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ABSTRACT The differential evolution (DE) optimization algorithm predominantly relies on elite individuals
and random difference to direct evolution. Although the strategy is clear and easy to implement, identifying
a suitable direction for the DE mutation strongly depends on the direction information provided beforehand.
To address this, we present a neighbor-induced mutation operator that simulates the neighbor-induced
movement of Antarctic krill to guide the evolution direction in a natural manner. Additionally, center
dispersion is proposed to disperse the population and redistribute individual positions to escape search
stagnation, inspired by the spreading out of krill around newly discovered food. Comprising the new
operator and the center dispersion pattern, this paper proposes a neighbor-induced DE algorithm with
dispersion pattern (NDEd). The results of the comparative experiments verify the effectiveness of the
neighbor-induced mutation operator and the dispersion pattern. Further, experimental results from 28 test
functions of CEC2013 demonstrate that NDEd performs better compared to the other classic DE algorithms.

INDEX TERMS Neighbor-induced operator, dispersion strategy, krill herd algorithm, differential evolution
algorithm, global optimization.

I. INTRODUCTION
In 1995, Storn and Price proposed the differential evolution
(DE) algorithm [1], a practical, robust, and simple global
optimization algorithm. Since then, DE and its variants have
become some of the most competitive evolutionary com-
puting algorithms. DE algorithms have been successfully
applied in various scientific and engineering fields, such as
mechanical engineering design [2], signal processing [3],
chemical engineering [4], machine intelligence, and pattern
recognition [5].

DE algorithms have exhibited outstanding performance
when dealing with optimization problems. However, they
have problems such as slow convergence speed and suscep-
tibility to local optima [6]. Properly guiding the direction of
evolution may be a key to solving these problems. For exam-
ple, Cai and Wang [7] proposed a DE frame with neighbor-
hood and direction information. However, the frame heavily
depends on the selection of direction information. Although
they combined an adaptive operator selection (AOS) from the
available direction information with their algorithm in their

The associate editor coordinating the review of this manuscript and
approving it for publication was Nishant Unnikrishnan.

subsequent research [8], selecting the most suitable type of
direction information for the specific DE mutation strategy
depends on the classification of the direction information
given beforehand. Thus, it is difficult to implement automatic
selection of the most suitable direction information in prac-
tice.

However, nature provides us withmany inspirations, just as
many bio-inspired algorithms, such as particle swarm opti-
mization (PSO) and ant colony optimization (ACO), derive
their inspiration from nature.

Antarctic krill is well-known for its ability to form large
aggregations among marine animals. A krill herd has a
unique way of transmitting information such as food, move-
ment, or danger from neighbors. Several mathematical mod-
els that evaluate the aggregation mechanisms based on
experimental observations have been developed [9], [10].
Further, Gandomi et al. proposed a krill herd optimization
algorithm [11] that simulates the herding behavior of krill
individuals. This study was conducted with the objective of
establishing a natural rather than artificial means in the DE
algorithm to guide the direction of evolution by simulating
the information transmission mode between krill individuals
in the DE algorithm.
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Our simulation on the transmission of krill information
involves the induction behavior and the dispersion activity
of the krill. Inspired by the former, a novel neighbor-induced
operator is integrated into the DE/current-to-pbest/1/bin strat-
egy to adjust the evolution direction and process, and inspired
by the latter, new individual positions are produced using a
novel type of a dispersion pattern, which refers to the center of
gravity of the population and the current individual positions.

This neighbor-induced mutation operator effectively
guides the evolution of DE by dynamically determining
the range, magnitude, and direction of the influence from
neighbors. Thus, the operator not only retains the advantage
of DE/current-to-pbest/1/bin, but also enhances local search
capability. In addition, with the new dispersion pattern, local
optima near the center of gravity is also avoided through the
redistribution of the position of individuals, thereby promot-
ing the population diversity.

In summary, the neighbor-induced mutation operator and
the dispersion pattern are the main contributions of this paper.
To the best of our knowledge, inspired by krill motion, the
neighbor-induced mutation operator in the DE algorithm is
being presented for the first time.

Furthermore, the neighbor-induced operator and the dis-
persion pattern are combined with an existing parameter
adaptive strategy to form our proposed neighbor-induced
differential evolution with dispersion pattern (NDEd) algo-
rithm. In this study, the NDEd algorithm was compared with
a variety of algorithms on benchmark test functions, with
experimental results showing that it achieves higher search
accuracy.

The remainder of this paper is organized as follows.
Section II reviews the DE algorithm and its related neighbor
strategies and outlines the characteristics of krill movement.
Section III introduces the proposed neighbor-induced oper-
ator and the dispersion strategy. Section IV presents and
analyzes the tests conducted on the effect of the neighbor-
induced operator and the dispersion pattern. In addition,
the comparative algorithm experiments conducted on bench-
mark functions and parameter sensitivity are also discussed.
Finally, Section V presents concluding remarks.

II. RELATED WORK
A. STANDARD DE ALGORITHM
The three evolutionary operators (mutation, crossover, and
selection) adopted by the traditional DE algorithm are the
basis of the algorithm. All independent variables in an opti-
mization problem with D dimensions are expressed as an
individual in the population. Let the ith individual be XGi ,
where XGi = (xGi,1, x

G
i,2, · · · x

G
i,D), i = 1, 2, · · · ,N , and N

is the population size.

1) MUTATION
DE uses mutation operators to generate mutation vectors for
each generation in the population. In general, the conven-
tional DE method is named using the DE/x/y/z format, where

x denotes the target vector selection method in the mutation
operator, y represents the number of difference vector pairs
used to perturb the target vector, and z is the crossover
method. Several commonly used mutation operators are pre-
sented below:

Rand/1:

VG
i = XGr1 + F · (X

G
r2 − X

G
r3)(1) (1)

Current-to-best/1:

VG
i = XGi + F · (X

G
best − X

G
i )+ F · (X

G
r1 − X

G
r2) (2)

Current-to-pbest/1:

VG
i = XGi + F · (X

G
pbest − X

G
i )+ F · (X

G
r1 − X̂

G
r2) (3)

where G denotes the number of generations, VG
i represents

the ith mutation vector at generation G, and XGbest is the best
individual in the current generation; XGr1, X

G
r2, and X

G
r3 are

the individuals randomly selected from the population, and
they are unique and different from the target vector; XGr1
is randomly selected from the current population and X̂Gr2
is the individual randomly selected from the current popu-
lation; XGr1is different from both X̂Gr2 and the target vector;
parameter F is called the mutation factor and is used to
control the degree of mutation. The top 100p%(p ∈ (0, 1])
of the population with the best fitness value are called elite
individuals; XGpbest is randomly selected from the current set
of elite individuals.

2) CROSSOVER
DE uses the crossover operator to generate test vectors
by combining the variables of the target vector and the
mutation vector after the mutation. There are three classi-
cal crossover operators [12]: binomial crossover [13], [14],
exponential crossover [15], and rotation-invariant arithmetic
crossover [16]. The binary crossover operator, which is the
most common, is the one used in this study:

uGi,j =

{
vGi,j, if (randi,j(0, 1) ≤ CR or j = jrand );

xGi,j, otherwise.
(4)

where randi,j(0, 1) is a uniform random number in the range
[0,1] and jrand is a uniform random integer in the range [1, D].

3) SELECTION
The fitness value of the test vector can be obtained after
crossover. Then, the better individual of the target vector XGi
and the trial vectorUG

i will survive in the next generation. The
formulation of the selection operator is as follows:

XG+1i =

{
UG
i , if f (UG

i ) ≤ f (X
G
i );

XGi , otherwise.
(5)

where f (UG
i )and f (X

G
i ) are the objective function values of

the trial vector and the target vector (individual), respectively.
It is worth noting that the trial vectorUG

i is called a successful
update when it is better than or equal to the parent XGi in this
paper.
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B. IMPROVEMENTS TO THE DE ALGORITHM
The current studies on DE focus on improving the muta-
tion strategy [17], [18] and adaptive control of parame-
ters [19], [20], as well as mixing DE algorithms with other
heuristic algorithms [21]–[24]. In addition, the neighbor-
hood concept is used in the DE algorithm because DE is a
population-based stochastic optimization technique and the
interaction between individuals is an important factor to
promote evolution. Various studies have been conducted on
neighborhood strategies to enhance the performance of the
algorithm. The neighborhood strategies are usually divided
into static neighbor strategies and dynamic neighbor strate-
gies [25] according to whether a neighbor changes along with
the search process.

1) STATIC NEIGHBOR STRATEGY
Das et al. [12] used a ring topology to define local and global
vectors and proposed global and local neighbor strategies,
which they combined according to weights to form a mixed
mutation operator. Dorronsoro and Bouvry [26] recom-
mended a decentralized population topology and used differ-
ent decentralized population schemes to propose and analyze
several DE variants. Noroozi et al. [27], Noman and Iba [28],
Dorronsoro and Bouvry [29], and Liao et al. [30] intro-
duced a cell topology that defines the range of neighbor-
hoods and selects parents from neighbors. Liao et al. [31]
used a ring topology to define the neighborhood and grouped
the neighbors to construct a direction vector for mutation.
Weber et al. [32] incorporated a distributed differential evo-
lution structure with multi-scale factor values into the DE
algorithm to improve its distributed performance.

2) DYNAMIC NEIGHBOR STRATEGY
Epitropakis et al. [33] assigned a selection probability that
is inversely proportional to the distance between an indi-
vidual and the mutant individual to each individual in the
selection process to modify the random selection of par-
ents during the mutation. Gong and Cai [34] described a
rank-based mutation operator that selects a part as parents
based on the ranking of fitness values in the current pop-
ulation. Cai et al. References [7] and [8] used neighbors
as a differential term and added adaptive direction infor-
mation to the mutation strategy. Qu et al. [35] proposed a
Euclidean distance-based neighbor-determined method that
generates a mutation vector, and combined it with a vari-
ety of niching DE algorithms to maintain multiple optima.
Gong et al. [36] combined a biogeographic-based migration
operator into DE to guide each individual to learn from
good neighbors based on their mobility. Cai et al. [25] pro-
posed a neighborhood-adaptive DE algorithm in which an
index-based neighborhood topology pool is used to define
multiple neighbor relationships for each individual, and
self-adapting neighborhood relationships can be used in
different evolution stages. Liang et al. [37] introduced the
fitness Euclidean-distance ratio (FER) technique into DE to

locate peaks of functions. This method determines the FER
of the current individual based on the difference between the
fitness values and the reciprocal of the distance.

The means by which information is shared among multiple
populations can also be regarded as another way of sharing
information among neighbors. Cui and Li [58] divided a
parent population into three sub-populations in terms of indi-
vidual fitness and evolved them via different DE strategies.
They also designed an effective adaptive method to adjust
the parameters of the three DE strategies and presented a
replacement strategy to update a few of the worst individuals
in the parent population equivalent to the same number of the
best individuals of the offspring population. Wu et al. [57]
divided the population into three equal-size smaller subpopu-
lations and one much larger subpopulation, with the different
smaller subpopulations using different mutation strategies.
After every certain number of generations, the current best
mutation strategy is then provided to the larger subpopula-
tion. This resulted in better mutation strategies always being
applied in the population. Gao et al. [59] divided the whole
population into many subpopulations based on a clustering
partition that can assign individuals to different promising
subregions.

In summary, several researchers have been focusing on DE
neighbors. However, a method of determining the direction of
evolution based on neighbor interactions is still needed.

C. KRILL HERD SIMULATION
Antarctic krill (Euphausia superba) have been studied exten-
sively among marine organisms, particularly their swarm for-
mation mechanisms [10]. Krill are famous for forming large
swarms with adaptive aggregation advantages [38]. Several
mathematical models that simulate krill swarms in response
to specific biological and environmental processes have been
developed to examine the swarm formation. For example,
Hofmann et al. [9] presented a two-dimensional Lagrangian
particle model to examine the spatial distribution of Antarctic
krill, in which the location of a krill individual is determined
by neighbor-induced movement, foraging activity, and ran-
dom diffusion. The individual movement direction of krill is
modeled by the Lagrangian model as follows:

dXi
dt
= Ni + Fi + Di (6)

where Ni, Fi, and Di represent the three types of activities
of krill individuals: motion induced by the presence of other
individuals, random diffusion, and foraging.

Inspired by these biological simulations, many compu-
tational scientists have developed bio-inspired optimization
methods. For example, on the basis of the Lagrangian
model [9], Gandomi and Alavi developed the krill herd (KH)
algorithm [11] to solve optimization tasks by introducing the
basic frameworks of the model. In their model or algorithm,
density-dependent attraction of krill and finding food are
used as objectives to lead the krill to herd for the global
minima. In this process, an individual krill moves toward the
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best solution when it searches for a food source with the
highest density. Specifically, the closer the distance to the
high density and food, the lower the value of the objective
function.

The KH algorithm has been subsequently developed to
further enhance its performance in recent years. With the
capability of ergodicity and non-repetition, Wang et al.
replaced the original KH algorithm’s random walk with
a chaos sequence to further enhance its global search
ability [39]. Further, Saremi et al. integrated three one-
dimensional chaotic maps (circle, sine, and tent) into the
KH algorithm [40]. Fattahi et al. utilized a fuzzy system
to tune a parameter for setting the participation amount
of exploration and exploitation considering different condi-
tions [41]. Abualigah et al. combined the KH algorithm with
the harmony search (HS) algorithm by adding an improvised
solution of the HS algorithm via a new probability factor
to the KH algorithm to improve its diversification search
ability [42].

III. PROPOSED NEIGHBOR-INDUCED DE WITH
DISPERSION STRATEGY
A. NEIGHBOR-INDUCED MUTATION
DE is a population-based evolution technique.Mutation is the
internal force that produces new individuals in the evolution.
In mutation operators (see (1), (2), or (3)), new vectors are
generated by adding a weighted difference vector between
two individuals to the current individual. However, these
operators do not attach importance to neighborhood effects.
In fact, the information from the neighborhood would influ-
ence the direction and progress of evolution, and always has
an effect on the swarm evolution. Hofmann et al. explained
that the biological attractive force is usually the dominant fac-
tor to form krill swarms, and the density-dependent attraction
of krill is also one of the objectives that lead the krill to search
targets. With the attractive force, the krill individuals always
tend to maintain a high population density and move by the
mutual effects [9]. The krill transmit information through
mutual induction between them, which may be simulated to
compensate for the lack of use of neighbor direction informa-
tion in the DE algorithm.

Next, we propose an induction operator that simulates the
inducedmotion of the krill, apply this operator to themutation
of the DE algorithm, and then discuss the range of induction.

1) NEIGHBOR-INDUCED OPERATOR
The movement induced by other krill is a key factor to decide
the position of a krill in addition to physical diffusion and
foraging motion, and the density-dependent attraction from
different krill individuals directs the krill to search targets.
The krill individuals always tend to move by their mutual
effects and maintain a high population density [9]. In their
reaction-diffusion model, Azzali et al. [43] do not allow the
movement speed of krill individuals to change with the envi-
ronment once the direction is determined. Thus, the step size

and the direction may become the main results of the motion
induced by other krill. Inspired by this motion, the step size
and the direction are regarded as the main factors affecting
the evolution processes in DE. We use the neighbor-induced
operator1Xi to express the induction effect on individual i in
the mutation of DE:

1Xi = δ̄i · di (7)

δ̄i =
1
NP

NP∑
j=1

∥∥Xi − Xj∥∥ (8)

where δ̄i is the average distance from other individuals in the
population to individual i (Xi and Xj are the positions of the
ith and jth individuals); di is the direction of induction effects
on individual i, which is estimated from the local effect and
best effect (see (9)). NP is the total number of individuals in
the population.

The higher the dispersion degree of the population,
the larger is δ̄i. In other words, a higher population dispersion
degree causes the current individual to be induced to move
by the neighbor at a larger step size, which takes charge of
the exploration ability of the algorithm. Conversely, a lower
dispersion degree produces a smaller δ̄i; i.e., the current indi-
vidual requires a smaller step size tomove after being induced
by neighbors. Thus, the meticulous search takes charge of the
exploitation ability of the algorithm. Therefore, the dynamic
step size δ̄i in the neighbor-induced operator contributes to a
good balance between exploration and exploitation.

The induced direction at generation G is represented as
follows:

di = d locali + d targeti (9)

where d locali is the effect from the neighbors, and d targeti is
the target direction effect from the global best individual.
d locali indicates the resultant induced directions by different
neighbors, although neighbors may act as attraction or repul-
sion. d locali and d targeti are expressed as follows:

d locali =

Ni∑
j=1

fi,j · x ij (10)

d targeti = µ · fi,best · x i,best (11)

µ =
FES

max FES
(12)

where Ni is the number of neighbors of individual i, µ is the
coefficient of the effect of the best individual on individual i,
fi,j denotes the relative difference of fitness values between
individuals i and j, and x ij denotes the unit direction vector
from individual i to individual j.

fi,j =
fi − fj

f worst − f best
(13)

x i,j =
Xj − Xi∥∥Xj − Xi∥∥+ ε (14)

where fi represents the fitness of the ith individual, fj is the
fitness of the jth (j = 1, 2, . . . ,Ni, j 6= i) neighbor, and
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f best and f worst are the best and the worst fitness values of
the population so far. In (14), ε is a small positive number
considered to avoid singularities, e.g. ε = 0.01.
The neighbor influences attraction and repulsion. When

fi,j > 0, neighbor j has a smaller fitness value than individ-
ual i, and neighbor j attracts the current individual i to make
it move toward it; when fi,j < 0, the neighbor repels the
current individual i and makes the current individual move
in a direction opposite to that of the neighbor.

2) MUTATION WITH NEIGHBOR-INDUCED OPERATORS
The mutation in DE is represented with DE/current-to-
pbest/1/bin; thus, (3) is modifiedwith neighbor-induced oper-
ator 1Xi as follows:

VG
i = XGi + Fi · ((X

G
pbest − X

G
i )+ (XGr1 − X̂

G
r2))+ ω ·1X

G
i

(15)

The top 100p% of the population with the best fitness value
are called elite individuals and XGpbest is randomly selected
from the current set of elite individuals; Fi is the mutation
factor associated with XGi , and is regenerated at each gen-
eration by the adaptation process as (21); XGi and XGpbest are
selected from the current population; XGr1 is the position of
the individual randomly chosen from the population; and
X̂Gr2 is the position of the individual randomly selected from
the current population and external archives. 1XGi is the
neighbor-induced operator of individual i at generation G.

The mutation with DE/current-to-pbest/1/bin strategy
plays more roles for the need of the exploration in the early
stage of evolution, while neighbor induction is reinforced
gradually as neighbors bring individuals closer to each other.
Thus, ω is designed as a weight to adjust differential muta-
tion with the evolution. Let c = FES/max FES, where
FES represents the current number of fitness evaluations,
and maxFES is the maximum number of fitness evaluations.
Furthermore, let ω = 0.5c, and ω gradually increases from
zero to 0.5c. Therefore, the weight ω on the influence of
neighbors gradually increases with evolution. Thus, ω can
adjust the neighbor influence dynamically with the evolution-
ary process.

3) NEIGHBOR-INDUCED SENSING SCOPE
There is a limit to the range of krill perception. In the
impulsive approach [9], the induction from neighbors takes
effect in a particular direction only when the individual is
inside this range of perception. For the neighbor induction
in our simulation, it is necessary to determine the neighbors
of individual i.

A circle takes XGi as the center and ρi as the neighbor-
induced radius (i.e., sensing distance), and the individuals in
the scope of the circle are all the neighbors of individual i:

ρi =
1

(σ + p)
δ̄i (16)

where p is the percentage of the elite individuals in the
population, and σ is a parameter that limits the size of the

radius. δ̄i is the average distance among the neighbors around
individual i (see (8)), and it is a major reference length to
determine ρi. Thus δ̄i is a component of neighbor-induced
radius ρi of individual i.
The neighbor-induced radius is required to be neither too

large nor too small. At a given p, if the radius ρi is too large,
there may be too many elite individuals in the neighborhood,
resulting in excessive induction, which may reduce the pop-
ulation diversity to a certain extent; on the other hand, if the
radius ρi is too small and there are too few elite individuals in
the neighborhood, the induction effect is weakened. There-
fore, dynamical and self-adaptive change of the induction
radius ρi with p and δ̄i is needed to maintain an appropriate
number of elite individuals in the induction area.

In (15), if σ = 0 and p is very small, the radius ρi becomes
very large. As a result, the current individual’s neighbors
cover almost all the individuals of the population, leading to
loss of the neighborhood effect. Therefore, σ is introduced to
limit the size of the neighbor radius. Our experimental results
have verified that the algorithm achieves the best performance
at σ = 1.2. The sensitivity to parameter p is discussed in
Section IV.

B. DISPERSION STRATEGY
For complex optimization problems, the DE search always
falls into local optima and has difficulty finding a better
position with the population gradually gathering. Inspired by
krill spreading out when new food is found, we introduce
dispersion strategy into the DE algorithm to deal with the
plight of entering a local minimum.

Although the absence of foodmay allow krill to form larger
swarms actively, the swarm disperses into single individuals
or smaller swarms once food is encountered [9], [44]. At this
time, they actively forage for patchy food when the swarm
is dispersed [45]. After feeding, larger swarms are formed to
search for new food. This result is in a cycle: forage – feeding
– forage – feeding. The continuous feeding (meeting food)
in the cycle is similar to reaching different local solutions
in search of a global optimization solution. Thus, the disper-
sion pattern of the krill may be simulated to overcome local
minimum.

1) CENTER DISPERSION PATTERN
The reaction-diffusion model developed by Azzali et al. [43]
assumes that krill individuals move toward the center of a
swarm. Further, for the attractive force in aggregations, Zhou
and Huntley [46] used analogies to Newtonian gravity in
the bio-continuum theory of patch dynamics. For dispersion
pattern, Cui and Li [48] has designed a shift mechanism
(SM) to make the population disperse by shifting some
unpromising solutions to a neighborhood of promising solu-
tions, to jump out of stagnation and premature convergence.
Inspired by these studies, we designed a center dispersion
pattern to acquire new positions (ui, j) for the dispersed pop-
ulation based on the center of gravity xGgravity,j according to
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Newtonian gravity as follows:

uGi,j =


xGgravity, j + rand(0, 1) · (x

G
r1,j − x

G
r2,j)

+0.1 · rand(0, 1), if j ∈ jset ;
xGgravity, j, otherwise.

(17)

where xGr1,j, x
G
r2,j are two randomly selected individual posi-

tions, and xGgravity,j(j = 1, 2, · · · , D) is the center of gravity,
which is described as

xGgravity,j =

NP∑
i=1

1

f Gi
· xGi,j

NP∑
i=1

1

f Gi

(18)

where f Gi is the fitness value of individual i. Additionally,
in (17), jset is a set reserving the randomly selected dimen-
sions to be modified, and the size of jset is randomly selected
from {1, 2, · · · ,D}.

2) INTERVAL DISPERSION PATTERN
The above center dispersion pattern can have some effect on
escaping stagnation, but it is a diverse choice for individuals
to disperse with other patterns. For krill, Hamner et al. [45]
suggested that krill actively feed on patchy food when the
swarm is dispersed, and their distribution is random during
the feeding process. For the kind of random position simu-
lation, [48] gives a stochastic distribution pattern of particles
in the search space as (19), which is considered as another
dispersion pattern in addition to the center dispersion pattern
in this paper.

xGi,j=


xmin
j + rand(0, 1) · (xmax

j − xmin
j )+ 0.1 · rand(0, 1),

if j ∈ jset ;
xGi,j, otherwise.

(19)

The dispersion pattern operates in the interval (xmin
j , xmax

j )
for dimension j; and this pattern updates xGi,j in this interval in
a random way. Thus, we call it the interval dispersion pattern.

3) INTEGRATION OF DISPERSION PATTERNS
The center dispersion pattern and the interval dispersion pat-
tern are both implemented to promote population diversity
from different aspects. The former emphasizes that the loca-
tions of the new individuals are scattered based on the center
of gravity and the measurement between neighbors, whereas
the latter emphasizes that the new locations are randomly
dispersed within the whole region. The significance is that
the interval dispersion can break the premature convergence
in search process, whereas the center dispersion can signif-
icantly promote the population to escape local optima near
the center of gravity. It is better for both paradigms to work
together than to work alone in the creation of diversity.

Premature convergence and stagnation are always present
during the search for a minimum. Usually, stagnation can be

represented by the average distance of all individuals from
the center of the population (the dispersion indicator DP,
see (20)) [47]. The DPG denotes the degree of dispersion
of the population at generation G and is used to reflect the
population diversity.

DPG =
1
NP
·

√√√√√ NP∑
i=1

∥∥∥∥∥∥XGi − 1
NP

NP∑
j=1

XGj

∥∥∥∥∥∥
2

(20)

where NP is the number of individuals in the population.
The value of DPis small (i.e. DP < τ , where τ is a

small positive constant as a threshold for selecting one of
the two dispersion patterns) when the degree of population
dispersion is low. On the contrary, the value of DP is large
(i.e., DP > τ ) when the degree of population dispersion is
high. For the former, the interval dispersion pattern is used
to redistribute the population in the whole search area owing
to a high degree of aggregation. For the latter, the center
dispersion pattern is considered for using the information of
the center of gravity from the current population in a larger
degree of dispersion. Hence, the DP is introduced to choose
the pattern that would work. The dispersion process including
the two patterns is presented as Algorithm 1.

In Algorithm 1, D is the dimension size, FES is the current
number of function evaluations, maxFES is the maximal
number of function evaluations, p is the proportional coeffi-
cient of the elite, and counter(i) is used to record the number
of consecutive unsuccessful updates of individual i.

C. THE FRAMEWORK OF NDEd
We combine DE with the neighbor-induced operator and the
dispersion operator to develop a new DE variant called the
neighbor-induced DE with dispersion (NDEd) algorithm.
The pseudocode ofNDEd is presented inAlgorithm 2, and the
flowchart of NDEd is shown in Fig. 1.

As can be seen from Algorithm 2, NDEd features the
neighbor-induced operator of the population. For each target
individual XGi in the population, neighbor-induced operator
1XGN,i is generated for use in the mutation. Moreover, the dis-
persion process is used to help the search escape from local
minima.

In the original DE algorithm, parameters F and CR have
a significant influence on performance. Moreover, the DE
algorithm has different optimal combinations of F and CR
for different mutation strategies and different test functions.
In order to reduce the sensitivity of the parameters, we inte-
grated an adaptive parameter strategy [49] into NDEd.

Each individual XGi in the population has a corresponding
FGi and CRGi associated with it, and the values of FGi and
CRGi improve as the generation changes; they are generated
from the Cauchy and Gaussian distributions, respectively,
as defined below.

FGi = randc(µGF , 0.1) (21)

CRGi = randn(µGCR, 0.1) (22)
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Algorithm 1 Dispersion Process

input : XGi , NP, D, FES, maxFES, counter(i), p, τ .
output: XG+1i .

1: While FES<maxFES:
2: Calculate DP using (20);
3: if (DP < τ ) // ‘‘Interval Dispersion’’
4: for i from 1 to NP
5: if counter(i) > D and XGi is not the current

best solution
6: Generate XG+1i using (19);
7: counter(i) = 0;
8: Evaluate XG+1i , FES = FES+ 1;
9: end if
10: end for
11: else // ‘‘Center Dispersion’’
12: for i from 1 to NP
13: if counter(i) > D and XGi is not the current

best solution
14: Generate UG

i using (17);
15: Evaluate UG

i , FES = FES+ 1;
16: if UG

i is better than X
G
i

17: XG+1i = UG
i , counter(i) = 0;

18: else
19: XG+1i = XGi ,

counter(i) = counter(i)+ 1;
20: end if
21: end if
22: end for
23: end if
24: end while

where randc( ) and randn( ) denote random sampling from
the Cauchy and Gaussian distributions; µGF and µGCR are
usually taken as 0.5 and FGi ∈ (0, 1], CRGi ∈ [0, 1]. To
prevent FGi from crossing the boundary, FGi is reinitialized
when FGi ≤ 0 and let FGi = 1 when FGi ≥ 1; let CRGi = 1
when CRGi > 1, and let CRGi = 0 when CRGi < 0. Thus,
µGF and µGCR are updated at each generation by the following
formula (all successful FGi and CRGi are stored in sets SF
andSCR in each generation, respectively):

µG+1F =

{
(1− c0) · µGF + c0 · meanWL(SF ), if SF 6= ∅;
(1− c0) · µGF + c0 · rand(0, 1), otherwise.

(23)

µG+1CR =

{
(1− c0) · µGCR + c0 · meanWA(SCR), if SCR 6= ∅;
(1− c0) · µGCR + c0 · rand(0, 1), otherwise.

(24)

where parameter c0 is the learning rate (c0 = 0.1); meanWL
and meanWA represent the weighted Lehmer average and
the weighted arithmetic mean, respectively, and they are

Algorithm 2 NDEd

1: Set population size NP = 200, p = 0.1,
µ0
F = µ

0
CR = 0.5, τ = 0.001 and A = ∅; set

generation G = 0; counter(1:NP) = 0
2: Initialize and evaluate the population;
3: while FES<maxFES
4: for i from 1 to NP
5: FG

i = randc(µG
F , 0.1), CR

G
i = randn(µG

CR, 0.1);
6: Generate 1XGN ,i and V

G
i ((7) and (15));

7: Crossover to generate UG
i using Equ. (4);

8: Evaluate UG
i , FES = FES+ 1;

9: end for
10: Update parameter µ0

F , µ
0
CR ((23) and (24))

11: for i from 1 to NP
12: if f (UG

i ) ≤ f (X
G
i ) //successful update

13: XG+1i = UG
i , counter(i) = 0

14: else //unsuccessful update
15: XG+1i = XGi , X

G
i → A,

counter(i) = counter(i)+ 1;
16: end if
17: end for
18: if |A| > NP //Archive update
19: Randomly delete |A| -NP individuals from A;
20: end if
21: Dispersion using Algorithm 1;
22: G = G+ 1;
23: end while

Output: Best solution

calculated as follows [49]:

meanWL(SF ) =

∑L
k=1 ωk · S

2
F,k∑L

k=1 ωk · SF,k
(25)

meanWA(SCR) =
∑L

k=1
ωkSCR,k (26)

ωk =
1fk∑L
k=11fk

(27)

where 1fk =
∣∣f (UG

k )− f (X
G
k )
∣∣, L = |SF | = |SCR|.

IV. EXPERIMENTAL EVALUATION
In this section, we validated the effectiveness of the neighbor-
induced operator and the center dispersion added to the DE
algorithm. The experiments were based on the CEC2013 [56]
benchmark function set. This set includes various optimiza-
tion functions such as unimodal functions (F1–F5), basic
multimodal functions (F6–F20), and composition functions
(F21–F28).

The performance of different DE algorithms was measured
by the fitness error value, which is defined as f (x) − f (x∗),
where f (x∗) is the global optimal solution of the test function
and f (x) is the smallest error value obtained after 104 × D
function evaluations (FES). The comparison algorithms were
run 51 times independently on each function. As described
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FIGURE 1. The flowchart of NDEd.

in [50], solution error values less than 10−8 are considered
zero. Furthermore, to obtain statistically reasonable conclu-
sions, the error values obtained by different algorithms were
compared according to the Wilcoxon signed rank test, with a
significance level of 0.05. The results are presented in Table 1.
The symbols ‘‘−’’, ‘‘=’’, and ‘‘+’’ respectively indicate that
the performance of the compared algorithms is significantly
worse than, similar to, or better than that of the considered
algorithm. The minimum average error value achieved for
each function is highlighted in bold.

A. EFFECT OF THE NEIGHBOR-INDUCED OPERATOR
The neighbor-induced operator considers the influence of
each neighbor from the traditional DE/current-to-pbest/1/bin
strategy; hence, the individual’s evolutionary direction is
determined by not only the pbest individuals but also the
neighbors. In order to better contrast the role of neighbor-
induced operators, we designed the following two algorithms:
NDE Algorithm: DE algorithm with the neighbored-

induced mutation operator (see (15)). Parameter settings:
NP = 200, p = 0.1, F = 0.7, Cr = 0.5.
DE_pbest Algorithm: DE algorithm with the DE/current-

to-pbest/1/bin mutation strategy. Parameter settings:
NP = 200, p = 0.1, F = 0.7, Cr = 0.5.
Experiment results of NDE andDE_pbest for CEC2013 are

listed at Table 1 (the best results of the algorithms are shown
in bold). From, it can be seen that NDE achieves better
search performance after the neighbor-induced operator is
incorporated into the current-to-pbest/1/bin strategy.

When D = 30, NDE produces results closer to the
theoretical value than DE_pbest for 23 out of 28 test

TABLE 1. Results of NDE and DE_pbest for CEC2013 at
Dimension = 30 and 50.

functions and achieves the same results with DE_pbest for
F1, F5, and F28. Moreover, NDE is significantly better than
DE_pbest for F2, F3, F4, F7, F10, F11, and F27. By con-
trast, NDE produces worse results only for F8 and F21 than
DE_pbest.

When D = 50, NDE produces only one worse result (F21)
than DE_pbest, and two similar results (F1 and F28). For
the other 25 test functions, NDE achieves results closer to
the theoretical value than DE_pbest. Among them, NDE is
significantly better than DE_pbest for F2, F3, F4, F7, F10,
and F27.

The NDE algorithm virtually improve almost all the prob-
lems after adding the neighbor-induced operator. Especially,
this algorithm exhibits obviously better performance on the
unimodal functions (F2, F3, and F4) and simple multimodal
functions (F7 and F10), and it is also excellent on the complex
multimodal function F27. Thus, the neighbor-induced opera-
tor significantly improves the search performance of the DE
algorithm.
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TABLE 2. Parameter settings.

TABLE 3. Comparative results (NDE and NDEd).

B. EFFECT OF THE DISPERSION PATTERN
1) EFFECT OF DISPERSION
The dispersion aims to decrease the likelihood of falling into
local optimums. Comparative tests of NDE and NDEd were
designed to illustrate the dispersion effect using the parameter
settings given in Table 2.
NDE Algorithm: Neighbor-induced differential evolution

without the dispersion strategy.
NDEd Algorithm: Neighbor-induced differential evolution

with the dispersion strategy.
The mean values of the solution error of NDE and NDEd

are listed in Table 3.

When D = 30, NDEd fails on three functions for the
unimodal functions F1–F5 and is the same for two functions,
which indicates that adding the dispersion pattern has a nega-
tive effect on the unimodal function. This may be because the
unimodal function is relatively simple and the performance
of NDE itself is sufficient to overcome the local optimum.
However, NDEd achieves better results than NDE for 12 out
of 15 test functions on the basic multimodal function F6–F20
when D = 30 and D = 50. Furthermore, NDEd performs
better or equal on all the composition functions (F21–F28)
except F21 in the two cases, despite them having complex
mathematical characteristics.

Thus, the dispersion plays a significant role in the
multimodal or composition functions for the effect of the
dispersion pattern, whereas it is not necessary for simple or
unimodal functions.

The shift mechanism is presented in AMECODEs algo-
rithm [48] to allow the population to avoid the situations
of stagnation and premature convergence. The mechanism
is similar to the center dispersion pattern. The difference
between them is that xGgravity,j in (17) is replaced by xGpbest,j,
which is a randomly selected solution from the top elites’
solutions. To compare the effect of the center dispersion
pattern and the shift mechanism, the comparison experiment
between them was done. The test results of CEC2013 of
30- and 50-dimensions problems are listed in the table below.
NDEd Algorithm: Neighbor-induced differential evolution

with the dispersion pattern.
NDEs Algorithm: Neighbor-induced differential evolution

with the shift mechanism. In it, the center dispersion pattern
is replaced with the shift mechanism in the proposed NDEd
algorithm.

We used Wilcoxon’s rank-sum test at the 5% significant
level to analyze the experimental results. In general, 15 results
of NDEd are better than NDEs for the 30-dimensional
problems, and 13 results of NDEd for the 50-dimensional
problems are better than NDEs. Hence, in general, the cen-
ter dispersion pattern has better performance than the shift
mechanism.

2) DISPERSION EFFECT ANALYSIS
The dispersion indicator (DP) represents the average distance
of all individuals from the center of the population (see (20)),
and the success rate of the population (SR) represents the
percentage of individuals that are better than the parents
within the population of the current generation (see (28)) [47].

SRG =
NG
S

NP
(28)

where SRG denotes the success rate at generation G, and NG
S

is the number of individuals that are better than the parents of
the current generation G.

The two indicators are often used to define whether the
population is correctly converged [48], [51]. For example,
in Fig. 2a, DP gradually decreases to zero but SR remains
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FIGURE 2. Determination of whether the convergence is correct by DP and SR.

FIGURE 3. DP and SR curves for NDEd and NDE.

at a stable high level with the evolution deepening, which is
a correct convergence.

Furthermore, DP and SR can also be used to express
premature convergence and stagnation. In Fig. 2b, DP is
close to zero but SR is also almost zero in the early stages
of population evolution; this case is called premature con-
vergence. In Fig. 2c, SR always approaches zero and DP
is always higher than zero after a short evolution, which
indicates that the population neither finds a better offspring

nor converges further, which is called stagnation. (The results
in Fig. 2 comes from tests of functions F1, F8, and F19
(D = 30) in the CEC2013 test function with the basic DE
(DE/rand/1/bin, NP = 100, F = 0.5, CR = 0.9)).
Six selected functions (D = 30) from CEC2013 were cal-

culated by NDE and NDEd, respectively. Fig. 3 depicts their
behavior for NDE and NDEd by DP and SR with changes in
FES. From the figure, we can analyze the ability of NDEd and
NDE in overcoming stagnation and premature convergence.
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TABLE 4. Comparative results (NDEs and NDEd).

For the DP and SR graphs of F2 and F5 in Fig. 3, NDE
achieves the correct convergence and NDEd also maintains
a similar change curve, indicating that there is no significant
performance difference on a simple function for the two algo-
rithms. However, NDEd gets the population out of stagna-
tion more efficiently. Taking F23 as an example, when the
NDE’s SR approaches zero, the population diversity DP is
always close to zero, which indicates that the NDE is in
stagnation. By contrast, SRmaintains a state higher than zero,
although DP gradually approaches zero in NDEd, meaning
that NDEd can get the population out of stagnation. The same
thing happens in other functions (F15, F18, and F19).

NDEd gets the population out of premature convergence
more efficiently. For NDE, DP and SR rapidly move to zero
on F15, F18, and F19, suggesting that the population gets
into premature convergence. In contrast, for NDEd on F15,
F18, and F19, SR remains higher than zero, although DP
is close to zero, which indicates that NDEd can make the

TABLE 5. Parameter settings for the five compared DE variants.

population escape premature convergence. Hence, we assert
that dispersion may effectively promote the convergence of
NDEd and get rid of stagnation and premature convergence.

C. COMPARISON OF NDED WITH STATE-OF-THE-ART
DE VARIANTS
In order to verify the performance of the NDEd, we compared
it with the following five state-of-the-art DE variants:
JADE [52], CoDE [53], SaDE [54], SHADE [49], and
PALMDE [55]. JADE has adaptive control parameters, SaDE
can adaptively adjust the mutation strategy and adaptive
parameter update mechanism, CoDE is a composite DE
with multiple mutation strategies and control parameters,
SHADE is a superior DE variant with adaptive parameters
and improved external archiving, and PALMDE improves
JADE’s external archiving update strategy by adopting a new
parameter adaptation strategy and a linear population reduc-
tion strategy. The parameter settings of JADE, CoDE, SaDE,
SHADE, and PALMDE were the same as in their original
papers. Table 5 lists the parameter settings of the five DE
algorithms.

The maximum number of FES was set to 10,000 × D
in the various cases. The mean and standard deviation
of the error values on the 30, 50, and 100-dimensional
CEC2013 [56] benchmark functions are listed in
Tables 6, 7, and 8, respectively.

1) EXPERIMENTS ON 30-DIMENSIONAL FUNCTIONS
The experimental results for 30-dimensional CEC2013 func-
tions are listed in Table 6.

For the unimodal functions F1–F5, NDEd shows signifi-
cantly better performance than all other DE variants except
PALMDE when D = 30. Compared with JADE and SaDE,
NDEd wins three functions (F2, F3, and F4) and reaches
the same result for the two other functions (F1 and F5).
Compared with CoDE, NDEd fails only on F4. Nonetheless,
NDEd shows better or similar performance on the other four
functions.

For most of the basic multimodal functions F6–F20, NDEd
achieves the best performance. NDEd outperforms JADE,
SaDE, PALMDE, CoDE, and SHADE in 10 out of 15 cases
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TABLE 6. Results from different DE variants (Dimensions = 30).
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TABLE 7. Results from different DE variants (Dimensions = 50).
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TABLE 8. Results from different DE variants (dimensions = 100).
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FIGURE 4. Boxplots of NDEd with different p values on representative functions (D = 30).

(F6, F7, F9, F11, F12, F13, F15, and F18–F20). Moreover,
NDEd has much smaller error values than the competitors
on F12, F13, and F18. Compositional functions F21–F28
with complex mathematical characteristics are very diffi-
cult to optimize. However, NDEd defeats JADE, SaDE,
PALMDE, CoDE, and SHADE in seven (F21 and F23–F28),
six (F21 and F23–F27), three (F22–F24), seven (F21 and
F23–F28), and seven (F21 and F23–F28) functions, respec-
tively. Furthermore, NDEd only loses to JADE, SaDE, CoDE,
and SHADE in F22, and PALMDE in F25– F27, respectively.
Thus, NDEd performs best for the 30-dimensional functions.

2) EXPERIMENTS ON 50- AND 100-DIMENSIONAL
FUNCTIONS
To further study the performance of NDEd on higher-
dimensional functions, NDEd was also compared with
the 50- and 100-dimensional functions of the CEC2013.
The experimental results are listed in Table 7 and
Table 8.

The experimental results for the 50-dimensional function
are listed in Table 7. With pairwise comparison, the winning
percentage of NDEd is significantly greater than that of other
algorithms. NDEd defeats JADE, SaDE, PALMDE, CoDE,
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FIGURE 5. Boxplots of NDEd with different p values on representative functions (D = 50).

and SHADE on 18, 22, 14, 20 and 17 out of 28 functions
while it fails to win on 5, 3, 9, 6, and 8 out of 28 functions,
respectively.

The experimental results of the 100-dimensional function
are listed in Table 8. Compared with JADE, SaDE, PALMDE,
CoDE, and SHADE in pairs, NDEd achieves better results
in 18, 22, 16, 20, and 19 out of 28 functions and worse in 4, 3,
8, 6, and 6 out of 28 functions, respectively. The performance
of NDEd for 100-dimensional functions is better than that for
50-dimensional functions.

Table 9 summarizes the overall statistical comparisons
with these algorithms on the 30-, 50-, and100-dimensional
functions. Table 10 gives the overall performance ranking of
all algorithms on the 30-, 50-, and100-dimensional functions
with the Friedman test. As the table shows, NDEd gives the
minimum ranking (2.35). Hence, NDEd is more competitive
than other algorithms and achieves the overall better perfor-
mance than any one of these famous algorithms in the three
different dimensions, although NDEd does not obtain the best
solution on each function.
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FIGURE 6. Convergence curves of the mean error on various selected functions (D = 30).

D. PARAMETER SENSITIVITY
1) PROPORTION OF ELITE INDIVIDUALS
Parameter p is the proportion of elite individuals in the popu-
lation (p ∈ (0, 1)) and controls the number of elite individuals
used by neighbors in evolution in NDEd. The population

is guided by more elites as p increases according to (15),
while each individual’s neighbor radius and the number of
neighbors is reduced. Therefore, parameter p significantly
influences the diversity of the population in the evolution
process, which has a great influence on the performance of
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FIGURE 7. Convergence curves of the mean error on various selected functions (D = 50).

NDEd. In order to find a general value for p, we tested 12 rep-
resentative functions of CEC2013 by NDEd with various p
values (p = 0.02, 0.05, 0.1, 0.2, and 0.3) when D = 30 and
D = 50. The other parameters remained the same as those
listed in Table 2. The box plots of the experimental results at
D = 30 and D = 50 are shown in Figs. 4 and 5, respectively.

As shown in Fig. 4, p has a similar effect on the quality of
the NDEd solution in most cases when D = 30, i.e., functions
is not sensitive to p when D = 30. As shown in Fig. 5,
when D = 50, except for F21, p does not have a significant
influence on the performance of NDEd. In F21, the result is
more stable when p = 0.3. Overall, in most cases, NDEd
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TABLE 9. Statistical comparison of different algorithms with NDEd.

TABLE 10. Overall performance ranking of the compared DE variants on
the 30-, 50-, and 100-dimensional CEC2013 benchmarks set by the
Friedman’s test.

produces stable results at p = 0.1, which may be used as a
general parameter value for the NDEd algorithm.

2) POPULATION SIZE
To determine the effect of the population size NP on NDEd,
we tested 12 representative functions of CEC2013 using
the NDEd algorithm with different NP values (specifically,
NP = 50, 100, 200, and 300) when D = 30 and D = 50.
Other parameters remained the same as those listed in Table 2.
The convergence curves of the function’s average error are
shown in Figs. 6 and 7.

As shown in Fig. 6 (D = 30), NP has no significant effect
on the performance of NDEd in most cases (F1, F9, F10, F12,
F17, F19, and F21). However, NP = 50 and NP = 100 have
slightly faster convergence speed. In terms of the capability
to find the global optimal solution, NP = 200 is the strongest.
In the case of D = 50 (Fig. 7), the performance of NDEd

is insensitive to NP for some functions (e.g., F1, F2, F6, F10,
F17, F19, and F21). In general, NP is not sensitive for most
functions, and NP = 100–200 is more suitable for most cases
considering the overall performance of all test functions.

V. CONCLUSION
In this paper, we proposed a novel neighbor-inducedmutation
operator to improve the global optimization ability of the DE
algorithm. The use of this operator enables the individuals
to evolve with the guidance of not only the elite individuals
and the stochastic difference but also the induced information
from neighbors. This makes the population less likely to be
misled by the local optimal solutions to non-promising areas.

To re-distribute a population, the center dispersion pattern
presented in this paper can be seen as a complement to the
traditional population distribution methods when the search
falls into premature convergence.

The test results show that the proposed algorithm with the
new operator and pattern produces superior solutions than
the traditional DE algorithm. Further, the performance of the
algorithm is superior to that of the classic and advanced DE
algorithm variants. Moreover, the sensitivity test of the key
parameters demonstrates that the proposed algorithm has low
parameter dependence.

In summary, through the simulation of the movement of
krill herd in the optimization process, inspiration derived
from nature can definitely provide us with numerous advan-
tages.

As future work, multiple elites corresponding to different
ways of choosing neighbors and maintaining a better balance
between the neighbor and elite guidance can be investigated.
The proposed algorithm can therefore be used to verify the
effectiveness of engineering optimization problems in real
world scenarios.
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