IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 4, 2019, accepted October 8, 2019, date of publication October 11, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946704

Interleaved Sketch: Toward Consistent
Network Telemetry for Commodity

Programmable Switches

ZIJUN HANG ™, MEI WEN, YANG SHI™, AND CHUNYUAN ZHANG

School of Computer Science, National University of Defense Technology, Changsha 410073, China

Corresponding author: Zijun Hang (hangzijun17 @nudt.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2016 YFB 1000400, and in part by
the National Nature Science Foundation of China through NSFC under Grant 61502509 and Grant 61402504.

ABSTRACT Network telemetry is vital to various network applications, including network anomaly detec-
tion, capacity planning, and congestion alleviation. State-of-the-art network telemetry systems are claimed
to be scalable, flexible, all-purpose, and accurate. They adopt interval approaches that track network traffic
in each interval and collect statistics for analysis at a specific epoch. However, interval methods are impaired
by collecting inconsistency and clearing inconsistency, which pollute statistics. Moreover, The state-of-the-
art centralized controllers have long latency, which aggravates the discrepancy. Accordingly, we propose
the interleaved sketch, a consistent and decentralized network telemetry system across all switches. Each
switch has two asymmetric sketches that work in an interleaved fashion, and is self-supervised to improve
consistency. The distributed control plane extracts the flow characteristics and provides network-wide
telemetry with low latency. We build a P4 prototype of our proposed interleaved sketch and test it on a
Barefoot Tofino switch. Experimental results demonstrate that our interleaved sketch achieves ideal accuracy

at line speed, with 6% resource overhead.

INDEX TERMS Network telemetry, P4, programmable switches, software defined network.

I. INTRODUCTION

Network telemetry provides a network-wide perspective by
monitoring massive network traffic. Network telemetry is the
cornerstone of many network applications, including conges-
tion control, anomaly detection [1]-[3], and Heavy Hitter
detection [4], [5], as it is highly beneficial to these applica-
tions. To ensure accuracy, network telemetry systems should
present a network-wide and consistent view that covers as
many switches as possible and provides accurate flow-level
statistics.

Conventional wisdom mainly focuses on single switches
and single task. However, this focus is not general enough
for a wide range of telemetry tasks, as well as lacking in
completeness in terms of the network-wide telemetry. Most
importantly, they focuses primarily on CPUs [6], which are
unable to handle data center traffic [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wangli He

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Software-Defined Network (SDN) [8] represented a revo-
lution in traditional network conception and has opened up a
new era in network telemetry. SDN decouples the data plane
from the control plane of switches and makes the data plane
programmable, which makes processing while forwarding
each packet in line-rate a reality. The ongoing SDN revo-
lution has facilitated the innovation of telemetry algorithms,
including FlowRadar [9], UnivMon [10], SketchLearn [11],
and Elastic Sketch [12]. These telemetry algorithms adopt
interval approaches that track network traffic in each interval
and collect statistics for analysis at the end of each interval.

However, these approaches may lack consistency in three
key respects. First, at the end of each interval, the controller
collects statistics from the data plane, which takes 0.1-3 sec-
onds according to our experimental data. It is impossible to
halt the data plane while the controller is collecting statistics,
as traffic alters the statistics of the data plane as it continues
to arrive. The statistics that are read later will be larger,
which contributes to inconsistency in the statistic. Algo-
rithms such as SketchLearn and Elastic Sketch are sensitive to

146745

https://orcid.org/0000-0002-9815-0829
https://orcid.org/0000-0001-5786-3171
https://orcid.org/0000-0003-3857-4125

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

such inconsistency. Second, after the collecting procedure,
the controller needs 0.1-1 second to clear the statistics accord-
ing to our experiments. The statistics are cleared at differ-
ent epochs; statistics that are cleared earlier will be more
significant. Third, many telemetry systems employ a cen-
tralized controller to provide a network-wide view. How-
ever, the centralized controller has undetermined latency,
which contributes to the inconsistency between controller and
switch.

Accordingly, to overcome these defects, we present the
interleaved sketch, a consistent and decentralized network
telemetry system across all switches. The interleaved sketch
has two sketch pipelines for the data plane and control plane
to facilitate access in an interleaved way — in brief, the data
plane and control plane interchange access to two pipelines
from interval to interval. Moreover, we decouple the con-
trol plane and management plane in order to implement a
decentralized telemetry system in which each switch is self-
supervised. We move the control plane down to each switch
so that each control plane automatically controls the interplay
of the two pipelines inside a switch. The control plane also
extracts flow characteristics from the data plane statistics
inside each switch. Our proposed protocol is designed to
transmit the flow characteristics to provide network-wide
telemetry.

Realizing the proposed interleaved sketch in a commodity
programmable switch is challenging. First, the concept of
an interleaved sketch calls for coordination between the data
plane and the control plane. The control plane must finish
all transactions before the data plane changes the working
pipeline to prevent the statistics from being inconsistent.
Second, the decentralized controller increases the complexity
of both programming and configuring the switches. Third,
programmable switches have tight restrictions on resources
and transactions; naively duplicating the pipeline is there-
fore not feasible. Fourth, the volume of statistics can be
200KB-1500KB [9]-[12]. Reading them is time-consuming,
not to mention processing them.

The unique characteristics of the proposed interleaved
sketch are as follows

o The interleaved sketch does not pollute the statistics.
Instead, it explores the interleaved working of two
pipelines to support consistency among the statistics.
The two pipelines adopt asymmetric sketches; this
method consumes only 6% more resources than a single
pipeline.

o The interleaved sketch is flexible and can be scaled
to provide network-wide telemetry on commodity pro-
grammable switches. Each switch is self-supervised,
enabling pipeline access to be interchanged without
manual intervention.

o The interleaved sketch stresses low latency by dis-
tributed analysis and by only reporting the final results
rather than all raw statistics.

The remainder of this paper is organized as follows.

Section II presents the background and motivation. Section III

146746

Programmable data Plane
'I'h“gress E'g';'fess Pip'éllline 444444
Slel 1SI2] S]]
~||» F||» Fllo]
O | Hedderpatn | [
(Tl [
| (e c c clli |
15 = L A e g
| Sllel\=]l<[\= il De-
:;IParser Ij“ A)\ Parser I
ARSCEey @PECiel:. SEACKeW |
':>: I:“N \/ _--Metadata Path"~_) ‘:>| |':>
[—,—/—————————‘“\—\— o)
| MaEh-_aca)rﬁaﬁe _________ 1
I
| Packet
Header

metadata|

Stateless Statelful
processing processing
unit unit

FIGURE 1. PDP outline.

describes the design and implementation of the interleaved
sketch. Section IV evaluates the performance of the inter-
leaved sketch. Section V provides an outline of related works.
Finally, we conclude this paper in Section VI.

Il. BACKGROUND AND MOTIVATION
A. PROGRAMMABLE SWITCH
Programmable switches stimulate the innovation of telemetry
systems. The emerging Programmable Data Plane (PDP) [13]
and P4 (Programming Protocol-independent Packet Proces-
sors) [14] technologies are critical to programmable switches.
Figure 1 presents the outline of PDP. Instead of targeting a
specific protocol and function, PDP is reconfigurable, thanks
to the Reconfigurable Match-action Tables (RMT) [15] archi-
tecture. P4 is a domain-specific language (DSL) [16] that
can describe the packet processing behavior of PDP. Pro-
grammers can reconfigure the PDP behavior by deploy-
ing a new program that governs the operation of the
RMT pipeline like software. Commodity programmable
switches [13], [17], [18] are flexible in terms of their
PDP and comparable with fixed switches [19], [20] in
performance.

To be more specific, the RMT pipeline is programmable in
three key respects:

1) The parser can be programmed to identify custom
packet headers.

2) The match-action tables can be programmed to perform
custom matching and actions.

3) The on-chip SRAMs can be programmed so that state
information persists across packets.

In this paper, we leverage the Barefoot Tofino [13]
programmable edge switch to implement our interleaved
sketch. This is not easy, as Tofino imposes rigid limitations:

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

1) Limited Stages. Tofino only has 12 stages in the RMT
pipeline. Thus, all transactions must be accomplished
in 12 stages.

2) Simple Operations. Each stage can only perform simple
operations provided by P4 primitives. Only primitive
arithmetic (e.g. addition and subtraction) is allowed in
each stage.

3) Limited Concurrent Memory Access. Each stage can
access a few memory locations of different register
arrays, but only one location of a register array. Two or
more stages cannot access the same memory location.

B. INTERVAL METHODS

This paper targets flow-level telemetry systems that identify
flow by means of flow key and track flow statistics. These
systems are interval methods under strict turnstile model [21].
Interval methods monitor traffic and collect traffic statistics
over time intervals called epochs.

Interval methods are a popular type of network algorithms
due to their fast response, space efficiency, and network-wide
measurement capability. These methods are sensitive to
micro-bursts and respond quickly, with intervals in seconds
or milliseconds.

Interval methods use sketches to compress data represen-
tation, which saves the limited space available on switch
chips. Sketches process every packet in a stream while ana-
lyzing the underlying data, using the emerging programmable
switch. Furthermore, sketches consume limited memory
space to measure network flows with guaranteed estimation
accuracy.

The strict turnstile model is an abstraction of sketch struc-
ture. In the model, the packets py, p2, - - - arrive sequentially
in a stream, and A is a register array that tracks flows. The i
packet p; = (j, I;) results in A;[j] = A;—1[j] + I;, where A; is
the register array after the i’ packet of the stream has been
seen.

The interval methods also provide a network-wide mea-
surement. At the end of each epoch, the centralized con-
troller collects statistics from all switches and analyzes the
network-wide situation. The centralized controller integrates
the functions of the control plane and the management plane.

C. INCONSISTENCY PROBLEM FOR INTERVAL METHODS

SketchLearn [11] is an interval method characterized by
its scalability, flexibility, generality, and accuracy. Figure 2
presents the basic concept underpinning the SketchLearn
algorithm. The distributed PDPs track the flow statistics in
multilevel sketches. The centralized controller collects statis-
tics from all PDPs and analyzes network-wide large flows
using the statistics. Figure 3(a) provides an overview of the
data plane transactions of SketchLearn. SketchLearn tracks
the flow key distribution for each incoming packet in a mul-
tilevel sketch. Assuming that the flow key length is k bits,
SketchLearn uses a k + 1-level sketch. Each levelisar x ¢
register array where the position (i,), (0 <i<r,0 <j <c¢)
is indexed by hash;(key) = j. When the packet with flow

VOLUME 7, 2019

Control plane

(Query)
Residual Query rate: 8/3
Large flow list sketch Flow 4 ==
Flowkey | Count |Err -—-
Flowkey | Count |Err Flow 3
Flowkey | Count |Err
Flowkey | Count [Err Flow 2
fRe=c Flow 1

process,
reset

Multi-level

sketch Packet rate: 18/3

Multi-level
sketch

Multi-level

sketch Flow 4 I

Flow 37 [(] [
Flow 2 = EE
Flow 1| [] OO0 OO
Time
FIGURE 2. SketchLearn with centralized controller.
Flowkey: 0101 7 ¥ 7 3
Hash# Nash=4 Bit 1: 0 Bit 2: 1 Bit 3: 0 Bit 4: 1
+ + +
Level 0 Level 1 Level 2 Level 3 Level 4

(a) Data plane transactions of SketchLearn

Flowkey: 0101 ¥ ¥ ¥
Hadh=2 Hadh=4 Bit 1: 0 Bit 2: 1 Bit 3: 0 Bit 4: 1
I Y O o O Y O O I O 5 A
[0 O 0 0 O O O 2 N N N O e 3
Level 0 Level 1 Level 2 Level 3 Level 4

@47%3(1 level 2 sketch
(b) Collecting statistics from the data plane

Flowkey: 0101 ¥

Bit 1: 0 Bit 2: 1 Bit 3: 0 Bit 4: 1

nasihzz Hagh=4

}_H_‘,H\\I\\ [T RNT AL T T T T NT]
N N D O N N O O O 0
0 3

¥
Level Level 1 LH\TI 2 Level 3 Level
Reset level 2 sketch

(c) Clearing the statistics

FIGURE 3. Inconsistency illustration of SketchLearn.

key 0101 comes, SketchLearn calculates two hash indexes,
hashp(0101) = 1 and hash;(0101) = 3. It then updates
position (0,1) and (1,3) in levels 0, 2, and 4.

SketchLearn is not directly applicable to the industrial cir-
cumstance for inconsistency. Figure 3(b) shows the collecting
inconsistency. At the end of each interval, the controller
collects statistics from the multi-level sketch. The controller
reads every slot in all levels serially. In the figure, the con-
troller has read the gray slots and is reading position (1, 4) of
level 2. At this time, a packet with flow key 0101 arrives,
updating the level O, 2, and 4 sketches. For levels 0 and
2, the values of which have already been read, the newly
updated values are lost. Figure 3(c) shows the clearing incon-
sistency. Unlike in the collecting process, the controller uses
a reset instruction that clears one level at a time. When a

146747

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

| Mode control logic ‘

—

Ping-pong buffer

J— Ping buffer 1
I
g
<Bus 2=°/z:
—-|-4 Pong buffer |

FIGURE 4. Ping-pong buffer outline.

BUS1

new flow comes, the controller clears the level 2 sketch; thus,
the updates in levels 2 and 4 are lost.

The collecting process lasts for 0.1-3 seconds depending
on the size of the sketch array (r, ¢ and k). E.g., with r =
1, c = 256, k = 32, it takes an average of 2 seconds to read all
sketches. The controller reads level O at time ¢ while reading
level 32 at time ¢ + 2, deviating the statistics from time ¢. This
deviation is analogous to a clearing process where it takes
0.1-1 second to clear all sketches. Assuming the link speed
is 40Gbps and average packet size is 1KB, 5M packets are
lost in one second. A flood may occur in this period; if this
occurs, it will not be detected. Worse yet, level 32 tracks 40M
more packets than level 0. SketchLearn cannot extract flows
from inconsistent data. This deviation is thus catastrophic for
SketchLearn, which relies on a Gaussian distribution of all
flow keys.

1Il. DESIGN OF INTERLEAVED SKETCH

A. SOLUTIONS FOR INCONSISTENCY

Since it is impossible to halt the data plane until the con-
troller collects all statistics, is there a better way to enable
interval methods on commodity switches? We implement two
adaptations to the interval methods: interleaved sketch and
decentralized controller.

1) INTERLEAVED SKETCH

Inspired by the ping-pong buffer mechanism [22], which sup-
ports support parallel reads and writes on storage, we propose
the interleaved sketch method, to support interval methods.
The ping-pong buffer supports reading and writing simulta-
neously. Figure 4 shows the ping-pong buffer outline. The
ping-pong buffer utilizes dual-port storage: this involves a
single storage array and two independent ports, where each
port has separate data, address, and control lines. Write logic
is coupled to one of the independent ports for receiving
data from one of the data buses and writing it into the first
portion of the storage array. Read logic is coupled to the
other independent ports to facilitate simultaneously reading
data from a second portion of the storage array and sup-
plying it to the other data bus. Mode control logic enables
the writing and reading functions of the first and second
portions of the storage array to be interchanged back and
forth from time to time, allowing data may be read from one
portion while being written into the other portion and vice
versa.

146748

Control plane

‘ Collect, analyze and clear

Data plane

[1 Ingress pipeline

i
)1 i | | | | z
(. | | | | |
\ \[Level 0 } ‘[Level 1 }; ‘[Level 2 }; ‘[Level 3 }; ‘[Level 4]; 1 !
1 | | | | |
e e | =20 &
R) | 2 {1 & 1 !
1) (D) ‘[Level 0 ‘[Level 1 ‘[Level 2 ‘[Level 3 ‘[Levels [| |
I b | 2 {1 {1] i
i @ L Stage 01 | Stage 11 | Stage 21 | Stage 31 | Stage 41 | Stage 51

FIGURE 5. Interleaved sketch outline.

The proposed interleaved sketch shares some similari-
ties with the ping-pong buffer mechanism, as illustrated
in Figure 5:

1) They both have single logical storage for simultaneous
reading and writing.

2) They both have a write logic. The write logic in the
interleaved sketch is the data plane.

3) They both have a read logic. The read logic in the
interleaved sketch is the control plane.

Meanwhile, they also have some differences:

1) The physical storage is different. Each portion of the
ping-pong buffer storage has several blocks. Physi-
cally, the two portions make up a whole storage bank.
The interleaved sketch disperses the storage into two
pipelines, each of which further disperses the storage
into chained stages.

2) The ping-pong buffer has global storage and addresses
it using address lines. The interleaved sketch has local
storage in each stage and addresses it using a Stateful
Arithmetic and Logical Unit (SALU).

3) The interleaved sketch has no specific mode of control
logic. Instead, the data plane and control plane together
play the role of control logic.

The data plane and control plane jointly enable the writing
and reading functions of the first and second pipeline of the
interleaved sketch to be interchanged back and forth from
interval to interval. Thus, the control plane reads statistics
from one pipeline while the data plane updates the other
pipeline, and vice versa.

2) DECENTRALIZED CONTROLLER

Prior works have integrated the control plane and the manage-
ment plane into a centralized controller. However, we argue
that a decentralized controller is necessary. As Figure 2
shows, when the centralized controller collects statistics
from all PDPs, the PDPs transmit a large number of raw
statistics to the centralized controller, which aggravates the
network congestion. This congestion augments the latency
between the PDPs and the controller, which contributes to late
decisions.

Conventional wisdom advocates for a focus on time
synchronization issue to strengthen the consistency.
We demonstrate that lower communication overhead is
another crucial property for improving consistency, as lower
overhead reduces both congestion and latency.

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

Management plane Query rate: 1/3

(Query)
‘ﬁ&(oragﬁe ””””””””””””””””””””””””””””
Vil | i | i e |
} Large flow } arge flo M } arge flow M Record rate: 8/3
\ I I -
| | | Flow 4 _—— -
I|Residual } } Residual } } Residual }
| Flow 3
[hi h !
I P! ! | Flow 2
| Read, | Il Read, | !| Read, |
Il reset | } reset || } reset || fon g
|
| | |
e e
}Data T }
| |
| ; 4 .
| Multi-level } Multi-level } Packet rate: 18/3
} | !|sketch } Flow 4 B
|
| = |
} I | Flow3[[O ooo oo
| |
|
| ! Flow 2] oE
|
‘ lFowt 0 OO OO
|
I

Time

FIGURE 6. Decentralized controller.

In our approach, which involves a decentralized controller,
we decouple the control plane and the management plane and
implement a decentralized control plane across all switches.
We identify three entities: the data plane (PDP), the control
plane, and the management plane. As illustrated in Figure 6,
we implement the collecting, analyzing, and clearing func-
tions inside the control plane of each switch. Each switch is
self-supervising through the automatic interplay of its data
plane and control plane. The control plane of each switch
reports to the management plane and thereby provides a
network-wide view.

By reporting only large flows to the management plane
rather than all statistics, we reduce the overhead by several
orders of magnitude. Assuming that the packet rate is 18 out
of 3 epochs, the query rate for the centralized control plane is
8/3, as shown in Figure 2. By dispersing the large flows into
decentralized control planes, we reduce the query rate to 1/3;
in other words, one packet fetches all large flow records of
the three epochs, as shown in Figure 6.

One concern at this point is that the decentralized controller
will increase the complexity of the switch configuration.
Works such as Sluice [23], SNAP [24], and P4HLPc [25]
explore the configuration of multiple switches in a network.
We can use these works to resolve the complexity of config-
uring switches.

B. CHARACTERIZING STORAGE

The P4 [26] specification defines three types of storage:
register, meter, and counter. They ensure that states persist
across packets in PDP. In this paper, we focus on the register,
which is widely adopted in network algorithms. We identify
three usages of registers:

« PDP register, which PDP writes to track packet measure-
ments.

« control plane registers, which the control plane reads to
collect statistic.

« flag register, which indicates PDP and control plane
status, e.g., the flag register to interleave sketches

VOLUME 7, 2019

Unlike the flag register, the PDP register and control plane
register are exchangeable in different epochs, owing to the
interleaved nature of PDP and the control plane.

We need to migrate register values from PDP to the con-
trol plane for analysis, as the data plane can only carry out
simple operations and is unable to read too many register
entries. Either PDP or the control plane can migrates register
values.

The PDP can migrate register values through Inband Net-
work Telemetry (INT), which is a framework for collecting
and reporting network states by means of the data plane,
without the intervention of the control plane. Packets contain
header fields, which function as telemetry instructions that
tell the device what state to collect and write into the packet
as it transits the network. Compared to traditional approaches
such as Netflow [6], INT is more flexible, as it does not
restrict the PDP measurement method. Moreover, INT is
independent of the underlying devices; furthermore, all pro-
grammable switches from different vendors can support INT,
while Netflow targets Cisco devices. Most importantly, Net-
flow relies on CPU sampling, which is inaccurate and inef-
ficient. However, we also need to take the transmission
time into account when migrating register values. INT has
undetermined latency, as it relies on migration path traffic.
Moreover, any one packet can read only a few locations (i.e.,
no more than 48 in Tofino). This leads to aggravated network
congestion when a mass of register arrays are being read,
e.g., SketchLearn uses 30000 registers. The PDP migration
method is applicable for applications that are insensitive to
latency and read only a few values.

The control plane can read register values directly, and
does so through a runtime API generated by a P4 compiler.
The migration takes place inside each switch, independent
of network state and other entities. The migration inside the
switch is fast and reliable.

The migration time is the overall time required to migrate
all registers in one sketch before it can work for the next
epoch. Intuitively, the total migration time will increase with
the number of register entries, regardless of which migra-
tion approach we apply. We compare these two methods in
Section I'V.

C. DATA PLANE TRANSACTIONS

As a general rule, telemetry systems should never exhaust
any specific resources that could otherwise be used by con-
ventional packet processing. Naively duplicating the pipeline
is impossible for resource-consuming algorithms given the
finite resources available in the PDP. For example, Tofino
PDP binds a SALU to a register array. The PDP accesses the
register array through the SALU. Sketchlearn costs 32 out
of all 48 SALUs in PDP to identify 32-bit flow keys. The
remaining SALUs is not sufficient to create another Sketch-
Learn pipeline. Moreover, it is unnecessary to duplicate the
pipeline. The control plane reads register arrays in 0.1-3 sec-
onds. A lightweight sketch in PDP interleaving with the
regular sketch is accurate enough within this period.

146749

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

TABLE 1. Interval algorithm overview.

Algorithm Application
SpaceSaving
HashPipe . .
RAP Heavy hitter detection
PRECISION
FlowRadar Per—ﬂow' frequency.

. Heavy hitter detection
UnivMon Heavy changers
SketchLearn Y £

Cardinality estimation

Elestic sketch Frequency distribution and entropy

Algorithm 1 SketchLearn Algorithm

Input: Packet p with iKey
1 fori < Otor —1do

2 J < hash;(iKey);

3 reg[il[j1[0] < reg[i1[j1[0] + 1 ; >level 0
4 for k < 1tok do

5 if (iKey > k) & 0x01 != O then

6 L | reglilljllk] < reglilljl[k] +1; plevel k

We adopt an asymmetric sketch architecture in PDP, which
consists of a regular sketch and a lightweight sketch. The
regular sketch consumes more resources than the lightweight
sketch and is also more accurate. The lightweight part is
responsible for temporarily measuring PDP flows when the
control plane accesses the regular sketch.

There are two categories of asymmetric sketch. One adopts
the same algorithm for the regular sketch and the lightweight
sketch, and the control plane carries out the same analyzing
routine for the two sketches; the only difference is in the size
of the two sketches. The other adopts different algorithms for
the two sketches, such that the control plane and data plane
both change their operations among different epochs.

Table 1 summarizes some interval algorithms and their
applications. This paper adopts some principles from these
existing sketch algorithms. Single purpose algorithms, e.g.,
SpaceSaving (SS) [4], HashPipe (HP) [5], RAP [27], and
PRECISION (PC) [28] Heavy Hitter (HH) detection algo-
rithms, measure heavy hitters with key-value data structures.
General-purpose algorithms, e.g., FlowRadar (FR) [9], Uni-
vMon (UM) [10], SketchLearn (SL) [11], and Elastic Sketch
(ES) [12], measures flow level statistics with complicated
data structure and can benefit multiple applications. A heavy
hitter denotes a flow size that exceeds a threshold in an
epoch. Heavy change is a flow whose size change across two
consecutive epochs exceeds a threshold. Cardinality refers to
the number of distinct flows in an epoch. Flow size distri-
bution is the fractions of flows for different ranges of byte
counts in an epoch. Entropy denotes the entropy of flow size
distribution in an epoch.

We choose SketchLearn (Algorithm 1) for the regular
sketch and PRECISION (Algorithm 2) for the lightweight

146750

Algorithm 2 PRECISION Heavy Hitter Algorithm

Input: Packet p with iKey
1 initialization: carry_min < OxTfffffif;
2 if packet is cloned then
3 i < min_stage ; >for cloned packets,
update key and value
l; < hash;(iKey);
Key;[l;] < iKey;
Val;[l;] < new_val,
Drop;
fori < 1tod do
li < hash;(iKey) ; >for normal packets,
find the minimum bucket
10 if Key;[l;] == iKey then
1 matched < true;

Val;[l;] < Val;[l;] + iVal,

13 else if Val;[l;] < carry_min then
14 carry_min < ovalj;

o e N i &

min_stage < i,

16 if —matched then

17 new_val < 2lles2(carry_min)] . >decide
replace or not
18 R < random(0, new_val);

19 if R = O then
20 clone and recirculate packet with new_val,
min_stage;

Algorithm 3 PDP Transactions
Input: Packet p with iKey
1 initialization: clear flag register and all registers of
SketchLearn, PRECISION;
while packet p arrives
tmp < read_flag(0);
if tmp == 0 then
SketchLearn(p) ;

wm e W N

>flag is

0:SketchLearn

else if rmp == 1 then
PRECISION(p) ;
1:PRECISION

N &

>flag is

sketch in order to illustrate how the interleaved sketch
works. PRECISION has more complicated PDP transac-
tions. PRECISION consists of two paths, namely the reg-
ular path and the recirculation path. For each incoming
packet, the regular path updates the keys and values in d
stages according to the hash indexes. If the packet has no
matching key in any stages, the packet is recirculated at a
probability of STTogatearrs i - For its part, the recirculation
path updates the minimum key and value according to the
metadata in the recirculated packet and drops the cloned
packet.

Algorithm 3 presents the overall PDP transactions of the
asymmetric sketch. We use a one-bit register flag to indicate
pipeline access. PDP works on SketchLearn when the flag

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

Transactjon

analyze

pipieline,
S Y S
pipieline,

FIGURE 7. PDP and Control plane coordination.

is 0, while the converse is true for PRECISION. To avoid
loss of generality, we evaluate different combinations of these
algorithms in Section IV.

D. CONTROL PLANE TRANSACTIONS

The P4 compiler generates PARuntime [29] APIs, i.e., inter-
faces for controlling the data plane elements, to enable the
control plane functions. The control plane executes a PTF
(Packet Test Framework) [30] script to invoke APIs that are
exposed over Thrift-RPC [31], including port management,
table entry modification, and register operation. This paper
targets the register operation APIs.

Algorithm 4 provides an outline of the control plane trans-
actions. Lines 35-43 show the routine of the control plane.
First, it reads the flag register value (line 36). If the flag
is 0, which indicates that the PDP is running SketchLearn,
the control plane should process the PRECISION statistics
(lines 37-38); otherwise, the control plane should process the
SketchLearn statistics (lines 39-40). As the process routine
may finish before the user-defined epoch, so the control
plane waits until timeout (line 41), after which the controller
reverses the flag register (line 42).

We identify three routines of the control plane: register read
(ro and ry), register clearing (co and c1), and sketch analysis
(ap and aj). The subscripts 0 and 1 indicate SketchLearn
and PRECISION transactions, respectively. In ry and rq,
the control plane collects sketch statistics from PDP through
the read_reg APIL. For both algorithms, the controller reads
every slot of one register array serially, then moves to the
next array, due to a lack of multi-thread support in thrift. After
reading all values, the control plane clears the register arrays
using the reset _reg APlin cp and c1. The API clears one entire
register array at a time. In ap and aj, the control plane ana-
lyzes the sketch statistics. SketchLearn (ag, lines 12-21) has
more complicated analysis subroutines than PRECISION (aj,
lines 31-34): (i) computing bit-level counter distributions; (ii)
extracting large flows; (iii) removing extracted flows from
multilevel sketch, and (iv) checking the termination condi-
tion. The termination depends on the Gaussian distribution
of counter-distributions where large flows are extracted. It
extracts large flows from the multilevel sketch, with flow
key, estimated flow size, and accuracy loss. For its part,
PRECISION directly obtains the flow key and corresponding
flow size.

VOLUME 7, 2019

Algorithm 4 Control Plane Transaction

Input: Packet p with iKey
1 initialization: ski[r][c][K] < {0}; pre[M][N] < {0};
large flow list F « (7;

2 Function ry(skl):
3 for(i=0; i<r; i++)do
4 for(j=0; j<c; j++)do
5 for(k=0; k<K; k++)do
6 | ski[il[jllk] < read _regi (i * ¢ + j);
7 end
8 Function cy():
9 for(k=0; k<K; k++)do
10 ‘ clear_regi();
11 end
12 Function ag(skl):
B | 0« LF<y
14 while true do
15 bit-level distributions
{N(plk]. o*[k])} = DIST (skl);
16 F < FU
extract_large_flow(0, skl, {N (p[k], Gz[k])});
17 remove(skl, F);
18 if F == @ or terminate({N (p[k], o*[k])})
then
19 | break;
20 end
21 end

22 Function r|(pre):
23 for(i=0; i<M; i++)do

24 for(j=0; j<N; j++)do
25 ‘ preli]lj] < read_reg;(j);
26 end

27 Function ¢ ():

28 for(i=0; i<M; i++)do
29 ‘ clear_regi();

30 end

31 Function a;(pre):

32 for(i=0; i<M; i++)do
3 | sort(pre[i]);

34 end

35 while frue do

36 tmp < read_flag(0);
37 if tmp == 0 then

38 | 105 c10; a10;

39 else if tmp == 1 then
40 | 003 c00): ao0);

41 wait until reverse time;
42 write_flag("tmp);

43 end

The control plane coordinates with the PDP through
the flag register to achieve an interleaved sketch. Fig-
ure 7 presents the transactions in time sequence. We denote
the SketchLearn pipeline with pipeliney and PRECISION

146751

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

pipeline with pipeline;. Initially, the flag register is 0. The
PDP accesses pipelineq until time ¢1, at which point the con-
trol plane reaches timeout and reverses the flag register. The
PDP then works on pipeline, since the flag register is 1 (time
t1-12); during this time, the control plane reads and clears the
registers of pipeliney. The control plane begins to analyze
the statistics once the read routine has been completed. The
control plane reverses the flag once the clearing routine has
been completed and timeout has been reached (time 7_2).
Thus, the PDP and control plane exchange working pipelines
(time 1,-13).

E. NETWORK-WIDE QUERY

1) NORMALIZING FREQUENCY

The control plane gets the potential large flows of all epochs.
However, the time intervals of epochs are not necessarily
equal. We use the normalized frequency fre;; (1) rather than
the absolute flow size f;; to quantify the 7™ flow in epoch ;.
The flow is identified by key;;. The epoch #; is within the time
interval [t ti,..)-

Jij
tiend - tis’ta;‘t
Additionally, we report the total flow size T; (2) of epoch
1

ey

freij =

Uil

Ti=) fi)
j=1

2) QUERY MECHANISM

Given that the normalized frequency resides in distributed
entities, how can a network-wide query be achieved? We
present two mechanisms: active query and passive query. In
the active query, the control planes report flows whose fre-
quency exceeds a certain threshold to the management plane
by themselves. We encapsulate the potential large flow keys
and corresponding frequencies in a query packet payload,
which is sent to the management plane. In the passive query,
moreover, the management plane sends a query request to
selected control planes, after which the control planes report
the results.

Figure 8 outlines the packet format of the query. To facil-
itate cooperation with existing protocols, we insert the query
header into the L4 layer as an application layer protocol. We
choose TCP for the active query and UDP for the passive
query, which is consistent with the industrial standard [32].
A particular port is reserved for query packets so that the
management plane can distinguish these packets from regular
packets. The management plane reports only when this par-
ticular port is detected. The control planes also have reserved
ports in the same way that the management plane does.

There are four major fields in the query protocol: OP, TS,
FR, and SEQ. OP represents the operation of a query; this
can be Get, SET, Delete, or any other type that is possible
to use in the management plane. 7S stores the timestamp of
the epoch specified by this query. FR indicates the fraction

146752

Existing Protocols
1

[Ethernet| TP [TCP/UDP | OP | TS | FR [SEQ] Payload |
Plane Port # Delete, etc.

|key| fre |key| fre | |key| fre |

Query Protocol Query Result
1 1

FIGURE 8. Network protocol of query.

Management plane Control plane
Query subtask 1

[Ethernet] 1P [TCP/UDP[OP [TS [FR [SEQ[Payload

Switch 1

Large flow list

Flowkey | Count [Err]
Flowkey | Count [Err]
Flowkey | Count [Err|
Flowkey | Count

Large flow list

DP[OP[TS[0 [1 |Payload]

Flowkey | Count [Err

Query subtask 1 Switch 2

Large flow list

Flowkey | Count [E
Flowkey | Count [E
Flowkey | Count [Err|
Flowkey | Count [Err]

r
]

Ethernet| IP |TCP/UDP|Ger| ¢ | 1 | 1 |Payload

Ste: mac, [Sre:ip, | Ste: port,

Dst: mac,, [Dst:ip,| Dst: port,

FIGURE 9. Active query example.

of records contained in one timestamp. FR is O for a single
packet or the last packet, and 1 otherwise. SEQ is a sequence
number used to ensure the reliable transmission of a single
query.

Query packet forwarding is realized using existing rout-
ing protocols. The Ethernet, IP, and TCP/UDP headers of a
query are set at the management plane or control plane level
according to the data directed to the query. For active queries,
the management plane may reset the control plane statistics
in order to remove records and make space for new records.

For example, in Figure 9, assume that the management
plane (macy,, ipy,, porty,) queries the records of epoch ¢ in
switchy (macy, ip1, porty) and switchy (macs, ip2, portz). The
management plane generates two packets and sets the Eth-
ernet, IP, and UDP headers accordingly. In the query header,
OPis get, TS ist, and FR and SEQ are unused. The payload is
vacant. The control planes of the two switches receive a query
packet from ports port; and port;, respectively and parse the
packet to determine whether it contains query requests from
the management plane. switch; sets the Ethernet, IP, and TCP
headers, sets FR to 0 and SEQ to 1, encapsulates the large
flows of epoch ¢ in the payload, and sends the packet. switch
fragments the records into three packets, such that SEQ is
distributed among among 1, 2 and 3.

3) STATISTICS

The management plane gets the large flow list /; of epoch
i in per-flow frequency form [; = {fre; | (keyj,fre;) €
l;, 1 <j < |l;]} and the total flow size 7;. To find heavy hit-
ters, the management plane extracts flows whose frequency
exceeds a threshold. To find heavy changers (whose fre-
quency changes sharply in two consecutive epochs tq, #2,
assuming that /;; is the large flow list of #; and [;, is the

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

large flow list of 77), we choose a flow f; € I;; (fj € I,)
and compute the frequency change in f; € I, (fj € I).
If |fre;1 — frein| > threshold (|frej1 — frejp| > threshold),
we identify f; (f;) as a heavy changer. We restore the per-flow
size of list /; by (3):

fij = frejj - T; 3)

With the per-flow frequency distribution, many other statis-
tics (such as entropy) can also be computed.

4) OVERHEAD

The interleaved sketch not only supports network-wide
queries, but also provides a low report overhead. By report-
ing only large flows instead of all statistics to the manage-
ment plane, we reduce the overhead by several orders of
magnitude. For example, SketchLearn uses r - ¢ - (K + 1)
registers. Assuming r = 1,¢ = 256, K = 32. In our
approach, the payload size is only related to the cardinality
of the large flow set. Usually, the cardinality of large flows
is no more than 3000 per second, while the payload is only
3000-(448) = 35 KB and can be encapsulated in one packet.
The centralized controller can read a maximum of K register
slots at a time through INT. It will need 256 packets to fetch
all of the raw statistics. We thus reduce the number of packets
by 256.

IV. EVALUATION

A. EXPERIMENTAL SETUP

1) TESTBED

We build a P4 prototype of the interleaved sketch with
different combinations of sketch algorithms. We test all
P4 programs on a Barefoot Tofino commodity programmable
switch with a 3.2 Tbps switching chip and an Intel Pentium
D-1517 CPU (1.6GHz, 4 cores). We connect the switch with
two DELL PowerEdge R820 Servers, using two 40Gbps
QSFP links. Each server has an Intel XL710-QDA2 NIC with
two 40Gbps ports, two Intel Xeon ES-4603 CPUs and 256GB
memory. We install MoonGen [33], a high-speed packet gen-
erator built on Lua and DPDK [34], to send and receive
packets on the servers, which can achieve a stable speed
of 38.04 Gbps. We adopt a DELL PC as the management
plane to query statistics from Tofino.

2) TRACES

We test our prototype using CAIDA-2018, the Anonymized
Internet Trace 2018 (hereafter denoted as CAIDA), which
is collected from the Equinix-Chicago ISP backbone link.
We use a one-hour long CAIDA trace that contains a mix of
UDP, TCP, and other packets. We filter out the UDP and TCP
packets to generate our test workloads.

3) METHODOLOGY

One server sends real-time traffic to Tofino through the
40GbE link. It reads all workloads into memory and emits
the flows according to the timestamps in trace files. The data

VOLUME 7, 2019

rate follows the trace file, thanks to the MoonGen framework,
which eliminates kernel-space overhead utilizing DPDK.
Tofino PDP measures the traffic with the interleaved sketch
and forwards the traffic to the other server. The Tofino control
plane executes a Python script to invoke the register operation
APIs that are exposed over Thrift-RPC, which read and clear
the PDP registers. The control plane also encapsulates the
large flow list into query packets and reports them to the
management plane machine, through a dedicated 1GbE.

4) METRICS

« RE (Relative Error):’%, f; s the actual flow size and ﬁ
is the estimated flow size. .

o ARE (Average Relative Error): %Z?:l %, n is the
flow cardinality

o« MSE (Mean Square Error): ﬁ Yo —)%, where
f=Ya+p+-+£

e F score: ,% =35+

==

b _2 PR @
Y
Here, Precision Rate (P) is the ratio of true positives (7P)
among true positives and false positives (FP),
TP
P=——
TP + FP
and Recall Rate (R) is the ratio of true positives among
true positives and false negatives (FN).
TP
P=——
TP + FN

)

(6)

B. PDP
We implement the algorithms on Tofino ASIC, except for

SpaceSaving and RAP, which cannot feasibly be used on the
ASIC.

1) TUNING PARAMETERS
We tune the parameters of these algorithms, i.e. epoch size
and memory usage, of these algorithms. Figure 10(a)-(b)
show the memory usage under different epoch sizes to
achieve 0.99 F score for HH and HC detection respectively.
As epoch size increases, FlowRadar and UnivMon use more
memory space, while the others remain in a state of low
memory usage. In Figure 10(b), when the epoch length is
60 seconds, FlowRadar uses 8.7 MB memory, which is 2.3 x
that of UnivMon and 350 that of PRECISION. We set the
epoch length to two seconds, as all algorithms use a relatively
small amount of memory space under this epoch size, and the
interval is fine-grained to enable reporting of large flows.
Figure 10(c)-(d) show the accuracy of these algorithms
under different memory sizes when the epoch length is 2 sec-
onds. Overall, more memory space makes the algorithms
more accurate. However, this benefit increases slowly for
PRECISION, HashPipe, and SketchLearn, as they are already
sufficiently accurate with 200 KB memory space.

146753

IEEE Access

Z. Hang et al.: Interleaved Sketch:

Toward Consistent Network Telemetry for Commodity Programmable Switches

—+— FlowRadar / .
g | T pmema
E'| T Maee :s
5 g
S2 /// =,
0 10 20 epnig © 40 50 60 0 10 20 epo:j;g © 40 50 60 0.2 0.4 Memoofs(MB) 0.8 1.0 0.2 0.4 Memt?x‘ys B) 0.8 1.0
(a) HH memory (b) HC memory (c) HH ARE (d) HH MSE
FIGURE 10. Tune parameters.
TABLE 2. Resource usage on Tofino ASIC.
Resource Switch.p4 HashPipe PRECISION UnivMon FlowRadar SketchLearn ElasticSketch
Match Crossbar ~ 50.13% 2.51% 1.27% 2.13% 2.05% 1.89% 5.9%
Hash Bits 32.35% 3.87% 3.64% 3.81% 4.17% 3.79% 2.3%
SRAM 29.79% 2.19% 1.81% 23.04% 22.76% 4.32% 12.5%
TCAM 28.47% 0% 0% 0% 0% 0% 0%
VLIW Actions 34.64% 2.34% 2.21% 531% 4.72% 2.86% 5.52%
Stateful ALUs 15.63% 16.67% 8.33% 75.00% 75.00% 68.75% 75.00%
Stages 12 5 4 12 11 10 10
K25 Seo g 12 i
g 2 § 10 10 10
E B0 g oo 53 2 s
815 5 g g
i 7:’ 40 L 40 37 31 G 6
§10 E : 1: 4
=5 320 20 ,
& 3 o

0
PC+UM PC+FR PC+SL PC+ES
Algorithm

° PC+UM PC+FR PC+SL PC+ES
Algorithm

(a) SRAM resource usage (b) SALU resource usage

FIGURE 11. Interleaved sketch resource usage on Tofino ASIC.

0 PC+UM PC+FR PC+SL PC+ES
Algorithm

PC+UM PC+FR PC+SL PC+ES
Algorithm

(c) # of actions (d) # of stages

-
o
o

~
o

%
o

N
o

Thoughput (normalized %)

Thoughput (normalized %)

o

HP

PC

uMm FR
Algorithm

SL ES HP

PC

um
(a) ASCI throughpt: single algorithm

FIGURE 12. Throughput of single algorithm and interleaved sketch.

2) RESOURCE USAGE

We implement the algorithms using tuned parameters.
Table 2 presents the percentage of consumed resources
over all resources on BareFoot Tofino ASIC, where
switch.p4 is a P4 prototype that implements the typical
functions (e.g., L2/L.3 forwarding, VLAN, and QoS) of a
switch.

HashPipe and PRECISION are lightweight algorithms that
use minimal hardware resources. For example, PRECISION
uses only 1.81% SRAM with 8.33% SALU to operate them
to track large flows and accomplishes all PDP transactions

146754

Algorithm

(b) Software throughpt: SketchVisor

i
o
S

~
o

[
o

N
o

Thoughput (normalized %)

FR SL

PC+UM

PC+FR PC+SL
Algorithm

PC+ES

(c) ASCI throughpt: Interleaved sketch

in 4 stages. While UnivMon, FlowRadar, SketchLearn, and
ElasticSketch are regular sketches, that consume a significant
amount of resources; they all need over 65% SALUEs, since
they have more register arrays. For example, ElasticSketch
costs 12.5% SRAM and 75% SALU, which are 6.9 x and 9x
higher than that of PRECISION. Moreover, they all require
no less than ten stages to accomplish PDP transactions.
These algorithms overlap with switch.p4 so that they can be
arranged in the Tofino pipeline. SketchLearn SRAM usage is
also relatively low compared with other regular algorithms,
but still needs twice as much SRAM as HP and PC.

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

o ®

migrate time / s
IS
=)
migrate time / s
[N

N

=)

0 5 10 2

15 0 25 30 0 5 10
of arrays k

15 20 25 30
of arrays k

(a) INT migrate time (b) control plane migrate time

FIGURE 13. Migrate and reset time.

It would be unrealistic to use two regular sketch algo-
rithms in Tofino ASIC to resource restrictions. Accord-
ingly, the only solution is to combine a regular sketch algo-
rithm with a lightweight one in the interleaved sketch. We
choose PRECISION as the lightweight part in the following
experiments, as it is more accurate and resource-efficient
than HashPipe. We test the effectiveness of different sketch
algorithms in acting as the regular part in the interleaved
sketch.

Figure 11 shows the combined resource usage. The SRAM
resource usage is the sum of the resource usage of two
algorithms, as the SRAM is allocated as a whole block to
each algorithm, such that the unused slots of the block can-
not be assigned to other algorithms. The SRAM usage is
between 6.13% to 24.85%. Taking the switch.p4 into account,
the overall SRAM usage is under 55%; the remaining SRAM
space is large enough to accommodate other functions. The
SALU usage is also the sum of the usage of two algorithms,
as they cannot be multiplexed. The number of actions is
slightly lower than the sum of two algorithms, as some of
the actions are collective and shared. The number of stages
remains consistent with those of the regular sketch, as the
lightweight sketch is distributed across different physical
stages and executed in parallel.

3) THROUGHPUT

We stress-test the throughput of the sketch algorithms on
Tofino and compare it with that of SketchVisor, the software
packet processing platform. Figure 12 shows the normal-
ized throughput to the line-rate speed without measurement.
Tofino realizes line-rate processing for different algorithms
(Figure 12(a)). While SketchVisor is not stable for compu-
tationally intensive algorithms (Figure 12(b)) such as Univ-
Mon, FlowRadar and SketchLearn.

Figure 12(c) presents the results of the stress test of inter-
leaved sketch. The processing speed is preserved and the
variance is minimal. The high performance is a result of the
fact that two sketch pipelines have no dependency.

C. CONTROL PLANE

1) REGISTER COLLECTING AND RESETING

Figure 13 shows the register operation time on SketchLearn.
Figure 13(a) shows the register migration time through INT.
The migration time increase sharply when the ¢ and &

VOLUME 7, 2019

g
=

—— c=128
0.81 —a— c=256
2 c=384
g 061 o c=s12
Zo4
3
3
Eo2
R
0.0 2
0 10 20 30 0 10 20 30
of arrays k # of arrays k
(c) INT reset time (d) control plane reset time
3.0 —+— FlowRadar 0.05
25 —— Uvaon 0.04
ElasticSketch
720 SketchLearn Z0.03
295 —— PRECISION o
E- -~ HashPipe 3
1o P F0.02
0.5 0.01
0.0 X Rttt ot —

1 2 3 4 1 2 3 4
Number of threads Number of threads

(a) Analyzing time (b) Query latency

FIGURE 14. Analyzing and query time.

increase, as more INT packets are required. Figure 13(b)
shows control plane migration time, which is faster than INT.
For our interleaved sketch, the migration spends less than
1 second (k = 32, ¢ = 128, r = 1), which is suitable for our
interval. Figure 13(c) shows that INT has an undetermined
reset time. Figure 13(d) shows the control plane reset time,
which increases linearly as the number of register arrays
increases. The reset time has is not related to the register array
size, as each register array is reset as a whole.

2) STATISTICAL ANALYSIS

Figure 14(a) illustrates the control plane analysis time for
different algorithms. Four threads are sufficient to accomplish
all analysis in 0.3 seconds. The analysis begins after register
reading and is conducted in parallel with register clearing.
The analysis will end before the next reading ends so that the
analysis processes do not conflict.

3) QUERY LATENCY
Figure 14(b) illustrates the query latency. The time between
0.001-0.05, depending on the size of the statistics.

The distributed control planes analyze statistics in parallel
and are faster than the centralized controller, which analyzes
statistics in a serial manner. Due to the reporting of only large
flows, the total report latency in the interleaved sketch is less
than 1.35 seconds, while the centralized controller takes more
than 3 seconds to transmit SketchLearn raw statistics in our
experiment.

D. MANAGEMENT PLANE

1) REPORT OVERHEAD

Figure 15(a) is the report memory size (bandwidth) for a
single switch. This size includes the overhead of packet head-
ers. The interleaved sketch reports only large flows, thereby
saving 38.8%-99.3% report memory (bandwidth) relative to

146755

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

8000 40000
0.8 4

7300 mmm raw 37500 g raw

N

Memory (KB)
o
=

of packets

-

HP PC UM FR SL ES HP PC um FR SL ES
Algorithm Algorithm

(a) Communication memory size (b) # of packets

FIGURE 15. Communication overhead.

120 1200
100 1000
80 800
4 4]
€ 60 £ 600
40 400
20 200
0 0
HP PC umMm FR SL ES HP PC uMm FR SL ES
Algorithm Algorithm
(a) ARE (b) MSE
60 0.3
Q
5 4
240 50.2
2 2
o 'S
a
20 0.1
0 0.0
HP PC um FR SL ES HP PC um FR SL ES
Algorithm Algorithm

(c) Precision p (d) F1 score

FIGURE 16. Accuracy without interleaved sketch.

INT, which transmits all raw statistics to the management
plane. Figure 15(b) shows the number of report packets. The
interleaved sketch reports large flows with a payload of less
than 50KB per packet, while INT uses 782-40000 packets to
report raw statistics.

The overhead for multiple switches in a network is far
lower than that for the centralized controller, as each switch
only generates a single small packet. The proportion between
raw statistics size and large flow size in Figure 15 still holds.

2) ACCURACY

We first measure the accuracy of the algorithms without
interleaved sketch for HH detection. We then measure the
accuracy of the interleaved sketch for different applications.

Figure 16 shows the accuracy of the algorithms without the
interleaved sketch. The ARE and MSE are quite large, while
the precision and F score are inadequate. The error arises as
a result of the inconsistency of statistics.

Figure 17(a)-(c) shows the interleaved sketch accuracy for
Heavy Hitter detection. The ARE is below 0.03, MSE is
below 17, and F score is above 0.97 for all algorithms. For
Heavy Change detection (Figure 17(d)-(f)), the ARE is below
0.06, MSE is below 22, and F; score is above 0.94. For all
algorithms, the interleaved sketch achieves the ideal accuracy
for HH and HC detection.

Figure 17(g) shows the relative error for cardinality esti-
mation. SketchLearn, as the regular sketch, produces the
lowest error at 4%. Its sketch structure is a better fit for large

146756

cardinality. All relative errors for cardinality estimation are
below 9%.

Figure 17(h) shows the relative error for entropy estima-
tion. SketchLearn outperforms other sketch algorithms for
entropy estimation. All errors are below 12%. The cardinality
and entropy estimation are also close to ideal.

In short, the interleaved sketch provides consistent statis-
tics, thus providing accurate results for applications.

V. RELATED WORKS
INT. Kim et al. [35] built the first INT prototype on software
programmable switches. Each switch uses INT to periodi-
cally push telemetry packets to the end host. The packets
provide near-instantaneous observation of the network status.
PacketHistory [36] and Planck [37] mirror traffic for further
analysis, which incurs high bandwidth. Everflow [38] only
traces specific packets by implementing a ““match and mir-
ror” policy on commodity switches, thereby reducing the
bandwidth.

INT is efficient for fetching a small number of PDP states.
The interleaved sketch can be improved by reducing the
latency and bandwidth for fetching massive states in INT.

A. QUERY LANGUAGES

Query languages [39], [40] can express sophisticated mea-
surement requirements. They specify patterns to monitor spe-
cific flows and query the results.

We design a preliminary query protocol in our interleaved
sketch to read PDP statistics. We could potentially add more
query types and telemetry tasks to expand the interleaved
sketch.

B. TIME SYNCHRONIZATION

Consistency has been widely studied in distributed com-
puting research, providing consistency guarantees for net-
work telemetry. Strong consistency systems [41] align epoch
boundaries and ensure that every packet is observed by all
entities at the same epoch. Weak consistency systems, e.g.,
Lamport Clock [42] and Distributed Snapshots [43], synchro-
nize per-packet epochs in a best-effort manner. Each entity
renews its time with reference to a local clock and embeds
the current epoch in every outgoing packet. Accordingly,
the epochs among entities may diverge, and a packet may
be monitored at different epochs. By contrast, the interleaved
sketch can achieve consistency through network-wide epoch
synchronization, with the primary objective of all entities
being synchronized at the same epoch.

C. PROGRAMMING FRAMEWORKS

Sluice [23] and P4HLPc [25] aim to hide the underly-
ing restrictions of programmable switches in a network in
order to provide unified high-level programming for all
programmable switches. SNAP [24] provides a centralized
programming model that views the distributed switches as
centralized, relieving programmers of the need to place and
optimize access to switch resources.

VOLUME 7, 2019

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

IEEE Access

0.030 17.5

0.025 15.0

125
0.020

é w 10.0
% 0.015 R
0.010 50
0.005 25
0.000 0.0

PC+UM PC+FR PC+SL

Algorithm

PC+ES PC+UM PC+FR PC+SL

Algorithm

PC+ES

(a) HH ARE (b) HH MSE

0.0

PC+UM PC+FR PC+SL 0.00

Algorithm

PC+ES PC+UM PC+FR PC+SL

Algorithm

PC+ES

(c) HH F} score (d) HC ARE

0 PC+UM

PC+FR PC+SL
Algorithm

PC+ES PC+UM PC+FR PC+SL

Algorithm

PC+ES

(e) HC MSE (f) HC F1 score

FIGURE 17. Interleaved sketch accuracy.

VI. CONCLUSION

This paper investigates the inconsistency problem in con-
ventional network telemetry systems. These systems rely on
interval methods that track flow statistics in each epoch and
collect statistics at the end of each epoch. The inconsistency
derives from the joint operation of the PDP and the control
plane, which modify statistics simultaneously.

We present our solution, the interleaved sketch, in which
the PDP and the control plane access two sketch pipelines
in an interleaved way. The PDP and the control plane com-
municate through a flag register, which indicates the pipeline
access order. Rather than duplicating the pipeline, we use
asymmetric sketch algorithms, i.e. a regular sketch algorithm
and a lightweight sketch algorithm. This asymmetric sketch
approach trades off resource consumption and accuracy. We
further propose the decentralized controller, which decouples
the control plane and management plane. Each switch is
self-supervised by the interplay of its control plane and PDP.

Experimental results show that our interleaved sketch
achieves line-rate processing on the Tofino switch. Moreover,
our solution improves the F score from 0.3 to 0.97 for HH
detection, and also performs well on HC detection, cardinal-
ity estimation, and entropy estimation, with only a 6% rise
in resource consumption. The decentralized controller lowers
the latency and saves bandwidth for transmission, meaning
that the telemetry system can detect anomalies in a timely
fashion.

In conclusion, the interleaved sketch approach enables
telemetry systems with line-rate processing, high accuracy,
and low latency on a Tofino switch. Our work may provide
valuable guidance for future telemetry system design.

REFERENCES
[1] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained

traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw. Exp.
Technol., 2011, p. 8.

VOLUME 7, 2019

IS

Relative

~N

0 PC+UM

(g) Cardinality estimation

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Relative error (%)

0 PC+UM

PCHFR PCHSL
Algorithm

PCH+FR PCHSL
Algorithm

PC+ES

(h) Entropy estimation

A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar,
“AF-QCN: Approximate fairness with quantized congestion notification
for multi-tenanted data centers,” in Proc. 18th IEEE Symp. High Perform.
Interconnects, Aug. 2010, pp. 58-65.

S. Dong, K. Abbas, and R. Jain, ““A survey on distributed denial of service
(DDoS) attacks in SDN and cloud computing environments,”” IEEE Access,
vol. 7, pp. 80813-80828, 2019.

A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. Int. Conf. Database
Theory. Berlin, Germany: Springer-Verlag, 2005, pp. 398-412. [Online].
Available: https://www.springer.com/gp/book/9783540242888

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” 2016,
arXiv:1611.04825. [Online]. Available: https://arxiv.org/abs/1611.04825
Cisco. (2019). Cisco 10S NetFlow. [Online]. Available: https://www.cisco.
com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

A. A. Abbasi, A. Abbasi, S. Shamshirband, A. T. Chronopoulos, V. Persico,
and A. Pescape, “Software-defined cloud computing: A systematic review
on latest trends and developments,” IEEE Access, vol. 7, pp. 93294-93314,
2019.

ONF. (2019). Software-Defined Networking (SDN) Definition. [Online].
Available: https://www.opennetworking.org/sdn-definition/?nab=1&utm_
referrer=https%3A%2F%2Fwww.google.com%2F

Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in Proc. 13th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2016, pp. 311-324.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., 2016, pp. 101-114.

Q. Huang, P. P. C. Lee, and Y. Bao, “Sketchlearn: Relieving user
burdens in approximate measurement with automated statistical infer-
ence,” in Proc. Conf. ACM Special Interest Group Data Commun., 2018,
pp. 576-590.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li,
and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide measure-
ments,” in Proc. Conf. ACM Special Interest Group Data Commun., 2018,
pp. 561-575.

Barefoot. (2019). Barefoot Tofino: World’s Fastest P4-Programmable Eth-
ernet Switch ASICs. [Online]. Available: https://www.barefootnetworks.
com/products/brief-tofino/

P4 Language Consortium. (2019). P4. [Online]. Available: https://p4.org/
P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, ‘“Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,” ACM SIG-
COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 99-110, Oct. 2013.
Wikipedia. (2019). Domain—Specific Language. [Online]. Available:
https://en.wikipedia.org/wiki/Domain-specific_language

146757

IEEE Access

Z. Hang et al.: Interleaved Sketch: Toward Consistent Network Telemetry for Commodity Programmable Switches

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Intel. (2019). Intel Flexpipe. [Online]. Available: https://www.intel.com/
content/dam/www/public/us/en/documents/product-briefs/ethernet-
switch-fm6000-series-brief.pdf

DELL. (2019). Dell EMC Networking S5148F-ON Series Switch. [Online].
Available: https://i.dell.com/sites/csdocuments/Shared-Content_data-
Sheets_Documents/en/dell-emc-networking-s5148f-on-spec-sheet.pdf
Cisco. (2019). Cisco Data Center Switches. [Online]. Available:
https://www.cisco.com/c/en/us/products/switches/data-center-switches/
index.html

HUAWEL (2019). Huawei Data Center Switches. [Online]. Available:
https://e.huawei.com/uk/products/enterprise-networking/switches/data-
center-switches

S. Muthukrishnan, “Data streams: Algorithms and applications,” Found.
Trends Theor. Comput. Sci., vol. 1, no. 2, pp. 117-236, 2005.

J. N. Dieffenderfer and R. N. Kalla, “Ping-pong data buffer for transfer-
ring data from one data bus to another data bus,” U.S. Patent 5224213,
Jun. 29, 1993.

V. Natesh, P. G. Kannan, A. Sivaraman, and R. Netravali, ““Sluice:
Network-wide data plane programming,” in Proc. ACM SIGCOMM Conf.
Posters Demos, 2019, pp. 156—-158.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
Proc. ACM SIGCOMM Conf., 2016, pp. 29-43.

Z. Hang, M. Wen, Y. Shi, and C. Zhang, “Programming protocol-
independent packet processors high-level programming (P4HLP): Towards
unified high-level programming for a commodity programmable switch,”
Electronics, vol. 8, no. 9, p. 958, 2019.

P4 Language Consortium. (2019). P4-14 Specification. [Online]. Avail-
able: https://p4lang.github.io/p4-spec/p4-14/v1.0.5/tex/p4.pdf

R. Ben Basat, G. Einziger, R. Friedman, and Y. Kassner, ‘“Randomized
admission policy for efficient top-k and frequency estimation,” in Proc.
IEEE Conf. Comput. Commun. (IEEE INFOCOM), May 2017, pp. 1-9.
R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
measurement on programmable switches using probabilistic recircula-
tion,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 313-323.

P4 Group. (2019). Specification for the P4 Runtime Control-Plane API.
[Online]. Available: https://github.com/p4lang/p4runtime/
P4 Group. (2019). Packet Test Framework. [Online].
https://github.com/p4lang/ptf/

Apache. (2019). Apache Thrift. [Online]. Available: https:/github.
com/apache/thrift/

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, and P. Saab, “Scaling memcache at
Facebook,” in Proc. NSDI, vol. 13, 2013, pp. 385-398.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. Internet
Meas. Conf., 2015, pp. 275-287.

Libmoon. (2019). DPDK is the Data Plane Development Kit That Consists
of Libraries to Accelerate Packet Processing Workloads Running on a Wide
Variety of CPU Architectures. [Online]. Available: https://www.dpdk.org/
C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in Proc. ACM
SIGCOMM, 2015, pp. 1-2.

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to trou-
bleshoot networks,” in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2014, pp. 71-85.

J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, ‘“Planck: Millisecond-scale monitoring and
control for commodity networks.” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 4, pp. 407418, 2015.

Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, ‘“‘Packet-level telemetry
in large datacenter networks,” in Proc. SIGCOMM, Aug. 2015,
pp. 479-491. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/packet-level-telemetry-in-large-datacenter-
networks/

Available:

146758

[39]

[40]

[41]
[42]

[43]

A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and
W. Willinger, ‘“Network monitoring as a streaming analytics problem,” in
Proc. 15th ACM Workshop Hot Topics Netw., 2016, pp. 106-112.

O. Tilmans, T. Biihler, I. Poese, S. Vissicchio, and L. Vanbever, ‘Stro-
boscope: Declarative network monitoring on a budget,” in Proc. 15th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2018, pp. 467-482.
L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18-25, 2001.

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.

N. Yaseen, J. Sonchack, and V. Liu, “Synchronized network snap-
shots,” in Proc. Conf. ACM Special Interest Group Data Commun., 2018,
pp. 402-416.

ZIJUN HANG received the B.S. degree from the
Beijing Institute of Technology, Beijing, China,
in 2017. He is currently pursuing the M.S. degree
with the College of Computer, National Univer-
sity of Defense Technology. His research inter-
ests include SDN, INT, resource management, and
workload scheduling.

MEI WEN received the B.S., M.S., and Ph.D.
degrees in computer science and technology from
the National University of Defense Technology,
China, in 1995, 1999 and 2006, respectively, where
she is currently a Professor with the Computer
College. Her research interests include computer
architecture, parallel programming, and scientific
computing.

YANG SHI received the B.S. and M.S. degrees
from the National University of Defense Tech-
nology, Changsha, China, in 2014 and 2016,
respectively, where he is currently pursuing the
Ph.D. degree with the College of Computer. His
research interests include distributed and parallel
computing, resource management, and workload
scheduling.

CHUNYUAN ZHANG received the B.S., M.S.,
and Ph.D. degrees in computer science and tech-
nology from the National University of Defense
Technology, China, in 1985, 1990, and 1996,
respectively, where he is currently a Professor with
the Computer College. He is also the Director of
a series of research projects, including National
Natural Science Foundation projects of China. His
research interests include computer architecture,
parallel programming, embedded systems, and
scientific computing.

VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	PROGRAMMABLE SWITCH
	INTERVAL METHODS
	INCONSISTENCY PROBLEM FOR INTERVAL METHODS

	DESIGN OF INTERLEAVED SKETCH
	SOLUTIONS FOR INCONSISTENCY
	INTERLEAVED SKETCH
	DECENTRALIZED CONTROLLER

	CHARACTERIZING STORAGE
	DATA PLANE TRANSACTIONS
	CONTROL PLANE TRANSACTIONS
	NETWORK-WIDE QUERY
	NORMALIZING FREQUENCY
	QUERY MECHANISM
	STATISTICS
	OVERHEAD

	EVALUATION
	EXPERIMENTAL SETUP
	TESTBED
	TRACES
	METHODOLOGY
	METRICS

	PDP
	TUNING PARAMETERS
	RESOURCE USAGE
	THROUGHPUT

	CONTROL PLANE
	REGISTER COLLECTING AND RESETING
	STATISTICAL ANALYSIS
	QUERY LATENCY

	MANAGEMENT PLANE
	REPORT OVERHEAD
	ACCURACY

	RELATED WORKS
	QUERY LANGUAGES
	TIME SYNCHRONIZATION
	PROGRAMMING FRAMEWORKS

	CONCLUSION
	REFERENCES
	Biographies
	ZIJUN HANG
	MEI WEN
	YANG SHI
	CHUNYUAN ZHANG

