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ABSTRACT In hyperspectral image classification, the foremost task is that: how can we apply limited
labeled samples to achieve good classification results? Spatial-spectral classification methods, which assign
a label to each pixel regarding both spatial and spectral information, are effective to improve classification
performance. Moreover, semisupervised learning (SSL) focuses on the scenario that the number of labeled
data is rather small while a large number of unlabeled data are available. To complement spatial-spectral
classification methods and semisupervised learning for each other, we propose a novel learning landscape
features semisupervised framework (LLFSF) based on M-training algorithm and weighted spatial-spectral
double layer SVM classifiers module (WSS-DSVM). In this novel framework, we first propose a SLIC (sim-
ple linear iterative clustering) based non-local superpixel segmentation algorithm to initially learn landscape
feature and spatial composition. Then, we apply WSS-DSVM module to obtain initial classification maps.
To better characterize complex scenes of hyperspectral images, we quantizes both the landscape diversity and
separability from the initial classification map, which increase availability of spatial details and structural
information of objects. Finally, we put some patches with lower accuracy into Multiple-training algorithm
for further classification. In order to achieve an unbiased evaluation, we have evaluated the performance
of LLFSF on three different scene hyperspectral data sets and compare it with that of three state-of-the-art
hyperspectral image classification methods. The experimental results confirm the efficacy of the proposed
framework.

INDEX TERMS Hyperspectral image classification, landscape features, spatial-spectral information,
semisupervised learning.

I. INTRODUCTION

Recently, in pace with the rapid development of imaging
technology, hyperspectral imagery can obtain a large amount
of information about an object via hundreds of contiguous
and narrow spectral bands. Hyperspectral imagery (HSI)
has emerged as a significant data in a variety of scien-
tific fields, including medical imaging [1], chemical analy-
sis [2], and remote sensing [3], agricultural monitoring [4],
ecosystem monitoring [5] and endmember extraction [6].
The crucial component in these applications is classification.
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The classification techniques are divided into supervised clas-
sification algorithms and unsupervised classification algo-
rithms based on whether a prior knowledge is needed.
Some conventional supervised classifiers can obtain sat-
isfactory classification results, such as support vector
machines [7], [8], neural networks [9], [10] and regres-
sion methods [11]. Recently, as the supervised models, deep
learning networks have attracted much attention, due to the
fact that the advantages of deep learning models. Firstly,
the fundamental philosophy of deep learning is that let the
trained model itself select more important features with fewer
constraints imposed by human experts. They simultaneously
learn feature representation and corresponding classifiers in

146675


https://orcid.org/0000-0003-3994-4298
https://orcid.org/0000-0003-3519-7790
https://orcid.org/0000-0001-9373-6233
https://orcid.org/0000-0002-6974-7327

IEEE Access

X. Ji et al.: Semisupervised Hyperspectral Image Classification

the training process. Furthermore, multilayer neural networks
can capture representative and discriminative information
of large data. Multiple researches have demonstrated that
CNNs can deliver the state-of-the-art results using spatialized
input for HSI classification. Zhong et al. proposed an end-
to-end spectral—spatial residual network (SSRN), which can
take raw 3-D cubes as input data [12]. The residual blocks
connect every other 3-D convolutional layer through identity
mapping, which promotes the back propagation of gradients.
Moreover, the batch normalization on every convolutional
layer can regularize the learning process and improve the
classification performance of trained models. Liu et al. pro-
posed a novel supervised deep feature extraction technique
based on siamese convolutional neural network (S-CNN),
which contributes to enhance the performance of hyperspec-
tral image classification [13]. This method applies a CNN
with five layers to directly extract deep features from hyper-
spectral cube. Then, the siamese network composed by two
CNN s learns the features that show a low intra-class and high
inter-class variability.

Taking into account the aforementioned methods, there are
two serious problems for the classification of remote sensing
imagery: 1) They have satisfactory performance especially
when the number of labeled training data is large. 2) Their
performance highly relies on the quality of the training sam-
ples. However, the time consumption and the cost of data
collection are very high and the available training samples
are usually not enough. Compared with supervised classifi-
cation algorithms, unsupervised classification doesn’t need
labeled training data. However, unsupervised classification
algorithms are considerably more challenging and can be
defined as the identification of natural distribution or struc-
tures within the data. K-means algorithm [14], nearest neigh-
bor clustering [15] and fast density peak-based clustering
(FDPC) [16] are commonly applied in unsupervised classi-
fication.

Can we label only limited samples to train an effec-
tive classifier and obtain accurate classification maps? The
answer is yes. Semisupervised learning provide a promising
way to solve this problem [17]-[19]. In general, semisuper-
vised learning algorithms usually include multi-view learning
algorithms [20], co-training algorithms [21], self-learning
algorithms [22], tri-training algorithms [23], and the graph-
based approaches [24], transductive support vector machines
(TSVMs) generative models [25]. Semisupervised learning
pays more attention to the unlabeled data in unsupervised
approach. It improves the supervised model by increasing the
quantity of the training samples, and enhances the generaliza-
tion ability of the classifiers by applying the a small number
of labeled data and a large number of unlabeled data.

The main problems of semisupervised learning approach
are that how to select the most valuable unlabeled samples
to train classifiers and how to determine the label of these
new selected samples. Multiple classifier systems have been
widely applied in semisupervised learning. Two common
semisupervised learning methods, namely, co-training and
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self-training, was investigated by experiments. Co-training is
a semi-supervised learning paradigm which trains two learn-
ers respectively from two different views and lets the learn-
ers label some unlabeled examples for each other. In [21],
Munkhdalai et al. presented a semisupervised integration
of different classifiers to cover knowledge from unlabeled
data to recognize bio named entities in text. Moreover, many
semisupervised learning frameworks based on the tri-training
scheme are proposed for the classification of hyperspectral
data. In [5], a semisupervised learning framework based on
tri-training and self-learning were proposed. The framework
involved two steps: First, the multiple classifiers learned by
the improved tri-training and then integrated the outputs of
all classifiers to the final hypothesis. Next, in order to solve
the ill-posed classification problem, the confidence of each
learner was measured by the improved estimation of classifier
error. Simultaneously, self-training also expanded the labeled
set by adding unlabeled samples with correct labels assigned
by classifiers.

In [26], Li et al. proposed a weakly supervised deep
learning (WSDL) method for multiple class geospatial object
detection using scene-level tags only. Differing from existing
WSDL methods, This novel method exploits both the sepa-
rate scene class information and mutual cues between scene
pairs, which aims at sufficiently training deep networks for
pursuing the superior object detection performance. In detail,
it first to leverage pair-wise scene-level similarity to learn
discriminative convolutional weights by learning the mutual
information between scene pairs. Then, it utilizes point-wise
scene-level tags to learn class-specific activation weights.
In [27], Kellenberger et al. presented an Active Learning (AL)
strategy for re-utilizing a deep convolutional Neural Network
(CNN) based object detector on a new dataset. Specifically,
this method first bridges the gap by applying AL method and
introduces a new criterion called Transfer Sampling (TS) to
search corresponding regions between the source and target
data in the space of CNN activations. And the CNN scores
in the source data set are applied to rank the samples accord-
ing to their likelihood of being animals, and this ranking is
transferred to the target data set.

In the published context [28], learning features via land-
scape metrics, which are derived from the initial classifi-
cation results can quantify both the landscape composition
and spatial configuration and also refine the classification
model. Hence, in this paper, we propose a novel framework,
which aims at adequately exploiting spatial configuration
and spectral information by learning landscape features from
the whole data set. We first investigate SLIC (simple lin-
ear iterative clustering) based non-local superpixel segmen-
tation algorithm to initially analyze landscape features and
results. Then, we implement spectral-spatial double SVM
classifiers module (WSS-DSVM) to obtain initial classifi-
cation map. We feed the patches with lower certainty into
Multiple-training (M-training) algorithm, aiming to select
informative unlabeled samples and enhancing the discrim-
inative ability of the corresponding classification model.
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Meanwhile, we relearn the landscape features based on ini-
tial classification map. Finally, LLFSF flexibly combines
the strengths of learning landscape features, spatial-spectral
SVM classifiers and M-training via the classification certain-
ties calculated by the probabilistic output of the respective
classifiers.

The rest of this paper is organized as follows. Section II
presents details of the related works on hyperspectral remote
sensing image classification. Section III describes the pro-
posed LLFSF framework in detail. Section IV specifically
describes the effectiveness of LLFSF framework in different
data sets. Section V summarizes this paper.

Il. RELATED WORK

A. SPATIAL-SPECTRAL CLASSIFICATION ALGORITHM FOR
HYPERSPECTRAL IMAGE

Recent studies show that sufficiently exploiting the spatial
and spectral information can achieve a better performance
in the classification of hyperspectral images. Spectral and
spatial classifiers, which can assign more precise label to
each pixel by considering its spatial and spectral informa-
tion, also can increase overall classification accuracy. David
Landgrebe and his team at Purdue University firstly intro-
duced spatial context into a multiband image classifica-
tion with the Extraction and Classification of Homogeneous
Objects (ECHO) classifier [29]. According to the existing
literatures, spectral-spatial classification algorithms can be
roughly divided into four types i.e., spatial feature extraction-
based methods [30], [31], probabilistic model-based meth-
ods [32], [33], segmentation-based methods [34], and fixed
window-based methods [35]. Morphological profiles is a
representative spatial feature extraction-based method. This
method removes additional structural information and closes
operator. However, opening operator is a dual operator, which
applies image dilation and recovers abundant structural infor-
mation. Hence, Morphological profiles (MPs) is effective
at providing spatial features with only one band. Markov
random fields (MRFs) is another recommendable technique
in exploiting the spatial relatedness between adjacent pixels
and it has been proven to be much more accurate than the
pixelwise methods to classify hyperspectral images. [36].
As segmentation-based method, Cui ef al. proposed a robust
strategy to enforce the local collaborative property in homo-
geneous areas. This method first divides the denoised image
into superpixels by considering the quarternion theory, then
it implements collaborative sparse unmixing in each super-
pixel [37]. With respect to fixed window-based methods,
Baassou et al. proposed an integrated spatial-spectral infor-
mation algorithm for hyperspectral image classification [38].
This algorithm utilizes spatial pixel association (SPA) by
exploiting spectral information divergence (SID), and apply-
ing spectral clustering techniques to reduce regions. The
Weighted Spatial-Spectral Distance (WSSD) was proposed
by Huang et al. in [39]. This proposed algorithm applies
spatial window and spectral factor to obtain the spatial infor-
mation and spectral information, respectively. Then it applies
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the spatial nearest points to reconstruct the center point and
focuses on the local spatial structure. By increasing both the
consistency of the same class pixels and the difference of
the different class pixels, this algorithm effectively reduces
the redundant spatial-spectral information and also obtains
discriminating and representative features. Deep learning as
popular techniques has drawn much attention in hyperspec-
tral images classification. In [40], Yang et al. proposed a
deep convolutional neural network with two-branch architec-
ture to capture the joint spectral-spatial features from HSIs.
Initially, this framework learns spectral features and spatial
features, then learned spectral features and spatial features
are concatenated and imported to fully connected layers to
extract the joint spectral-spatial features. Furthermore, this
framework implements transfer learning, when the training
samples are limited. In detail, Low-layers and mid-layers of
the network are pre-trained and transferred from other data
sources and only top layers are trained with limited training
samples extracted from the target scene images.

Taking into account the aforementioned spectral-spatial
classification algorithms, although they enhance the classifi-
cation performance, most of them neglect the separability and
difference of the used bands. The equal employment of each
band will lead to the underuse or overuse of the bands, which
suggests that the time consumption of data collection may
be greatly increased. Therefore, both the complex spectral
information and dependent contribution of each band should
be investigated.

B. MULTIPLE TRAINING ALGORITHM

Tri-training is an effective semisupervised learning algo-
rithm [41], [42]. According to this integration strategy, more
different classifiers will feedback the final classifier a better
result. In tri-training algorithm, three classifiers are initially
trained from the original training set, and then are iteratively
trained by applying informative unlabeled samples in the
process. In [41], Zhu et al. proposed a novel tri-training based
on spatial neighborhood information to settle the problem in
the traditional tri-training algorithm. Firstly, they select three
better classifiers from MLR (Multinomial Logistic Regres-
sion), KNN (K Nearest Neighbor), ELM (Extreme Learning
Machine) and RF (Random Forest) classifier based on dis-
agreement measure and accuracy. All the classifiers are rede-
fined by utilizing unlabeled samples in the training process.
Then, the unlabeled samples are labeled for each classifier by
the following two steps. Step 1: selecting unlabeled samples
that receiving same labels from two classifiers. Step 2: spa-
tial neighborhood information of initial training samples is
applied in this proposed approach to construct the secondary
screening of unlabeled samples.

In [23], Cui et al. has proposed a novel semisupervised
classification method for hyperspectral data based on tri-
training. This method combines different classifiers and strat-
ified sampling based on labeled samples, which can increase
the diversity of classifiers and avoid classifiers performance
deterioration. In order to yield complementary and reliable
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TABLE 1. Landscape pattern metrics.

Landscape metrics Calculation

Description

Performance

Mean patch size(MPS) Z” q a, is the area (m?) of patch i The relative size of the patches in the
=1 ) . landscape
n n is the number of patches for class i

Standard deviation of area Std ( " ‘l,) a, is the area (m>) of patch i Area distribution of different land-cover

(AREA_SD)

classes

Largest patch index (LPI) max”, (a,) a. is the area (m*) of patch i The percentage of total landscape area
i ' ] comprised by the largest land-cover patch,
A is the total landscape area (m”) highlighting the dominant type in an urban
scene
Edge density (ED) E E is the total length of edges in the Total edges of a land-cover class relative
A landscape, and A is the total landscape to the total landscape area, quantifying the
arca (m%) landscape structure from the edge aspect
Mean shape index "D p, is the perimeter of land-cover patch Average measure of the shape complexity
(SHAPE_MN) Z,:1 2 \/,; ) . of each land-cover class
i i, a, is the area of the land-cover
" patch, and » is the number of patches
within the landscape
Standard deviation of . p, is the perimeter of land-cover patch Distribution ~ characteristics of shape
shape index (SHAPE_SD) Std [U T J ) . complexity
! 2\/71'—@ i, a is the area of the land-cover
patch, and » is the number of patches
within the landscape
Number of patches (NP) n, n, is the number of patches for class i Spatial ~ fragmentation of land-cover
patches
Splitting index (SPLIT) Ve a, is the area (m?) of patch i Spatial ~ fragmentation of land-cover

patches, but with different sensitivities to

A is the total landscape area (m?) NP

results, three different classifiers are implemented as the
base classifiers, respectively, which aims at taking advantage
of different classifiers and making full use of the labeled
samples. In [43], Wang et al. first employed an improved
M-training techniques in hyperspectral image classification.
In this paper, three different classifiers are applied to optimize
the performance of classifier by complementing each other,
which can increase the final classification accuracy.

C. MULTIPLE FACTOR AUTHENTICATION AND LANDSCAPE
METRICS

Landscape metrics can effectively differentiate the distri-
bution of ground objects and comprehensively capture the
overall patterns of landscapes. And landscape metrics can be
defined as quantitative indices that describe the structures and
spatial characteristics of a landscape. Most of the previous
studies in landscape metrics have focused on monitoring
urban landscape changes. Landscape metrics can be viewed
as an effective method for land source planners who need to
better understand. Policy makers make appropriate decisions
about sustainable development by learning landscape met-
rics [44]. Many spatial landscape properties can be quantified
by applying a series of metrics and eight commonly used
landscape metrics are be introduced in table 1. Nowadays,
landscape metrics captures much interests in remote sens-
ing (RS) and geographic information systems (GIS). In this
study, we focus on the analysis of the spatial characteris-
tics of land cover patches, land cover classes and highlight
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the value of spatial metrics in the study of hyperspectral
image classification mages, both the dimensional features
and redundancy between frequency bands are increased,
which results in misclassification between spectrally similar
classes. Moreover, the unlabeled samples are selected for
refining the classifiers may result in low certainties. And
per-pixel classification using spectral information alone is
generally subject to the salt-and-pepper effect. Under this
circumstance, multiple factor authentication has an effective
ability to improve the classification accuracy. It has been
demonstrated that multiple factor authentication can guaran-
tee the reliability of the unlabeled samples in many respect
and exploit the strengths of the individual algorithm and
classifier.

This idea is derived from a collaborative manner frame-
work for hyperspectral image classification [45]. In detail,
an pseudolabel verification procedure based on active learn-
ing is performed for gradually enhancing the pseudolabeling
accuracy and facilitating semisupervised learning. Simulta-
neously, the unlabeled samples that cannot be assigned with
pseudolabels with high confidence are regarded as candidates
in iteration process.

By assigning pseudolabel and multiple authentication,
we can complement different algorithms and different classi-
fiers for each other. Multiple authentication enables a collab-
orative labeling procedure by capture advantages of different
modules to acquire more confident labeled pixels and thus
improves the final classification performance.
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lll. PROPOSED METHODOLOGY

In this paper, we propose a new framework for hyperspec-
tral image classification using spectral and spatial features.
This novel learning landscape features semisupervised frame-
work (LLFSF) combines different semisupervised methods
and learn landscape feature in a collaborative process.

A. STEP 1: SUPERPIXEL-BASED NON-LOCAL
SEGMENTATION ALGORITHM

If the spatial information of hyperspectral image is complex,
we apply SLIC-based non-local superpixel segmentation to
presort the original hyperspectral map, and the landscape fea-
tures can be derived from the segmentation map. The simple
linear iterative clustering (SLIC) algorithm not only considers
the spectral distance but also calculates spatial distance in
the iterative clustering process. The SLIC algorithm has been
widely applied for superpixel segmentation of color images,
because it has simple and effective characters. Specifically,
this algorithm has only two tunable parameters P and wg, P is
utilized to control the number of pre-segmented super-pixels,
ws is applied to measure the relative weight of the spectral
and spatial distances of each pixel to the center pixel. In our
proposed segmentation algorithm, we apply the hexagonal
grid described in [46] instead of the square grid used in the
standard SLIC algorithm to generate the initial clusters We
can see from figure 1, every side and every corner of the
hexagon are shared by two and three hexagons, respectively.
Compared with original SLIC with square, selecting a hexag-
onal gird for image segmentation has evident advantages is
that it can sufficiently learn the surrounding spatial informa-
tion. Each hexagon has more non-diagonal neighbors than a
square, and hexagonal grids provide less distance distortion
of boundary pixels [46]. The size of improved SLIC algorithm
can be described with the width w and height A, the spacing
of adjacent hexagons can be represented by the horizontal
distance horiz and the vertical distance vert. m' and n' are
the central coordinates of the superpixel. row; and col; are
the index of superpixel. Meanwhile, calculating the center of
a hexagon is not very complicated than a square and it can be
expressed as a simple matrix multiplication:

m'! | vert 0 2row; — 1 )
7 I ) horiz col;

Note that the expected spatial extent of the superpixel is
an approximate hexagonal region, but in the allocation step,
we search a similar pixel in the window with size 2w X 2w
around the central superpixel.

As the 3D hyperspectral image changing, the correspond-
ing spectral distance measurement is updated to the spectral
angle distance, which is an effective similarity measure of
the spectral features. As for calculating the spectral distance,
we also need to calculate the distance from each pixel to the
cluster center (Euclidean distance) in the clustering process.
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FIGURE 1. SLIC initial superpixel model.

We summarize the distance metrics as follows:

x-Txi
d, = arccos — 2)
(”x/’”z [l 2>
dun =\ =m0 =n) O
d 2
Dj = |d?+ (%) w? 4

where x; and x; represent the average spectrum of all pixels in
the ith and jth superpixel, respectively. (m;, n;) represents the
coordinates of the pixel j, dy represents the spectral distance
of the pixel j to the cluster center, and d,,, represents the
spatial distance of pixel j to the cluster center. Since the
spatial distance d,,,,, changes more significantly than spectral
distance d,, the spatial distance is normalized by applying
the hexagonal mesh width @ when calculating the total dis-
tance D;. The wg as parameter can control the relative weight
between spatial and spectral similarities, usually taken values
in the range [0.1, 1]. With the increasing of parameter value,
spatial similarity becomes more important. Inversely, When
ws is tuned small value, spectral similarity is more signif-
icant. Since the spectral proximity is assumed to be more
vital in measuring the similarity, wg has been set to 0.3 in
our experiments. When the spatial-spectral information of
the hexagons is similar, the proposed non-local segmentation
algorithm will merge these hexagons into a bigger non-local
area. We have set threshold values to integrate similar blocks
into a bigger syncretic block. If the threshold value is bigger,
the number of syncretic block is larger and syncretic block is
smaller. On the contrary, when the threshold value is tuned
to be small, it indicates that a syncretic block will contain
more hexagons. The flowchart of the simple linear iterative
clustering (SLIC) algorithm is shown in Figure 2.

The spatial feature calculation strategies can be regarded
as a form of preprocessing before the classification, which
improve the class separability through the addition of spa-
tial features. We can make pre-judgment on the complex
landscape composition and spatial configuration. From the
figure 9, we can observe that SLIC-based non-local super-
pixel segmentation algorithm splits the original image into
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Input: height, width; i=1

v

Initialize the segmentation according to the width and
height of the hexagon, the initial coordinates take the
central pixel coordinates, and the average spectrum takes
the central pixel spectrum.

A A

Calculate the distance D of all the pixels in the range of 2@X2waround each
cluster center to the cluster center in turn and paste the superpixel label for
each pixel. The pixel tag of the adjacent super pixel overlapping portion is
set as a super pixel tag that is closer.

!

The superpixel center coordinates and the center spectrum are
updated. The center coordinates take the average coordinates of]
all the pixels in the superpixel, and the center spectrum takes the|
average spectrum of all the pixels in the superpixel.

Is there an isolated point?

Merge the isolated points to the nearest
coherent area.

i < preset number of iterations?

Output: Superpixel
segmentation result

End

FIGURE 2. SLIC algorithm flow chart.

many non-local similar blocks. The number of non-local sim-
ilar blocks can effectively represents the landscape density
and complexity. Specifically, if a part of image has many
non-local similar blocks, that indicates the spatial configu-
ration is crowded and the spatial information is more com-
plex. Furthermore, from the location of non-local similar
blocks, we can precisely acquire the configuration informa-
tion of land-cover. Pre-judgment based on original image
can primarily realize the land-cover spatial composition
and distribution, which contributes to the improvement of
final accuracy. If this original image has complex spatial
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Algorithm 1 Weighted Spatial-Spectral Double Layer SVM
Algorithm

Input:
Initial training set: L = {(x;, y)'_, }

u

Initial unlabeled data set: U = (xj)j: .

1. Calculate the average spatial-spectral value of K neigh-
bor samples to replace the center sample.

2. Calculate the distance between center sample and

neighbor samples and assign weighted to each sample.

Update the hyperspectral data.

4.  When the confidence value of unlabeled samples is
higher than confidence threshold value (CT), add these
unlabeled samples into training set.

5. Update training set and test set.

6. Classify U by double layer SVM classifiers.

Output: Initial classification map

W

structure, which also indicates that it has more abundant spa-
tial information. In term of these, we will pay more attention
on learning spatial information in the following steps.

B. STEP 2: WEIGHTED SPATIAL-SPECTRAL DOUBLE LAYER
SVM MODULE

To better characterize the complex scenes of hyperspectral
images, we apply weighted spectral information strategy to
preprocess data. To calculate the weight of a pixel located
at x in the classified map, we extract the spatial-spectral
information in a window of size=w’, whose central pixel is x.
We implement spectral similarity to calculate the difference
that between the central sample and the surrounding K neigh-
bor samples. Samples are more similar to the central sample
will be given greater weight value. Specifically, we assign the
weight by calculating Euclidean distance from adjacent pixels
to the center pixel. The weight for pixel x; can be expressed
as w;. Then, we calculate confidence level of a pixel located
at x in the classified map.

Confidence threshold can be applied to assess the reliabil-
ity of samples. If this value is high, greater than threshold,
the sample x; is assigned to training set. Simultaneously, the
training data set and the testing data set are updated by adding
the samples with high confidence level. With Algorithm 1,
we will obtain initial classification map by double layer
spatial-spectral SVM classifiers (spectral feature classifier
and spatial feature classifier). From the initial classification
map, we can effectively quantify the spatial structures in
terms of both composition and distribution, such as area,
edge, shape, and aggregation.

C. STEP 3: MULTIPLE FACTOR AUTHENTICATION AND
LEARNING LANDSCAPE FEATURE

Recently, landscape feature draws great interests in remote.
Learning landscape feature aims to extract a new spatial
feature that specifically describe the composition and config-
uration of the land-cover classes based on the contemporary
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classification map. In order to better comprehend the practical
scenes of remote sensing images, learning landscape feature
has been an indispensable link in our framework, which also
contributes to enhance the efficacy of the overall framework.

Taking into account the initial classification map, we cal-
culate the current five landscape features. They are Mean
patch size (MPS), Standard deviation of area (AREA_SD),
Largest patch index (LPI), Mean shape index (SHAPE_MN)
and Splitting index (SPLIT). SPLIT represents the spatial
fragmentation of land-cover patches, and SHAPE_MN indi-
cates that the average measure of the shape complexity of
each land-cover class. Take into account the SPLIT and
SHAPE_MN, we select specific strategy for further classi-
fication based on current result. LPI can quantify the per-
centage of total landscape area comprised by the largest
land-cover class, indicating the dominant land-cover patch
and fragmentation of the image scene. And MPS are applied
to describe the spatial structure from table 1, AREA_SD
reflects the distribution and composition of the land-cover
classes. Hence, according to the feedback provided by the
metabolic landscape features, the classification results and
model can be sustainably optimized. Generally speaking,
different images have different performances in same feature.
In step 2, the accuracy of each patch is divided into relatively
high or low certainty values. In this step, the confidence
threshold (CT) is used to determine which pixels should be
further processed. A smaller value represents that only a
small number of pixels are reliable. In this study, The patches
with low threshold are considered for further processed by
M-training modules. In addition, the patch with a high thresh-
old means that more details and information should be pre-
served. And we also calculate the landscape features which
are derived from initial classification map obtained by two
layer SVM classifiers. Calculating the landscape features of
a pixel located at the classification map, we extracte the
contextual geography and spatial structure information in a
patch (of size = p’). It should be mentioned that, in our
framework, the size of patch is not fixed, but according to
the results of initial classification map. The landscape feature
with metric m of class i for pixel x can then be expressed as
hi(x, p’, m). Therefore, all metrics for class i are denoted as:

hix, p') = [hiCx,p', 1), ... hiGx, p/om), ... hi(x, ', M)
)

where M is the number of landscape metrics [28]. In this
framework, for each certain hyperspectral data set, we can
obtain initial classification map, temporary classification map
and final classification map. The initial classification map is
achieved by two layer SVM classifiers and each pixel obtain
the initial class label.

Therefore, we select totally different hyperspectral image
scene as the input in our experiment. For instance, Indian
pines image has lots of grass, woods and many different kinds
of crops. This data has complex and diversity classes. More-
over, these patches to be classified are close to each other in
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space. Pavia university image contains fewer classes than last
one. Beside it has lots of Meadows and trees, it also has Bare
Soil and Bitumen. And the arrangement of the land-cover is
not very crowded. Compared with Pavia university image,
Pavia centre image has many pixels and these pixels are close
to each other. It is a typical fragmented spatial pattern in our
experiments.

It should be mentioned that the idea of multiple factor
authentication is adopted in this step. In the overall frame-
work, we have obtained two classification maps and a split
image and assigned pseudolabels for unlabeled samples by
two methods, respectively. Moreover, taking into account the
arrangement and contextual information of the land-cover
classes, we learn landscape features from the labeling space,
which can reduce the salt-and-pepper noise in the classifica-
tion map. From aforementioned procedure, we have imple-
mented different methods to classify each unlabeled sample
and the landscape features are updated for based on contin-
uously updating classification map. From the perspective of
multiple factor authentication, we investigate the landscape
features to classify controversial patches that have distin-
guishing classification results in two algorithms. Landscape
features effectively quantify the spatial structures in terms of
both composition and configuration. Taking into the neigh-
borhood information with respect to other land-cover classes
can reduce the salt-and-pepper noise in the classification
map.

D. STEP 4: M-TRAINING ALGORITHM

We have proposed a novel multiple-training (M-training)
method for alleviating classification issues by automatically
selecting informative training samples [43]. In M-training
algorithm, the classification error rate is composed by the
unlabeled sample error rate and the labeled sample error rate.
To complement the characteristic of classifiers, classifiers
system of the M-training method is diverse. We implement
support vector machine (SVM), random forest (RF), and
K-Nearest Neighbor (KNN) as base classifiers.

SVM is very suitable for the classification of remote-
sensing images when the number of training samples is small.
SVM is a supervised nonparametric statistical learning tech-
nique, which is not constrained to prior assumptions on the
distribution of the input data. However, SVM has a limited
ability to improve the classification accuracy, in terms of
the edge areas. The K-Nearest Neighbor (KNN) algorithm
is a simple classification algorithms in machine learning
field. It often generates competitive results and has signif-
icant advantages over several other data mining methods.
It chooses k training data nearest to the test data. The final
class labels of test data are decided by majority voting. KNN
is usually utilized as a pixel-wise classifier in these researches
which relies on the optimal distance metric and feature
space [28]. Random Forests (RF), as an ensemble learning
technique, is increasingly applied in land-cover classification
by applying multispectral and hyperspectral satellite sensor
imagery and radar data [47], [48].
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Algorithm 2 M-Training Algorithm

Input:

Initial training set: L = {(x;, y)'_; }
Initial unlabeled data set: U = (x;)
Initial iteration times: t = 0

the number of iterations: T

Whiler < T.

Repeat:

u
j=1

1. Trainclassifiers C1, C2, C3, C4 by using initial training
set L.

2. Choose a classifier as main classifier and others are
assistant classifiers.

3. Use U as the test set. When the unlabled samples
recieve same classifiaction results from one main
classifier and three assistant classifiers, this
unlabeled sample will be labled by classifiers
and put it into new labeled data set Lj (), and
Li (1) = {xlx € U, Ci(x) = Ca(x) = C3(x) = Ca(x)}
(Similarly, when C2, C3, C4 as main classifier,
respectively, we denote new labeled data set as L (¢),
L3 (1), L4 (1), respectively.

4. If Cl as main classifier and e (¢) L1 (?)| <
e1 (t — 1)Ly (¢t — 1) |, update the labeled dataset and
unlabeled data set. Ly (t) = Li(t—1) UL (t) If
e (M) Ly (1) = e1 (t — 1) |L; (¢ — 1) |, we randomly
select samples as L (f) to ensure ey (t) [L; (1)| <
et —=DILi (=D

5. Update iteration times ¢ = ¢ + 1.

6.  Until T rounds are reached.

Qutput: Trained classifiers

7. Input test samples into the trained classifiers, using
majority vote strategy to obtain classification results.

It applies the majority vote to predict the class of a given
observation. It is insensitive to noise points in training sam-
ples. With the limited training samples, the generalization
ability of RF is substantially improved. Therefore, it will
not be over-fitting when the size of the data set increasing.
A RF consists of a combination of classifiers where each
classifier contributes with a single vote for the assignation
of the most frequent class to the input vector (x), C’g =

majorityvote {CbA(x)]B, where Cy(x) is the class prediction
of the bth random forest tree. We can regard RF as a new
concept of classifiers. Furthermore, when the RF makes a tree
grow, it uses the best segmentation of a random subset of input
features or predictive variables in the division of every node,
instead of using the best split variables.

In our experiment, the four classifiers (denoted as ClI,
C2, C3, and C4) are initially trained by the labeled samples.
Each classifier can be main classifier and the rest of classi-
fiers are as assistant classifiers, respectively. In M-training,
suppose we have a hyperspectral image with m samples
D = {x1,x2,...,xy} of d dimensions. In the experiment,
we calculate the classification error rate of both the unlabeled
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samples and the labeled samples, respectively. The error rate
of unlabeled samples e; (U) are obtained by vote strategy.
The e; (t) represents the upper limit of the classification error
rate for auxiliary classifier at rth iteration. We denote L (¢) as
newly labeled data set at ¢th iteration.

ei (U) = M (6)
n; (u)
ei(t)=Axe;(L)+ (1 —A)xe; (U) @)

where n;(u) is the total number of unlabeled samples. k;
denotes the number of samples, and these samples are
labeled as same class from assistant classifiers. A(A =
0,0.1,0.2...0.9, 1) is weighting parameter that tunes the
tradeoff between e; (f) and e; (U). When a sample in
U obtains the same result from the assistant classifiers
and main classifier, it can be assigned with confident
pseudolabels to improve the training model in the next
time. Moreover, when the Cl as main classifier, and
e1(®) L1 (t)] < er (t —1)|Ly (t — 1) |, the original labeled
data set is expanded as L U L (¢) according to iteration.
When e (t) |L; (1) | > e1 (t — 1) |Ly (t — 1) |, we will ran-
domly select samples from L(¢) and these selected samples
are formed into S(S = L;(¢)). Simultaneously, we apply
Ly (t) = Ly (t — 1) ULy (¢) to retrain classifiers C1. Then,
beginning the iteration loop, we label only limited samples
to train effective classifiers. When the iteration is finished,
we apply the majority vote to predict the class of a given
observation.

Why we choose the weighted spatial-spectral double layer
SVM module and M-training algorithm as the main clas-
sification methods in this framework? The main reason as
following, first, the Weighted spatial-spectral double layer
SVM module obtain excellent classification performance
when given a certain number of labeled samples. If the initial
labeled pixels is too few, which will inevitably lead to many
classification errors in some classes. Next, concerning the
edge regions, tri-training outperforms than other methods
are introduced in published literature [28]. M-training is
an improved algorithm based on tri-training. M-training is
also superior to others on the edge regions and has better
classification performance on land- cover with similar spec-
tral. Hence, we choose these algorithms to complement with
each other. After this step, we integrate the patches with
the optimized results and obtain a final classification map.
The flowchart of the overall framework (LLFSF) is shown
in figure 3.

IV. DATASET DESCRIPTION AND DESIGN OF
EXPERIMENT

A. DATASET DESCRIPTION

In the experiments, three hyperspectral remote-sensing
images were employed as benchmark data sets. The details
of the three data sets are as follows. The first hyperspectral
data set is Indian pines data set. In June 1992, the NASA
AVIRIS image was acquired over the Indian pines agricul-
tural site in northwestern Indiana. AVIRIS is a sophisticated
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FIGURE 3. Flowchart of the learning landscape features semisupervised framework (LLFSF).

FIGURE 4. False-color composite image of Indian Pines data set and color
map of ground truth. (a) False-color image. (b) Ground truth.

optical sensor system including a number of major subsys-
tems, components, and characteristics. This data set contains
145 x 145 pixels, with 220 spectral bands covering the range
of 375-2200 pm [49]. The corresponding spatial resolution
is approximately 20 m. The data set contains 16 classes
representing the different classes of land cover, and 10249
available samples.

Pavia university data set and Pavia Centre data set
were acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) instrument in 2001, covering the city
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TABLE 2. Numbers of samples for the corresponding classes of the
Indian Pines data set.

E;abisl Class Name #samples
Cl Alfalfa 46
C2 Corn-notill 1428
C3 Corn-mintill 830
C4 Corn 237
C5 Grass-Pasture 483
Co6 Grass-Trees 730
C7 Grass-Pasture-mowed 28
C8 Hay-windrowed 478
C9 Oats 20
C10 Soybeans-notill 972
Cl1 Soybeans-mintill 2455
Cl12 Soybean-cleantill 593
Cl13 Wheat 205
Cl4 Woods 1265
CI15 Building-Grass-Tress 386
Cl6 Stone-Steel-Towers 93

of Pavia, Italy. Pavia university data set is centered at the Uni-
versity of Pavia, with a size of 610 x 340 pixels. It comprises
115 spectral channels in the wave-length range from 0.43 to
0.68 um with a spatial resolution of 1.3 m, and 103 chan-
nels are used in the experiment after removing noise and
water absorption bands. This data set contains nine classes
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TABLE 3. Numbers of samples for the corresponding classes of the Pavia
university data set.

TABLE 4. Numbers of samples for the corresponding classes of the Pavia
centre data set.

Class Class

Label Class Name #sample Label Class Name #sample
Cl Asphalt 6631 Cl1 Water 65278
C2 Meadows 18649 Cc2 Trees 6508
C3 Gravel 2099 C3 Meadows 2905
C4 Trees 3064 C4 Self-Blocking Bricks 2140
Cs5 Painted metal sheets 1345 Cs Bare soil 6549
C6 Bare Soil 5029 Co6 Asphalt 7585
Cc7 Bitumen 1330 C7 Gravel 7287
C8 Self-Blocking Bricks 3682 C8 Tiles 3122
C9 Shadows 947 C9 Shadows 2165

B B

(b)

FIGURE 5. False-color composite image of Pavia University data set and
color map of ground truth. (a) False-color image. (b) Ground truth.

representing the different types of land-cover, and there are
42776 available samples [50].

Pavia Centre data set is also applied in our paper. After
noise and water absorption bands are removed, the number
of spectral bands is 102 for Pavia Centre. The geometric
resolution is 1.3 meters. Pavia Centre is a 1096 x 1096
pixels image, but some of the samples in images contain no
information and have to be discarded before the analysis.
Because the Pavia Centre data set is too large, we select a
part of the whole image as input data. The selected image is
a 548 x 715 pixels image. This data set contains nine classes
representing the different types of land cover.

B. DESIGN OF EXPERIMENTS

In the experiments, for every algorithm, ten runs were exe-
cuted on each image with different initial labeled data. Sup-
port vector machine (SVM) is a supervised nonparametric
statistical learning technique. The parameters of SVM were
set as kernel = radial basis function (RBF). The LibSVM and
RF toolbox were adopted. There are two parameters for the
SVM classifier, i.e., the regularization parameter P and the
Gaussian kernel parameter G, which are usually selected via
cross validation. But in this paper, in order to be efficient
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FIGURE 6. False-color composite image of Pavia Centre data set and color
map of ground truth. (a) False-color image. (b) Ground truth.

and ensure the precision, we adopted the same parameters
settings. As for KNN in M-training algorithm, we set K = 3.

As for weighted spatial-spectral double layer SVM mod-
ule. In Indian pines data set, we first randomly select 5%
samples from each class as initial labeled training data set.
Then, we will add about 1% unlabeled samples with high con-
fidence threshold into training set. In this section, we donate
confidence threshold as T1 and (T1 > 0.95). As for the
subsequent M-training algorithm, we randomly divide the
total available data into two parts: 25% for training and 75%
for testing. The training data contains the unlabeled samples
and the labeled samples. We randomly select 5% samples in
each class as the initial labeled data. The unlabeled samples
receive the same labels form four classifiers will be added
into training set.

In Pavia university data set, as for weighted spatial-spectral
double layer SVM module, we first randomly select 1%
labeled samples from each class as initial training set. Then
we add unlabeled samples with high confidence into training
set. (T1 > 0.95) As for the subsequent M- algorithm, we ran-
domly divide the total available data into two parts: 25%
for training and 75% for testing. We randomly selected 1%
samples in each class as the initial labeled data. The unlabeled
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(a) (b)

(c) (d)

FIGURE 7. SLIC-based non-local superpixel segmentation results based on Indian pines data set with different threshold. (a) threshold=0.150,

(b) threshold=0.175 (c) threshold=0.200 (d) threshold=0.225.

FIGURE 8. SLIC-based non-local superpixel segmentation results based on Pavia university data set with different
threshold. (a) threshold=0.18, (b) threshold=0.21 (c) threshold=0.24.

samples receive the same labels form four classifiers will be
added into training set.

In Pavia centre data set, as for weighted spatial-spectral
double layer SVM module, we first randomly select 0.1%
labeled samples from each class as initial training set. Then
we add the unlabeled samples with high confidence (T1 >
0.995) into training set. Because the number of Pavia centre
data set is very large, we try to apply a small sized number of
labeled samples to obtain better performance. In M-training
algorithm, we also randomly divide the total available data
into two parts: 25% for training and 75% for testing. And for
training set, we randomly select 0.1% samples in each class
as the initial labeled data. The unlabeled samples receive the
same labels form four classifiers will be added into training
set. All experiments were conducted on an LENOVO Z50 lap-
top with the NVDIA GeForce 840M graphical processing
unit.

V. RESULTS AND ANALYSIS
We apply a very small sized number of labeled samples

and limited training samples to validate the effectiveness of

VOLUME 7, 2019

proposed framework. We firstly utilize the SLIC-based
non-local superpixel segmentation (SLIC-NL) algorithm to
preprocess the image. SLIC-NL can initially assess the
complexity of each land-cover class and area distribution
of different land-cover classes, which can attribute to the
learning landscape features. We can see the segmentation
results with different threshold in figures 7-9. In the exper-
iments, weighted spatial-spectral double layer SVM algo-
rithm (WSS-DSVM), tri-training algorithm and M-training
algorithm were considered for a comparative analysis. The
general comments regarding the results are summarized
as follows: From table 7, the classification accuracy of
LLFSF is superior to other algorithms, which indicates
that our proposed framework has the potential to improve
the classification performance. Furthermore, the results can
also be confirmed by figure 10, where learning-landscape
achieves the highest overall accuracies in the Indian pines
data set. We can also observe that tri-training algorithm and
M-algorithm obtain worse classification accuracy when they
classify 16 classes land-covers. They also have many noises
and misclassifications on the classification maps.
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FIGURE 9. SLIC-based non-local superpixel segmentation results based on Pavia centre data set with different threshold. (a) threshold=0.16,

(b) threshold=0.24.

TABLE 5. The landscape features of the Indian pines data set.

Landscape feature

Calculated value

Mean patch Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8
size(MPS) 232.00 483.60 136.83 230.00 112.00 118.80 99.00 56.00
Patch 9 Patch 10 Patch 11 Patch 12 Patch 13 Patch 14 Patch 15 Patch 16
20.00 242.00 480.00 115.75 198.00 112.33 165.00 95.00
Standard deviation
of area 246.4274
(AREA SD)
Largest patch index
(LPI) 0.1130
Mean shape index
SHAPE MN 2.0048
Splitting index
(SPLIT) 20.2840

TABLE 6. The landscape features of the Pavia centre data set.

Landscape feature

Calculated value

Mean patch Patch1 Patch2 Patch3  Patch4
size(MPS)
3.2986  0.0029  0.0100  0.2140

Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

0.0329 0.0956 0.0594 0.0215 0.0049

Standard deviation
of area(AREA_SD)

3.3523e+03

Largest patch index 0.5528
(LPI)
Mean shape index 1.5124
SHAPE_MN
Splitting index 3.2378
(SPLIT)

From the classification map and confusion matrix, we can
find that Soybean-clean, Woods, Grass-trees and corn-notill
are seriously misclassified. Although WSS-DSVM has better
classification performance than M-training and tri-training
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algorithms, especially in Grass-trees and Soybean-mentill.
It also has many salt-and-pepper noise in homogenous
regions because incorrect labels may be added during the
semisupervised learning.
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TABLE 7. Numbers of samples for the corresponding classes of the Indian Pines data set.

Performance Tri-training M-training WSS-DSVM LLESF
OA (%) 67.64 71.80 92.04 95.12
AA (%) 53.19 61.42 85.91 90.27
Kappa 0.6258 0.6756 0.9093 0.9444
Computational time (s) 223.21 128.47 60.68 139.75
TABLE 8. Numbers of samples for the corresponding classes of the PAVIA university data set.
Performance Tri-training M-training WSS-DSVM LLFSF
OA (%) 81.22 78.74 95.52 98.46
AA (%) 75.71 64.89 94.70 96.39
Kappa 0.7412 0.7025 0.9404 0.9796
Computational time (s) 962.61 540.75 341.87 372.03
TABLE 9. Numbers of samples for the corresponding classes of the PAVIA centre data set.
Performance Tri-training M-training WSS-DSVM LLFSF
OA (%) 94.07 93.19 97.98 99.09
AA (%) 79.81 75.52 93.75 94.88
Kappa 0.9050 0.8910 0.9557 0.9732
Computational time (s) 4053.54 2312.87 1347.51 1899.57

S
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FIGURE 10. Comparison of the final classification map of different frameworks on the Indian Pines dataset. (a)Tri-training; (b)M-training;

(c) WSS-DSVM:; (d) LLFSF.

Table 8 shows the classification results of the compara-
tive methods on the Pavia university data set. Compared to
M-training, tri-training and WSS-DSVM, the average accu-
racy improvements achieved by (LLFSF) are 19.72%,
17.74%, 2.94%, respectively. From the figure 11, in terms of
the overall accuracy, we can find that M-training has worse
classification performance than WSS-DSVM.

All the Bare soil are almost misclassified as Meadows.
But we can also observe that M-training algorithm has more
excellent classification ability on some specific classes, such
as Meadows and Asphalt. Our proposed framework has the
best performance among the compared algorithms. LLFSF
applies less computation time to obtain best classification
results. Pavia centre data set has a large amount of samples,
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and the structural information of geospatial objects is com-
plex and redundant.

Moreover, the separability of land-cover is higher than
other data sets utilized in this paper. We apply a very small
sized number of labeled samples and limited training sam-
ples to validate the effectiveness of proposed framework.
We firstly utilize the SLIC-NL algorithm to preprocess the
image, which can attribute to the learn landscape features.

After we obtain the initial classification map from WSS-
DSVM algorithm, we begin to re-learn the complexity of each
land-cover class and area distribution of different land-cover
classes, which can contribute to the final classification results.
We can also see form table 9, our proposed framework can
obtain best classification results with a very small number
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FIGURE 11. Comparison of the final classification map of different frameworks on the Pavia university data set. (a)Tri-training; (b)M-training;

(c) WSS-DSVM; (d) LLFSF.
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FIGURE 12. Comparison of the final classification map of different frameworks on the Pavia centre dataset. (a)Tri-training; (b)M-training;

(c) WSS-DSVM; (d) LLFSF.
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FIGURE 13. Analysis of the parameter sensitivity with the Indian pines
data set for the weighted spatial-spectral double layer SYM module.
(a) Overall accuracy (OA); (b) Running time.

of labeled samples. Compared to M-training and tri-training,
the average accuracy improvements achieved by LLFSF are
5.02-5.9%, respectively. Figure 12 has shown the classifi-
cation maps obtained with the different algorithms. LLFSF
is regarded as statistically better than the other compared
algorithms.

The experiments of three data sets can confirm the efficacy
of the proposed LLFSF. The classification map of LLFSF
appears clearly, showing the efficiency of reducing the salt-
and-pepper noise. It has been demonstrated that the pro-
posed framework can learn the spatial configuration from
the current classification map. Therefore, it is effective at
exploiting the representative information and capturing the
overall patterns from the unlabeled data.

PARAMETER ANALYSIS

The threshold parameter sensitivity analysis for two layer
SVM system with the Indian pines data set are displayed
in figure 13. In double layer SVM method, the size of win-
dows and the value of confidence threshold are vital to the
classification results. From figure 13, we can observe that
the size of windows in a range of 5-13 and the value of
confidence threshold in a range of 0.9-0.4 can result different
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FIGURE 14. Analysis of the parameter sensitivity with the Pavia university
data set for the weighted spatial-spectral double layer SYM module.
(a) Overall accuracy (OA); (b) Running time.

Confidence Threshold

performances. For instance, when the size of windows is
5 and the value of confidence is 0.4, we can obtain the maxi-
mum OA value, that is 97.00%. On the contrary, the minimum
OA value is 88.98%, it can be obtained, when the size of
windows is 5, and the value of confidence threshold is 0.9.
Actually, when we obtain the maximum OA value, the time
consumption is very high and the size of training set is
very large. According to double two layer SVM method,
we choose candidate samples with high confidence threshold
as training set. If we set the value of confidence threshold is
small, which will add a large number of unlabeled samples
into training set. This can greatly increase the cost of data
collection. So we should select the high confidence threshold
to decrease time consumption. And we can also find that
when the confidence threshold is the same, when the window
size is equal to 11, the overall accuracy is higher than other
parameter setting. But when the window size is 9, the overall
accuracy is more stable and time consumption is more shorter.
Considering the tradeoff between computational burden and
performance of the classification model, in our experiment,
we set the confidence threshold is 0.95 and window size is 9.
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FIGURE 15. Analysis of the parameter sensitivity with the Pavia centre
data set for the weighted spatial-spectral double layer SYM module.
(a) Overall accuracy (OA); (b) Running time.

In Pavia university data set, from figure 14, we can observe
that the size of windows in a range of 7-11 and the value of
confidence threshold in a range of 0.85-0.95. It should be also
mentioned that when the size of window is bigger than 11,
the computational costs become very huge. So the biggest
window size is 11 in our experiment. The maximum OA is
97.98%, and it can be obtained when the size of windows
and the value of confidence threshold are set as 7 and 0.9,
respectively. When the size of windows is 11 and the value
of confidence threshold is 0.95, we can obtain the minimum
OA, which is 95.52%.

The interesting phenomenon is that when the window
size is 9, with the increasing of the confidence threshold,
the overall accuracy doesn’t change. And the running time
also maintains same value. In order to reveal the superiority
of the our LLFSF, we choose the ‘““worst parameters” in
the experiment. We set the confidence threshold is 0.95 and
window size is 11. This is a understandable setting, since we
want to implement the least the training samples and time
consumption to obtain better classification. Although these
parameters make the accuracy is a little worse than other
parameters, we can utilize the following steps to enhance
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the classification performance with a small sized number of
training samples.

In Pavia centre data set, from figure 15, we can observe
that the size of windows in a range of 7-11 and the value of
confidence threshold in a range of 0.990-0.995 can generate
different results. For instance, when the size of windows and
the value of confidence threshold are set as 9 and 0.992,
respectively, the maximum OA 98.36% can be obtained.
Conversely, the minimum OA is 90.60%, when the size of
windows and the value of confidence threshold are set as
11 and 0.991, respectively. We can also observe that when
the size of window is 7, the classification performance is more
excellent than other parameters. Hence, we select the window
size is 7. In order to use the less training samples, we set the
the confidence threshold is 0.995. In these parameters, we can
obtain more approving results in less computational costs and
training samples.

VI. CONCLUSION

This paper applies limited labeled samples, informative unla-
beled samples and landscape features to achieve the better
classification results. We investigate a novel framework that
integrates two semisupervised learning algorithms and land-
scape feature learning in a collaborative manner for hyper-
spectral image classification. First, we implement a novel
SLIC-based non-local superpixel segmentation to initially
learn the landscape feature. Then, we apply a weighted
spatial-spectral double layer SVM module to initially clas-
sify the image. Simultaneously, we apply this initial clas-
sification map to relearn landscape features, which can
better quantize land-cover composition and spatial informa-
tion. In next step, we put the data of patches with lower
accuracy into M-training algorithm for further classifica-
tion. The proposed framework (LLFSF) flexibly combines
the strengths of weighted spatial-spectral double layer SVM
module and M-training via the classification certainties.
Moreover, LLFSF learns the landscape features via landscape
metrics to quantify both the land-cover composition and spa-
tial configuration and improve the classification model. It has
been shown that the effectiveness of the LLFSF in the dif-
ferent characteristics remote sensing images. Through Multi-
classifier system (M-training) and weighted spatial-spectral
double layer SVM module, LLFSF can also avoid many clas-
sification errors obtained by inaccurate classifiers when given
too few initial labeled samples and limited training samples.
We also learn the spatial features which are derived from
the initial classification map, and the classification result is
gradually optimized and updated according to the feedback
provided by the landscape features and semisupervised learn-
ing algorithms.

The experimental results obtained with Indian pines farm-
land hyperspectral data, Pavia university hyperspectral data
and the center of Pavia city. The different and representative
data sets can sufficiently demonstrate that LLFSF is able to
significantly increase the classification accuracy and substan-
tially reduce labeling cost and computational cost.
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