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Abstract 

Problems associated with determining optimal routes from one or several depots (origin, home city) to a set of nodes (vertices, 
cities, customers, locations) are known as routing problems. The Traveling Salesman Problem (TSP) lies at the heart of routing 
problems. One of the new variants of the TSP is named as TSP with Profits where the traveler must finish its journey within a 
predetermined time (cost, distance), by optimizing given objective. In this variant of TSP, all cities ought to not to be visited. The 
Orienteering Problem (OP) is the most studied case of TSP with Profits which comes from an outdoor sport played on mountains.  
In OP, traveler gets a gain (profit, reward) from the visited node and the objective is to maximize the total gain that the traveler 
collects during the predetermined time. The OP is also named as selective TSP. In this paper, we present two polynomial size 
formulations for OP. The performance of our proposed formulations is tested on benchmark instances. We solved the benchmark 
problems from the literature via CPLEX 12.5 by using the proposed formulations and existing formulation. The computational 
experiments demonstrate that; (1) both of the new formulations over estimates the existing one; and (2) the proposed 
formulations are capable of solving all the benchmark instances that were solved by using special heuristics so far.  
© 2016 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of Academic World Research and Education Center. 
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1. Introduction 

Travelling Salesman Problem (TSP) has many applications in vehicle routing, scheduling, cellular manufacturing, 
frequency assignment and etc. The TSP lies at the heart of routing and logistics problems. In recent years, a new 
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variant of the TSP is seem to be an attractive research area where the objective focus on maximizing the profit 
(gains, rewards) obtained from the visited nodes. Those types of the TSP’s are called as TSP with Profits (Feillet et 
al., 2005). The Orienteering Problem (OP) is the most studied case of the TSP with Profits which comes from an 
outdoor sport played on mountains. This problem with an application is defined by Tsiligirides (1984). Golden et al. 
(1987) handled home fuel delivery problems as the OP. Tourist tour problems are the most attractive applications of 
the OP. In OP, traveler gets a gain (profit, reward) from the visited node and the objective is to maximize the total 
gain that the traveler collects during the predetermined time. The OP is also known as the Selective TSP (Laporte 
and Martello, 1990). In OP, the journey starts at the depot and ends at a given terminal node and all the nodes may 
not be visited because of the time or distance restriction. While solving OP, we look for finding a path rather than a 
circuit between specified two points. 

The OP is NP-hard; therefore solution approaches are concentrated on developing exact procedure and/or 
heuristics (Vansteenwegen et al., 2011). Laporte and Martello (1990) and Ramesh et al. (1992) presented procedures 
to find optimal solutions within a branch and bound methods. Later, a branch and cut procedure appeared in 1998 for 
solving OP optimally (Fischetti et al., 1998). Recently Archetti et al. (2013) proposed procedures for optimal 
solutions for the capacity restricted routing problems with profits. There exist many heuristics for the OP. The first 
heuristic developed by Tsiligirides (1984) and then by Chao et al. (1996). A brief summary of the heuristics for the 
OP can be found in Vansteenwegen et al. (2011) and improved algorithms can be seen in Chekuri et al. (2012). 

A mathematical formulation is presented in the paper by Laporte and Martello (1990) with the name of the 
Selective TSP. The subtour elimination constraints of this formulation increases exponentially with respect to the 
number of the nodes of the underlying graph, so this formulation cannot be used directly by optimization software. 
Vansteenwegen et al. (2011) present a general OP formulation whose subtour elimination constraints increase 
polynomially. As far as we are aware, this is the only one formulation that can be used directly by an optimizer. 

The remarkable improvement in hardware and software technologies and commercial optimization software allow 
us to solve many mathematical formulations, especially linear programming formulations, directly; therefore, new 
and user friendly formulations will facilitate to solve routing problems more easily and rapidly by using any 
optimizer. The main motivation of this paper is to present new linear programming formulations for solving small 
and moderate sized OP directly by using any optimizer. Our contributions are two folds: (1) We present new integer 
linear programming formulations for OP with O(n2) constraints and O(n2) binary variables. Both formulations are 
useable directly by any optimizer. (2) We found the optimal solutions of the benchmark instances and observe that 
most of the best known solutions obtained by heuristics are far away from the optimal values. 

The remainder of the paper is organized as follows: In section 2, problem OP is defined more precisely and 
general formulation of the OP is given, while two new linear programming formulations for OP are presented in 
section 3. The performances of the proposed formulations are analyzed in section 4. The conclusion and further 
remarks appeared in section 5. 

2. Problem Identification and General Formulation  

Orienteering Problem (OP) is defined on a graph G = (V, A) where V = {0, 1, 2, … , n} is the set of nodes 
(vertices), {0} is the depot (origin, home city), {n} is the terminating node and the remaining nodes are customer 
nodes. The set A = {(i, j): i, j V, i j} is the arc (or edge) set. With each arc (i, j) is associated a travel distance or 
time or cost cij (which may be symmetric, asymmetric, Euclidean, deterministic, random, etc.). There is a traveler 
located at the depot. The traveler gains a profit (reward) pi if the ith node is visited. The journey start from the depot 
and terminate at the node n and must end within a predetermined time (or cost or distance) Cmax. The OP consists of 
determining a path such that the total reward is maximized, given that the distance traveled (or time spent or cost of 
traveling) by the traveler cannot exceed a given value Cmax. 

Associated with each arc, let xij be a binary variable equal to 1 if the traveler goes from node i to node j and 0 
otherwise. Then, a general (i.e., implicit in a sense) two indexed integer linear programming formulation (ILPF) for 
the OP may be given as follows: 
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Subject to 
 

                                                                                                                                                      (2)  
 
 

                                                                                                                                                      (3) 
 
 

          ,    j = 1, 2, …, n -1                                                                                                              (4) 
 

 
          ,    i = 1, 2, …, n -1                                                                                                              (5)          

 
 

,    j = 1, 2, …, n -1                                                                                                              (6)          

 
                                                                                                                                         (7) 

 
 
+ Subtour elimination constraints                                                                                                                           (8) 
 

                                                                                                                          (9) 
 
In this formulation, constraints (2) and (3) are used to allow that the path starts from the depot and end at the 

terminal node, whereas constraints (4) and (5) are the degree constraints ensuring that each customer may be visited 
at most once. Constraints (6) are the conservation of the flow constraints, constraints (7) is the time or distance or 
cost restriction that guarantees that the journey must end before the predetermined value Cmax. Constraints (8) are the 
implicit form of the subtour elimination constraints. Those constraints must ensure that the solution contains no 
illegal subtours. Integrality constraints are given in (9). 

Existing polynomial size ILPFs of the routing problems in the literature differs with respect to the subtour 
elimination constraints (SECs) and/or some side constraints. In order to prevent illegal tour, i.e., eliminate subtours, 
in most of the studies, additional, i.e. auxiliary, decision variables are defined and then SECs of the formulation are 
developed. A formulation is named as node-based if the additional decision variables defined on the nodes of the 
graph and arc-based if the additional decision variables are defined on the arcs of the graph. In the following section, 
we propose a new node based and a new arc based formulations for OP. 

3. New Formulations 

In subsequent sections we present two new ILPF for OP. 
 
Node Based Formulation for OP 
Let us define the auxiliary variables vi’s as: 
vi: is the auxiliary variables defined as the position (visit) number of the node i if it is visited and arbitrary real 

value otherwise. 
Proposition 1: The following inequalities together with the constraints (2) - (7) are valid initializing and 

bounding constraints for the OP. 
 

                                                                                                                                                             (10) 
                              

  ,                          i = 1, 2, …, n -1                                                                                          (11) 
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        i = 1, 2, …, n -1                                                                                           (12) 
 

Proposition 2: The following inequalities together with the constraints (2) - (7) and (10) - (12) are valid subtour 
elimination constraints for the OP. 
 

 ,          i ≠ j ;  i, j=1,2,…,n                                                                               (13) 
 

In accordance with the constraints given in (13), the auxiliary variables of the nodes on the path forms a step 
function with respect to the visit numbers of the nodes which are on the path, so no illegal subtour can be formed. 

In view of the proposition 1 and 2, we propose the following ILPF for the OP as; 
 

     F1: Maximize   

Subject to   
Constraints (2) - (7),  
Constraints (9) - (13).  
 

where xij = 0 whenever c0i + cjn + cij > Cmax and cii = 0 for all i and the distance matrix is Euclidean. As evident, this 
formulation has O(n2) binary variables and O(n2) constraints.  

 
Arc Based Formulation for OP 
 
We define the flow variables yij’s as, 
yij is the auxiliary variables defined as the position (visit) number of the node j if it is visited just after the node i 

and zero otherwise. 
Note that, if the arc (i, j) is not on the path then yij must be equal to zero.  
 
Proposition 3: The following inequalities together with the constraints (2) - (7) are valid initializing and 

bounding constraints for the OP. 
 

          i = 1, 2, …, n                                                                                                                  (14) 
 

         i = 0, 1, 2, …, n -1  ,   j = 1, 2, …, n                                                                              (15) 
                                                                                                                                                            

                                                                                                               (16) 
 

Proposition 4: The following inequalities together with the constraints (2) - (7) and (14) - (16) are valid subtour 
elimination constraints for the OP. 

 
i=1, 2, …, n -1                                                                                            (17)          

 
In view of the proposition 3 and 4, we propose the following arc based formulation for the OP as; 
 

    F2: Maximize   

    Subject to   
    Constraints (2) - (7),  
    Constraints (9),  
    Constraints (14) - (17).  
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where xij = 0 whenever c0i + cj0 + cij > Cmax and cii = 0 for all i and the distance matrix is Euclidean. In this 
formulation, constraint (17) is the subtour elimination constraint, and it guarantees that the solution contains no 
illegal subtours. As evident, the formulations given above has O(n2) binary variables and O(n2) constraints. 

4. Computational Analysis 

We analyze the performance of our proposed node-based (F1) and arc-based (F2) formulations by solving test 
problems with the linear programming solver, CPLEX 12.5. We look at linear programming relaxations and 
especially, CPU for each instance. These formulations are compared to the formulation (VSO) of Vansteenwegen et 
al. (2011) from the literature. 

The experiment is based on two available data sets of benchmark instances taken from the literature 
(http://www.mech.kuleuven.be/en/cib/op). Benchmark instances are as follows: 

 Data set 1: The most used OP instances by Tsiligrides (1984) consist of 49 instances as three data set named 
TS21, TS32 and TS33. 21, 32 and 33 indicate the number of nodes.  

 Data set 2: The OP instances by Chao et al. (1996) consist of 40 instances as two data set named CH64 and 
CH66. 64 and 66 indicate the number of nodes. 
All OP test instances were solved separately by VSO, F1 and F2 formulations using CPLEX 12.5 solver on Intel 

Core2 Duo processors of 2.66 Ghz clock speed with 2.00 GB of RAM computer. For each OP-instance, a time limit 
of 7200 seconds was imposed. 

Optimal solutions for all OP-instances proposed by Tsiligrides (1984) are achieved by VSO, F1 and F2 
formulations in the given time limit of 2 hours. In table 1, for Tsiligrides’s benchmark instances, a summary of the 
mean (Avg.) and standard deviation (Std. D.) of the CPU times required to find the optimal solution is presented. 

 
                   Table 1. Comparison of the mean and standart deviation of the CPU times for data set 1 

 VSO F1 F2 
Problem Avg. Std. D. Avg. Std. D. Avg. Std. D. 

TS21 2,25 0,63 0,73 0,46 1,15 0,39 
TS32 9,05 8,63 3,54 3,78 1,40 0,67 
TS33 9,12 5,44 2,89 2,12 3,26 1,95 

 
According to the results in table 1, F1 and F2 formulations sufficiently and capably find optimal solutions for 

problems with up to 33 customers within seconds, and our proposed formulations are considerably faster than the 
existing formulation (VSO). 

Table 2 gives the average results for the data set 2. The results are shown in comparison with VSO, F2 
formulations. While VSO formulation solves 18 of 40 Chao-Golden-Wasil’s instances to optimality in the given 
time limit of 2 hours, F2 formulation finds optimal solutions in 40 cases within a short period of time.  
 
                   Table 2. Comparison of the mean and standart deviation of the CPU times for data set 2 

 VSO F1 F2 
Problem Avg. Std. D. Avg. Std. D. Avg. Std. D. 
CH64 177,97 175,22 76,91 87,63 40,88 55,46 
CH66 - - - - 107,34 138,37 

 
Tables 2 reveal that F2 formulation clearly outperforms VSO formulation in the experiment, and F2 formulation 

is able to achieve the optimal solution within a short amount of CPU time. 

5. Conclusions 

In this study, we address the orienteering problem, where the objective function is to maximize the total gain that 
the traveler collects from the visited nodes during the predetermined time. For this case, two integer linear 
programming formulation having O(n2) binary variables and O(n2) constraints are developed to solve OP-instances 
optimally by a standard optimization solver. 
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According to CPU times and optimal solution values obtained from the Tsiligrides problems, we observe that, 
F1’s and F2’s performances are close to each other while they are better than VSO’s. Besides, according to the 
benchmark instances given by Chao et al. (1996), it is seen that F2 is better than F1 and F2’s performance is clearly 
higher than VSO’s. F2 solved all OP-instances optimally and we see that known best values of the most instances 
are far away from the optimal values. As a consequence of these computational analyses, we conclude that F2 may 
be used for solving OP directly by any optimizers. 
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