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ABSTRACT Currently, the non-maximum suppression (NMS) algorithm is a commonly used method in the
post-processing stage of object detection. However, the NMS algorithm cannot effectively eliminate missing
and false object detection results because of the simple constraint condition. To solve the problem of the
poor detection effect in highly overlapping dense object scenes in the traditional NMS algorithm, we design
an RGB-D object detection network model based on the YOLO v3 framework, and using level-by-level
metaphase fusion on the RGB and depth information, we propose an improved NMS algorithm which fuses
depth characteristics. According to the depth of the object in the detection boxes, it is determined whether
another object is the same object in highly overlapping detection boxes, and the average depth of the internal
pixels in the detection boxes is calculated as a penalty term, then the penalty term is added to the detection box
score to obtain a new constraint condition for non-maximum suppression. The experimental results on the
NYU Depth V2 dataset show that the mean average precision (mAP) of the Depth Fusion NMS algorithm
proposed in this paper is 0.8%, 0.5% and 0.3% higher than those of the Greedy-NMS, Soft NMS-L and
Soft NMS-G methods, respectively. After comparison and analysis, our method can not only detect more
overlapping objects but also achieve a better object localization accuracy.

INDEX TERMS Non-maximum suppression, RGB-D object detection, intersection-over-union, detection
boxes, multimodal fusion.

I. INTRODUCTION
Object detection is an important research direction in the field
of computer vision. The process can be understood as visual
algorithm giving the computer a human-like visual recogni-
tion ability to identify object categories and obtain the object
location information in scenes through an image obtained
by a sensor. In recent years, with the rapid development of
deep learning and neural network technology, the research
on object detection has resulted in breakthroughs in the areas
of monitoring security, automatic driving, human-computer
interaction and so on [1]. Object detection algorithms based
on convolutional neural networks can be divided into three
steps [2]: feature learning and object extraction, object clas-
sification and location regression, and non-maximum sup-
pression algorithms to select the optimal detection boxes.
Non-maximum suppression (NMS) in the last step was first
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proposed in the edge detection algorithm, and then further
applied to the fields of object detection, face recognition, etc.
[3], [4]. NMS is an important method for the post-processing
step of a detection model. Current studies mainly focus on
feature learning, feature extraction and classification, but
there has been little improvement in non-maximum suppres-
sion algorithms [5].

With the popularity of consumer-level depth sensors (such
as Kinect), we can easily obtain the depth information of
objects in a scene, which greatly promotes the application
of RGB-D images in related fields such as object detection.
The gray scale value of each pixel in a depth image represents
the distance from the corresponding object in an RGB image
to the camera. References [6]–[9] and other papers have
shown that adding one-dimensional depth information to an
RGB network can effectively avoid the impact of illumina-
tion changes and other factors for object detection results,
which can improve the accuracy and recall rate of detection
model. However, RGB-D object detection methods based on
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convolutional neural networks (CNNs) mostly research the
fusion of RGB and depth features and the network structure.
The traditional NMS algorithm is still used in the network
post-processing stage to select optimal detection boxes by
comparing the prediction score and the size relationship
between the IoU value of overlapping detection boxes and a
given threshold T . However, the selection of the threshold T
is usually determined through experience, which is likely to
cause instability in the system detection accuracy. In view of
the above problems, this paper improves the NMS algorithm
for RGB-D object detection, adjusts the detection box score
by using the depth characteristics of different objects, and
obtains the optimal detection boxes for each object, thereby
effectively reducing the false and missing detection rate of
the detection model. In this paper, we applied the improved
NMS algorithm in the current, popular detection framework
YOLO v3 [10], and the network model was trained and tested
in the challenging RGB-D dataset NYU Depth V2 [11], then
we obtained a high mean average precision (mAP).

II. RELATED WORK
The commonly used non-maximum suppression algorithm is
a greedy strategy. Only single overlapping area information
is used for suppression. To improve the algorithm accuracy
in the post-processing stage of object detection, some
researchers have made corresponding improvements to the
NMS algorithm. In 2015, reference [5] combined the scale
ratio, the detection score ratio and the peripheral window
information in NMS algorithm based on the ACF (aggregate
channel features), which significantly improved the accuracy
of the algorithm but simultaneously increased the time con-
sumption, and the algorithm is only improved for pedestrian
detection, lacking versatility.

In 2016, aiming to solve the problem that the traditional
NMS constraint condition is too simple to eliminate the over-
lapping detection efficiently, Zhang et al. [12] proposed an
improved, simplified non-maximum suppression algorithm,
which added ‘‘completed covered detection suppression’’
and ‘‘PASCAL VOC overlap criterion’’ constraints, which
calculate the coverage ratio of the intersection area to the
selected detection bounding box and the overlap ratio of the
combined area, respectively. The experimental results show
that the improved method can reduce the error and improve
the detection performance, but it still has involves threshold
selection and misses small objects.

An improved NMSmethod was proposed in reference [13]
in 2017. A part of the NMS loss is added to the loss function
of the network according to theNMS location error. TheNMS
loss is similar to the classification loss, and the NMS error can
be continuously reduced by back propagation during network
training. Although the detection accuracy can be improved
in this way, the introduction of the NMS loss function leads
to an increase in the training time of the network, and the
network parameters are redundant, which is not conducive to
lightening the weight of detection model.

In 2018, Qiu et al. [14] determined that the performance of
the NMS algorithm is substantially affected by highly over-
lapping objects, and its localization accuracy only depends on
the highest score detection. Therefore, they proposed an accu-
rate NMS method, which gradually merges highly overlap-
ping detection boxes in an iterative manner, taking advantage
of Regression-NMS [15] and Soft NMS, while eliminating
their disadvantages. The experimental results show that this
method can not only detect more overlapping objects but can
also achieve a better object localization accuracy. In the same
year, Zhao et al. proposed an improved NMS algorithm in
reference [2]. First, according to the IoU value of the detec-
tion box and the preselected detection box, the proportional
penalty factor corresponding to the detection box is calcu-
lated; then detection box confidence score is multiplied by
the proportional penalty factor, and the score of the detection
box is reduced by the proportional penalty factor one by one;
finally, after several iterations, the detection box whose score
is lower than the threshold is removed. Experiments showed
that the improvedNMS algorithm can effectively preserve the
object detection box and remove the false positive detection
box, thus reducing the missing and false detection rate of
the NMS algorithm. Both of these algorithms improve the
detection accuracy in an iterative manner, but the iterative
process not only increases the number of calculations and is
time consuming but also it cannot solve the problem ofmissed
detection of intensive objects with high overlapping.

Although the traditional NMS algorithm is used in the
post-processing stages of popular object detection algorithms
such as SSD [16], Faster R-CNN [17] and YOLO v3 [10]
and achieves a good performance, it is still an obviously
flawed greedy algorithm. This paper aims to improve the
NMS algorithm in a double-channel RGB-D convolutional
neural network by using object depth characteristics, effec-
tively reducing the localization error of the detection box and
decreasing the missing detection rate of highly overlapping
intensive objects, thereby, improving the accuracy of the
detection model.

III. ALGORITHM DESIGN
In this section, we introduce the principle of the traditional
NMS algorithm and explain our improved NMS algorithm
process in detail.

A. TRADITIONAL NMS ALGORITHM
Non-maximum suppression can be understood as a local
maximum search, which has very important applications
in the field of computer vision [18]. In object detection,
the NMS algorithm is often used to extract the prediction
box with the highest score. The process involves extracting
the feature from the sliding window, and after the classifier
recognizes the classification, each detection box receives a
score, but the sliding windowwill yield many detection boxes
containing or mostly intersecting other windows. Then, NMS
is needed to extract the prediction boxes with the highest
scores in the neighborhood (the probability that an object is
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the largest) and suppress the prediction boxes that have other
lower scores. The process of the non-maximum suppression
algorithm is shown in Fig. 1.

FIGURE 1. The diagram of the non-maximum suppression algorithm.

The principle of NMS is not complicated, and mainly
involves calculating the IoU of each overlapping detection
box and comparing it with the threshold T to determine the
final detection box. IoU refers to the ratio of the intersection
and the union for two detection boxes areas (intersection-
over-union), whose formula is described as follows:

IoU =
area(BBi ∩ BBj)
area(BBi ∪ BBj)

(1)

where BBi and BBj are two different detection boxes and
area indicates the detection box area. For the list of all detec-
tion boxes and their corresponding confidence values S, first
select the detection box M with the largest score, remove
it from the collection B and add it to the final detection
resultD, and then calculate the IoU value ofM and remaining
detection boxes in B, which removes the box that is larger
than a certain threshold T to form set B. Repeat this process
until it is empty. The specific steps are described as follows:

1). Sort the scores of all the detection boxes, then select the
highest score and its corresponding box;

2). Scan the remaining detection boxes, if the overlapping
area (IoU) with the current highest score is larger than thresh-
old T, then delete the corresponding box;

3). Continue to select the detection box with the highest
score from the unprocessed detection boxes and repeat the
above process.

B. DEPTH FUSION NMS ALGORITHM
The non-maximum suppression algorithm is used in the post-
processing stage of object detection and plays an important
role in ensuring the accuracy of detection box localization.
However, the traditional NMS has two obvious defects. First,
the selection of the optimal detection box only depends on

the prediction score, which lacks robustness. Second, two
objects that are close together will not be detected at the same
time, as shown in Fig. 2. Aiming to solve the above prob-
lems, we propose an NMS post-processing method based on
depth fusion and the depth characteristics of RGB-D images
to make some corresponding improvements. The goal is to
improve the missing detection rate and localization accuracy
by introducing deep fusion terms.

FIGURE 2. The detection results of ‘‘chair’’ in the NYU Depth V2 dataset:
(a) is the result by traditional NMS (TIoU= 0.6); (b) is the marked ground
truth.

When using RGB-D images for object detection, we take
YOLO v3 and Darknet-53 as the basic framework and net-
work structure of the convolutional neural network, respec-
tively. Inspired by the RGB-D network with level-by-level
feature fusion proposed in [19], we design a double-channel
network structure to extract RGB and depth features in the
early stage, which integrates depth features into the branches
of each scale feature in the middle of the RGB network
to carry out the next forecast classification. Finally, in the
post-processing stage, we propose an improved NMSmethod
based on depth fusion. The overall network model structure
is shown in Fig. 3.

For the feature fusion of RGB-D images, the most con-
venient method is to use the depth image content as the
fourth channel of the RGB image, combine the two types of
images or feature images into a four-channel image format,
and then input them together into the convolutional neural
network for feature extraction and object prediction. Another
method is to extract the RGB and depth features simultane-
ously in two networks, and finally merge the features of the
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FIGURE 3. Structure diagram of the RGB-D object detection network model.

two modes in the fully connected layer. These two methods
are common network structures for RGB-D object detection,
but similar splicing can only learn a simple linear combi-
nation of RGB and depth information but cannot effectively
explore the deeper correlation between the twomodes. There-
fore, the improvement in the detection effect after fusion is
not obvious. In this paper, we propose an improved, two-
channel network structure with level-by-level feature fusion.
The correlation feature between RGB and depth mode is
learned from the semantic feature expression of the middle
layer. We use the RGB channel as the main network, and
the depth network information is merged with the three scale
feature layers of the main network, and the merged fea-
tures are sent to the network branches of different scales for
RGB-D object detection.

The fusion strategy of RGB and depth modes learns
the correlation feature between the two modes by sharing
weights, but the semantic information contained in the input
feature maps XRGB and YDepth is not completely equivalent;
In order to more accurately fuse the two features, we use
the ‘‘concatenate’’ feature fusion mode used in the DenseNet
network [20] to effectively combine the two kinds of informa-
tion. The ‘‘concatenate’’ operation is to extract the features of
multiple convolution kernels or to fuse the information of the
output layer. The fusion here refers to merge the number of
feature channels, which increases the characteristics of the
description image itself, and it is obviously beneficial for the
classification of the final image. In the process of merging
channels, we use the accuracy of the individual detection of
RGB and Depth networks to determine the weight of two
modal information fusion.

Assuming that the inputs of the RGB and depth channels
are x1, x1, · · · xn and y1, y1, · · · yn, respectively, the output of
the combined channel is shown in (2), where α and β are
the fusion weights of the RGB and depth features respec-
tively, Wr and Wd are respectively weights by training two

corresponding networks. ACCrgb and ACCdepth are the accu-
racy of the RGB and depth images detection results, respec-
tively, Zri and Zdi are the i neuron output of RGB and Depth
networks.

Zconcat = [Zri;Zdi] =

[
α

n∑
i=1

xi ∗Wri;β

n∑
i=1

yi ∗Wdi

]
(2)

α

β
=

ACCrgb

ACCdepth
(3)

α + β = 1 (4)

In the Depth Fusion NMS module of Fig. 3, we first
judge the size relationship between the IoU value U of two
overlapping detection boxes and the threshold T ; if U < T ,
the detection box is retained; if U ≥ T , the depth values
of the center pixels of the two detection boxes in the depth
image are compared. If there is a significant difference, then
there are two objects in the two detection boxes. In this case,
the two detection boxes should be preserved. If there is no
significant difference, the objects in the two boxes belong to
the same object. Then, we compare the scores S of the fused
depth information, and the higher score is taken as the optimal
detection box. The formula for S is as follows:

Si = Scorei +
1

ln(Di)
(5)

Di =
1

Mi × Ni

∑
j∈�i

Dj (6)

where Scorei is the score of the ith detection box, Di is the
average gray value of the pixels in the ith detection box and
represents the average depth, andM and N are the width and
height, respectively, of the detection box. We can consider
the depth value of the center pixel of a detection box as the
approximate depth estimation of an object in the box. If the
center pixel depth values of two detection boxes are similar

VOLUME 7, 2019 144137



D. Wang et al.: Improvement of NMS in RGB-D Object Detection

(less than the empirical value), then the objects detected by
the two boxes are the same object. Since the average depth of
pixel is smaller, the proportion of foreground objects in the
detection box is larger, and the localization is more accurate.
Therefore, the optimal solution is determined by combining
the detection box score and the pixel average depth (as shown
in (5)). The pseudocode for its process is described in Table 1.

TABLE 1. Pseudocode of the Depth Fusion NMS algorithm.

IV. EXPERIMENT AND ANALYSIS
A. MODEL TRAINING PROCESS
We used the NYU Depth V2 RGB-D dataset to train the
network and test performance of the improved algorithm.

It is a challenging indoor scene classification database [11]
established by NewYork University’s Silberman et al., which
contains 1,449 images of 464 different scenes, of which
the RGB and depth image resolutions are both 640 × 480.
The dataset has following characteristics: 1. The scene is
photographed by a Microsoft Kinect v2 sensor, and the depth
image is corrected by using a specific correction technique;
2. the shaded area of the depth image is well filtered by
a cross bilateral filter, which can repair the depth image.
3. Adding a three-axis accelerometer to the Kinect camera
eliminates the tilt and sloshing that occurs during sample
collection. Some of the scenes in the dataset are shown
in Fig. 4.

Experiments such as model training, feature fusion, objects
detection and recognition were performed in Python 3.5 and
run on GPU-accelerated drivers equipped with CUDA 9.0.
The specific configuration of the experimental environment
is shown in Table 2.

TABLE 2. Specific configuration of the experimental environment.

This chapter selects 1250 RGB-D images with different
indoor scenes with completed depth from the NYU Depth
V2 dataset, and 14 categories (tv, chair, desk, whiteboard,
door, trash can, people, blackboard, cabinet, lamp, sofa, bed,
phone and toilet) are used for training and testing, including
1000 training sets and 250 test sets. The experiment uses
batch normalization, 64 pictures for training per iteration, and
30200 iterations. In the training stage, we use the stochastic
gradient descent with a momentum term of 0.9. The initial
learning rate of the weight is 0.001, and the decay coefficient
is set to 0.0005. To better observe the training situation and

FIGURE 4. Some of the scenes in the NYU Depth V2 dataset.
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evaluate the model performance, we introduce the loss func-
tion (loss), intersection-over-union (IoU) and recall rate into
the training process, which are visualized in Fig. 5.

FIGURE 5. Changes of indicators during network training. (a) Shows the
average IoU curve; (b) shows the average Recall curve; (c) is the loss
curve for Iteration top 500 batches.

Since the number of iterations is large during the training
process, we can observe the model training clearly after
downsampling. In Fig. 5, (a) and (b) show the average IoU
and recall curves with sampling rates of 0.20% and 0.25%,
respectively, during the whole training process. It can be seen
that both curves are spirally rising during training, and the
IoU curve values are finally stable at approximately 0.85,
the recall curve value eventually stabilizes at 0.94. Figure (c)
shows the loss curve of the top 500 batches of iterations.
It can be seen that the loss value drops rapidly during the first

100 training batches, then the change is extremely slow, and
it finally stabilizes at 0.28.

B. QUALITATIVE ANALYSIS OF THE EXPERIMENTAL
RESULTS
According to the Depth Fusion NMS algorithm proposed in
this paper, 250 test images from the NYU Depth V2 dataset
are detected in the trained fusion network and compared with
the detection results using the traditional NMS algorithm,
as shown in Fig. 6. The (a) rows show the detection result
of the traditional NMS post-processing, and the (b) rows
show the improved post-processing results based on Depth
Fusion NMS.

The experiment sets the IoU threshold T to 0.6 and the
depth error empirical value ε to 3. It can be seen from
Fig. 6 that when there are two objects in the scene with
high overlap, it is difficult to draw a box around the two
objects simultaneously using the traditional NMS algo-
rithm, but the Depth Fusion NMS algorithm can distin-
guish two adjacent objects with different depths. The result
means that the improved NMS algorithm proposed in this
paper can effectively increase the recall rate of the detec-
tion model and improve the localization accuracy of the
system.

C. QUANTITATIVE COMPARISON OF THE NMS
ALGORITHMS
To further verify the performance of the Depth Fusion NMS
algorithm, we compare it with three algorithms on the NYU
Depth V2 dataset: Greedy-NMS, Soft NMS-L [21] and Soft
NMS-G [21]. In addition, we compare the performance of the
four algorithms in the RGB, depth and RGB-D networks. The
IoU threshold T is set to 0.6, and the parameter σ in the Soft
NMS-G algorithm is set to 0.3. We calculate the average pre-
cision (AP/%) and the mean average precision (mAP/%) of
the fourteen kinds categories, we also compared the average
time of different algorithms with different networks, and the
results are shown in Table 3.

As seen from Table 3, the Depth Fusion NMS algorithm
achieves the highest AP in most categories of detection
results, and the mAP is 0.8%, 0.5%, and 0.3% higher than
those of the Greedy-NMS, Soft NMS-L, and Soft NMS-G
algorithms, respectively. In addition, the RGB-D network is
significantly more accurate for object detection than the indi-
vidual RGB and depth networks. And the average detection
time for one image with Depth Fusion NMS algorithm is
0.436s. Because the improved NMS algorithm mainly aims
to increase the recall rate of objects with high overlap and
has little effect on distant objects, so the overall performance
improvement of the detection model does not seem obvious.
To see the recall rate of object detection by the Depth Fusion
NMS algorithm more intuitively, we selected several sets of
scenes with dense objects to compare the detection results of
the four NMS algorithms. As shown in Fig. 7, (a), (b), (c),
and (d) are the results of Greedy-NMS, Soft NMS-L, Soft
NMS-G and Depth Fusion NMS, respectively. Among them,

VOLUME 7, 2019 144139



D. Wang et al.: Improvement of NMS in RGB-D Object Detection

FIGURE 6. Some of the RGB-D object detection results based on the NYU Depth V2 dataset for (a), the traditional NMS algorithm and (b), the Depth
Fusion NMS algorithm.

our method has an obvious detection effect on dense objects
with high overlap (such as chairs and desks), which not only
reduces the missing detection rate but also achieves more
accurate object localization by combining with the average
depth in the detection box.

In addition, we also tested the effect of different ways of
fusing RGB-D information on the results. The Fig. 8 shows
two different fusion modes. Fig. 8 (a) shows prophase fusion,
in which the RGB and depth images are merged into a four-
channel image in the data input stage for feature extraction;
Fig. 8 (b) shows later fusion, in which the two modal fea-
tures are respectively extracted from two convolutional neural
networks and then fused in the final fully connected layer.
The three RGB-D fusion models were tested using the Depth
Fusion NMS algorithm proposed in this paper. Table 4 shows
that the detection results of the mAP (%) for all the class,

among them, ‘‘metaphase fusion’’ is the medium-term, level-
by-level fusion strategy proposed in this paper. We found that
the metaphase RGB-D fusion strategy and the Depth Fusion
NMS algorithm can provide better detection performance
than the other schemes.

To quantitatively evaluate the detection performance of
all the methods under different IoU thresholds, we set the
threshold variation range to 0.3 to 0.9. We obtained the mAP
values of the different methods at each IoU by changing the
threshold size and drew a line graph, as shown in Fig. 9.
Overall, the IoU threshold is larger, the mAP of detection
is smaller, mainly because more overlapping boxes are not
filtered out. When the IoU threshold is low, the performance
difference in the four NMS algorithms is small, but their dif-
ference becomes obvious as the threshold gradually increases
by more than 0.6, and the falling gradient becomes larger
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FIGURE 7. Some of the detection results from the different NMS algorithms on the NYU Depth V2 dataset. (a) the Greedy-NMS results;
(b) the Soft NMS-L results; (c) the Soft NMS-G results; and (d) the Depth Fusion NMS results.

TABLE 3. AP (%) and mAP (%) for all categories achieved by the four algorithms.

when the IoU threshold exceeds 0.7. The results show that
the Depth Fusion NMS algorithm proposed in this paper

has a better object detection performance under a larger IoU
threshold.
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FIGURE 8. Schematic diagram of two RGB-D fusion models: (a) prophase
fusion and (b) later fusion.

FIGURE 9. mAP of all the NMS algorithms under different IoU thresholds.

TABLE 4. mAP(%) of the different fusion strategies for the four NMS
algorithms.

V. CONCLUSION
The post-processing stage is an indispensable step in the
current popular object detection method. As a classic post-
processing method, NMS has the problems of insufficiently
eliminating missed and false detections due to the single
constraint condition and improper IoU threshold selection.
In this paper, based on the advantages of depth images in
RGB-D object detection, we designed an improved NMS

algorithm that depends on depth fusion, which increases
the discrimination condition of objects based on the depth
information. The experimental results based on the NYU
Depth V2 dataset show that compared with Greedy-NMS,
Soft NMS-L and Soft NMS-G, the proposed algorithm a sig-
nificantly improves the detection of dense objects with high
overlap at higher IoU thresholds. It can effectively reduce the
object missing and false detection rate, thereby improving the
accuracy of the RGB-D object detection model.

Like the traditional non-maximum suppression algorithm,
the Depth Fusion NMS algorithm also faces the problem of
IoU threshold selection, and it is difficult to avoid the missed
detection of highly overlapping objects with similar depths.
Therefore, we will continue to research how to simplify the
IoU threshold-setting process of the NMS algorithm and the
missing detection of near-depth objects.
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