gets too close to q 4 , B 1 or B 4 are out of the 

arket. Thus, α starts from a value so everyone can compete in the market. 

m

O  

p  

a  
are the result of cooperation with that of the non-cooperative

ame in the same setting. 

We consider the market in different situations where there is

o cooperation, or there is cooperation between B 1 and B 2 , B 2 and

 3 , or B 3 and B 4 . 

.2.2.1. B 1 and B 2 cooperate 

bservation 10. When α is small, i.e., q 1 and q 2 are close to each

ther, B 1 and B 2 can offer their services at higher prices and make

ore profit. 

bservation 11. When the structure of the brokers’ market im-

oses a tense competition in the service providers’ market, brokers

nd customers benefit from this competition; while brokers make
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Fig. 20. Normalized total customers’ welfare in non-cooperative & cooperative games, for varying α. 
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profit as a result of decrease in the cost of buying services, cus-

tomers buy services from brokers at lower prices. 

In this setting, when the qualities of service of B 1 and B 2 are

close to each other, they can set a high price for their services.

Other brokers also raise their prices. As B 2 increases its quality

q 2 , and q 2 and q 3 get closer to each other, the price of brokers

drops. But the drop in prices of B 3 and B 4 is more than that of B 1 
and B 2 ’s. Indeed, B 1 and B 2 make profit by having higher prices,

compared to the non-cooperative game, while prices of B 3 and

B 4 are even lower than their prices in the non-cooperative game

( Fig. 15 up right plot); B 3 and B 4 make more profit by attracting

more demand, which is also the case for service provider S 2 . As

the price of S 2 decreases and B 2 picks a higher quality, the com-

petition between S 1 and S 2 gets more intense and they decrease

their prices ( Fig. 16 ). This situation holds until B 2 switches from

S 1 to S 2 . Fig. 17 shows the profit of brokers in the non-cooperative

game and under this B 1 − B 2 cooperation. 

5.2.2.2. B 2 and B 3 cooperate 

Observation 12. While quality differentiation between competi-

tors is not large, the effect of competition outweighs the effect

of cooperation. This is the scenario when �q coop 
�q comp , where

�q coop is the quality differentiation between cooperative brokers

and �q comp is the quality differentiation between cooperative bro-

kers and other neighboring brokers. 

In the case of cooperation of B 2 and B 3 , when α is small, i.e. q 2 
is close to q 1 and q 3 is close to q 4 , B 2 and B 3 are in high competi-

tion with B 1 and B 4 , respectively; therefore, their cooperation have

almost no effect on the system and the prices are almost the same

as the non-cooperative game ( Fig. 15 down left plot). As α gets

bigger, i.e. q 2 and q 3 get closer to each other, the competition with

their rivals is less intense and they can set their price to a higher

value and the market is equilibrated at higher prices. Fig. 18 com-

pares the brokers’ profit in the non-cooperative game and under

this B − B cooperation setting. 
2 3 
.2.2.3. B 3 and B 4 cooperate 

bservation 13. When B 3 and B 4 cooperate, as α increases, as long

s B 3 is not in competition with B 2 , their total profit remains high.

In this configuration, when α is small, i.e. q 3 and q 4 are close to

ach other, B 3 and B 4 can set their price to higher values, but their

rices are not as high as B 1 and B 2 set in their cooperation (com-

ared to the non-cooperative case); otherwise B 4 is out of the mar-

et. As α increases, unlike the other cooperations, the total profit

f B 3 and B 4 remains high. This is because when α increases, the

uality differentiation between B 1 and B 2 increases and they can

hen increase their prices. Meanwhile, the quality differentiation

etween B 3 and B 4 also increases and they can attract more share

f the market. When q 3 gets closer to q 2 and there is more compe-

ition between B 2 and B 3 , the prices and profits get closer to those

n the non-cooperative game. Fig. 19 shows the brokers’ profit in

he non-cooperative game and the B 3 − B 4 cooperation game. 

.2.2.4. Users’ utility 

bservation 14. Customers’ welfare is higher when competition is

ough. 

bservation 15. If brokers can impose more competition on the

ower-level providers, both brokers and customers benefit from

hat competition. 

To compare the customers’ welfare in different cases, we cal-

ulate the summation of users’ utility ( θq i − p i ) and normalize it

y dividing by maximum total utility, which is obtained when all

ustomers buy service from the highest quality broker ( B 4 in this

ase) at zero price. Also, we define a fairness metric as 
( 
∑ 

D i ) 
2 

n ×∑ 

D 2 
i 

,

here D i is the demand of broker i and n is the number of

rokers. This metric shows us how evenly the market share is

istributed among brokers. Specifically, this fairness metric ap-

roaches 1 when demands are equal, and approaches zero oth-

rwise [74] . Fig. 20 presents the customers’ welfare in different

ames with or without cooperation, for two different markets with

ifferent quality ranges, where in the left plot q = 120 and in
4 
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Fig. 21. Fairness measure of brokers’ market share in non-cooperative & cooperative games, for varying α. 
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he right plot q 4 = 150 . For the non-cooperative game, when α is

mall, the competition of B 1 − B 2 and B 3 − B 4 is intense and their

rices are low, so users benefit from this competition. The same

tory is true for B 2 − B 3 cooperation, when α is small; however,

hen q 2 and q 3 get close to each other, the users’ welfare is less

han that in other games. As we can see in Fig. 20 , B 1 − B 2 cooper-

tion game has the lowest users’ welfare, except for some values of

, when B 2 buys service from S 1 , and there is intensive competi-

ion between S 1 and S 2 . In this situation, as we explained above

for B 1 − B 2 cooperation), S 2 and consequently B 3 and B 4 make

ore profit by attracting more market demand instead of by set-

ing higher prices, therefore the users’ welfare can be higher than

ther cases. 

Fig. 21 shows the fairness measure of market share for brokers.

t is clear that when there is no cooperation and brokers have a fair

ifference between their service qualities, and also there is com-

etition between service providers ( B 1 and B 2 buy from S 1 , and B 3 
nd B 4 buy from S 2 ), the market is almost evenly shared among

rokers. 

.3. General results for partial cooperative game 

The complexity of the partial cooperative market is the same as

e would have in a competitive market. While Eqs. (3) –(12) work

or any number of brokers, the closed-form solutions are complex.

owever, we describe some general results that hold for a partial

ooperative market with a number of brokers greater than two: 

• In a partial cooperative market, all brokers benefit from the on-

going cooperation; however, customers pay much higher prices

for the same or lower quality of service, compared to the non-

cooperative game. 

• The cooperation of B 1 (the broker with the lowest quality) with

B 2 (the broker with the next quality level) yields the highest

profit to all players, compared to cooperation between other

brokers. This happens because B 1 and B 2 can increase their

price much more than other players in cooperation without

getting out of the market; therefore other players also can set

a higher price. 
• If the quality differentiation between competitors is not large,

cooperation has little effect on increasing profit for (cooperat-

ing) brokers. 

. Conclusion 

In this paper, we developed a game-theoretic model that cap-

ures the interaction among players in a multi-level market. In

ur model, brokers, as the intermediaries between users and ser-

ice providers, adapt the quality of the service that they get from

ower-level providers so as to attract more customers and maxi-

ize their profit. The game consists of two service providers, two,

hree or four brokers, and users, though we study more extensively

he case with two brokers. Numerical results show that the more

ifferentiation between the quality of service offered by brokers,

he higher is their profit. However when the competition is in-

ense, besides quality differentiation, cost plays an important role

nd forces brokers to compromise on quality differentiation with

heir competitors to reduce cost and make more profit. An in-

eresting result in the two brokers game is that although players

ompete for more profit, the competition only affects their mar-

et share; the profit increases for one player if it increases for the

ther one. But this is not the case for more brokers. When there

re more than two brokers, the market is more competitive and

rokers should offer their services at lower prices to be able to

tay in the market. 

We also considered a partial cooperative game where incoming

rokers decide to cooperate with one of the brokers in the market;

n this game, cooperative players maximize their total profit in-

tead of their own profit. The numerical results show that in most

f the cases, all players benefit from the cooperation of a subset

f players; indeed, cooperation means less competition. However,

he benefit from cooperation depends on the quality differentia-

ion between cooperating brokers and also the quality differentia-

ion of cooperating brokers with other brokers they compete with.

he highest profit occurs when the service qualities of coopering

rokers are close to each other, with a substantial quality differ-

nce from other brokers. Also, players make more profit when the

ncoming broker cooperates with the broker with lowest quality
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rather than cooperates with the broker with highest quality; in co-

operation with the high quality broker, if they set their price too

high, the high quality broker loses its market share and goes out of

the market. Furthermore, when the service quality offered by bro-

kers is distributed almost uniformly, the cooperation does not have

much impact on the market. 

Although in most cooperative settings, customers do not benefit

from brokers’ cooperation, there are situations where cooperation

can yield lower prices. In these cases, the combination of brokers’

service quality and their market shares impose a high competition

on the service providers’ level, and as a result of such competition,

they lower their price. Consequently, the cost of providing services

is reduced for brokers and they can make more profit by incurring

less cost. 

We believe our model and findings can guide the design and

analysis of current and emerging brokered (service-oriented) sys-

tems, including Software Defined eXchanges (SDX) stitching (vir-

tual or physical) resources from multiple domains to offer a range

of software defined services, e.g. , a video marketplace. 
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Appendix. Analytical Solution for the case of Two-Brokers, 

Two-Service Providers 

In this appendix, we show the detailed derivation of our ana-

lytical solution for the particular case of two service providers S 1 
and S 2 , and two brokers B 1 and B 2 . As discussed in Section 3 , we

assume that customers have different quality preferences, modeled

by θq − p, where θ is the customer’s marginal willingness to pay

for quality q , and p is the price of service. Under these assump-

tions, the indifferent customers, θ ∗ satisfy: 

θ ∗q 1 − p 1 = θ ∗q 2 − p 2 ⇔ θ ∗ = 

p 2 − p 1 
q 2 − q 1 

. 

If we assume a uniformly distributed θ , the demand for each

broker, B 1 and B 2 , is given by: 

D 1 (p 1 , p 2 ) = 

θ ∗ − θmin 

�θ
= 

1 

�θ

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)

D 2 (p 1 , p 2 ) = 

θmax − θ ∗

�θ
= 

1 

�θ

(
θmax − p 2 − p 1 

q 2 − q 1 

)

where �θ ≡ θmax − θmin . 

Substituting the demand expressions in the brokers’ profit

equations: 

�i = p i D i −
q i D i 

Q j 

r j − c i D i (Q j − q i ) 
2 

and given Theorem 1 that B 1 buys service from S 1 , and B 2 buys

service from S 2 , we obtain: 

�1 = 

p 1 
�θ

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)
− q 1 r 1 

�θQ 1 

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)

− c(Q 1 − q 1 ) 
2 

�θ

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)

and 

�2 = 

p 2 
�θ

(
θmax − p 2 − p 1 

q 2 − q 1 

)
− q 2 r 2 

�θQ 2 

(
θmax − p 2 − p 1 

q 2 − q 1 

)

− c(Q 2 − q 2 ) 
2 

�θ

(
θmax − p 2 − p 1 

q 2 − q 1 

)
. 

To find the equilibrium in the broker-level game, we need to

nd the optimal price of brokers. To do so, we solve the ∂ �i /∂ p i =
 system. Calculating ∂ �i / ∂ p i for every i , we have: 

 �1 /∂ p 1 = 

1 

�θ

(
p 2 − p 1 
q 2 − q 1 

− θmin 

)
− 1 

(q 2 − q 1 ) 
× p 1 

�θ

+ 

1 

(q 2 − q 1 ) 
× q 1 r 1 

�θQ 1 

+ 

1 

(q 2 − q 1 ) 
× c(Q 1 − q 1 ) 

2 

�θ

nd 

 �2 /∂ p 2 = 

1 

�θ

(
θmax − p 2 − p 1 

q 2 − q 1 

)
− 1 

(q 2 − q 1 ) 
× p 2 

�θ

+ 

1 

(q 2 − q 1 ) 
× q 2 r 2 

�θQ 2 

+ 

1 

(q 2 − q 1 ) 
× c(Q 2 − q 2 ) 

2 

�θ
. 

Now, the solution of the system of two equations, i.e .,

 �i /∂ p i = 0 , yields the optimal price for both brokers (shown in

qs. (7) and (8) ): 

p 1 = 

1 

3 

( ( q 2 − q 1 ) ( θmax − 2 θmin ) + 

2 q 1 r 1 
Q 1 

+ 

q 2 r 2 
Q 2 

+ 2 c ( q 1 − Q 1 ) 
2 + c ( q 2 − Q 2 ) 

2 ) 

p 2 = 

1 

3 

( ( q 2 − q 1 ) ( 2 θmax − θmin ) + 

q 1 r 1 
Q 1 

+ 

2 q 2 r 2 
Q 2 

+ c ( q 1 − Q 1 ) 
2 + 2 c ( q 2 − Q 2 ) 

2 ) 

Now the brokers’ prices, p 1 and p 2 , are a function of the bro-

ers’ and providers’ service qualities, and providers’ prices r 1 and

 2 . The next step is to plug them into D i ’s to obtain the demand as

 function of r j ’s (shown in Eqs. (9) and (10) ): 

 1 = 

1 

3�θ
( θmax − 2 θmin ) + 

q 2 r 2 
Q 2 

− q 1 r 1 
Q 1 

− c ( q 1 − Q 1 ) 
2 + c ( q 2 − Q 2 ) 

2 

3�θ( q 2 − q 1 ) 

 2 = 

1 

3�θ
( 2 θmax − θmin ) + 

q 1 r 1 
Q 1 

− q 2 r 2 
Q 2 

+ c ( q 1 − Q 1 ) 
2 − c ( q 2 − Q 2 ) 

2 

3�θ( q 2 − q 1 ) 

Now, D 1 and D 2 are a function of the service providers’ prices

 1 and r 2 . They can be substituted in the providers’ profit and, fol-

owing the same process, the optimal price of providers can be ob-

ained in terms of providers’ and brokers’ service qualities. 
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