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ABSTRACT The abundance of event data in current software configuration management systems makes
it possible to discover software process models automatically by using actual observed behavior. However,
traditional process mining algorithms cannot be applied to event logs recorded in software configuration
management (SCM) systems, such as SVN, because of missing activity attributes. To address this problem,
a software process activity classifier is proposed to build event-activity mapping relationships from software
development event streams, revealing activity attributes and associating the activity to the original SVN log.
The proposed approach extracts activity from the SVN log based on semantic features and introduces a
novel technique based on a naive Bayes approach to associate event activities dynamically. The approach
has been applied to two real-world software development process logs, ArgoUML and jEdit, consisting of
more than 80,000 events, covering development information from 1998 to 2015. With the application of our
approach to such data, activities can be extracted from event logs and a classifier can be constructed for
adding activity attributes to new events. The results of the classification are evaluated in terms of precision
rate, recall rate, and the F-measure. Overall, two real-world software development process logs are used to
validate the method, and the experimental results show that the approach can mine software process activities
from SVN log events automatically and in real-time.

INDEX TERMS Activity classifier, machine learning, software process activity, SVN log.

I. INTRODUCTION
Nowadays, it is widely accepted that the quality of software is
not only related to the product, but to the organization and to
the production process that is carried out [1]–[3]. Software
process modeling helps to create process descriptions that
correspond to processes actually performed during software
development or maintenance. Process models can be used to
visualize tacit knowledge, roles, and information flows in the
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processes, identifying points for improvement and optimiza-
tion [4], [5].

However, with the deepening of research on software
development, problems associated with traditional subjec-
tive modeling methods have become apparent. These arise
because the task of designing a software process model is
complex and error prone, and because the life cycle of the
model is short, individuals are not sensitive to differences
between actual processes and the process model, and there
are increasing requirements for process engineers, all while
the software process is still evolving [6]–[8]. As software
systems become more and more complex, the establishment
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of a sound process model is becoming more like ‘‘an art
rather than a science’’ [9]. Therefore, current modeling meth-
ods cannot effectively meet the needs of modern software
engineering [10]. In the era of big data, how to automat-
ically extract a process model from the massive process
data generated by existing software development organi-
zations has become a focus of current software process
research.

To automatically extract process models from software
development log systems, some software process mining
methods [6], [11]–[14] have been proposed. However, these
works simply attempt to apply the traditional business pro-
cess mining approach [15] to the software process domain,
but ignore the structure of software development logs,
which are significantly different from the business pro-
cess. The most significant difference is the lack of activ-
ity attributes; this problem can be solved using an activity
classifier.

Activity extraction (discovery) in software process min-
ing is analogous to classification in data mining and it is
essentially a mapping problem. This mapping is between
log events and SPAs (Software Process Activities) based on
their associations. However, although activity extraction is
very important for software process mining, little attention
has been paid to build appropriate SPAs classifiers. Aalst [9]
proposed a classifier that is commonly used in the field
of process mining, in which activity is determined by its
attributes. This classifier is widely used in business process
research, but it cannot be applied to software processes that
only have a single case. Yang et al. [16] proposed a business
process mining method appropriate for a range of diverse
environments, and which classified logs based on domain
knowledge. However, it focused on the classification of busi-
ness process logs based on cases and subdivided logs into
sub-logs based on case classification. Therefore, it would not
be suitable for software process mining. Rubin et al. [6] pro-
posed an activities-extraction method by filtering keywords
in paths. This method can rapidly generate mapping results
but is not very accurate and the activity discovery is granular.
Rui et al. [17] proposed an activities-mapping method based
on entropy, and which can extract activities chronologically.
However, there is no comparison test, no consideration of
semantic information in the event log, and no specific criteria
for determining the optimal number of clusters. In traditional
process mining, the process consists of cases and cases con-
sist of events that are ordered in time and have attributes such
as activities, timestamps, and so on [9]. However, software
process mining depends on the software process log, which
has only one case, and there are no activities in the events of
the case. This study uses events in the software development
process log as the research object to investigate the feasibility
of extracting activities based on the log. The purpose of this
research is to improve existing methods of activity mining,
to improve the efficiency and accuracy of activity mining,
and to further discover software process models from devel-
opment events.

The main contributions of this study are as follows:
(1) We proposed K-means clustering, building on

Word2Vec vectorization, to address the problem of a lack of
initial activity labeling in software process logs. This enables
the creation of initial labels, where those whose semantic
information is similar are situated close together and labels
whose semantic information is different are far apart.

(2) We combine supervised learning with unsupervised
learning to solve the problem of a lack of activity information
in software process log events and effectively classify these
activities.

(3) In unsupervised learning, we propose a method to
determine the optimal number of clusters by taking the sec-
ond derivative, and introducing a method of calculating a
plurality of harmonic averages for accuracy and a recall rate
for assessing the classifier. An evaluation of the classifier is
implemented so that the results are more objective.

The remainder of this article is organized as follows.
Section II discusses the background and some prelimi-

naries. Section III presents the general framework of the
paper. Section IV proposes themethod to extract activity from
SVN logs based on semantic features. Section V establishes
a dynamic incremental method of event-activity mapping
based on a naive Bayes classifier. Section VI presents the
experimental results ofmining two real software development
logs. Finally, the conclusions and future work are described
in Section VII.

II. BACKGROUND
The software process refers to a series of activities to
develop and maintain software products. The attributes of
each activity involve relating products (artifacts), resources
(people or other resources), organizational structure, and
constraints [18]. Research on traditional software processes
is divided into two categories: (1) process evaluation and
improvement, represented by Capability Maturity Model
Integration (CMMI) [19], [20]; and (2) software process
modeling [21], [22], which abstracts the software processes
through specific methods to increase understanding of the
software development process and is used to guide the activ-
ities of software development [23].

The Software Process Model is also known as the software
life cycle or software development model; it describes how
various activities in the software process are executed and it
also forms a structural framework for the whole process. The
software process model establishes the order and boundaries
of each stage of software development, as well as the activ-
ities of each stage, which can intuitively express the whole
process of software development, define the main activities
and tasks to be completed, and serve as the basis for project
implementation [24].

Software process activities (SPAs) represent the behavioral
information of the software development process, where sim-
ilar behavior is represented as a kind of activity. Activity data
is necessary for software process mining [12], [25]. By using
the process mining algorithm, a sequence composed of
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activities is divided into cases and then the model is mined.
The ultimate goal is to rapidly extract a simple, reasonable,
and high-quality process model to support software develop-
ment activities.

Software ProcessMining [12], [13], [17] refers to revealing
the software process model automatically using data from the
software process itself in order to help software engineers
better identify, understand, analyze, and optimize software
development and to ultimately improve the quality of soft-
ware products.

In software process mining, software process data is the
foundation of mining. It is generated by activities such
as software development, evolution, maintenance, and test-
ing [26]. The management system for maintaining these
data includes the software configuration management system
(SCM), project management software (PMS), defect tracking
system (DTS), etc. In addition to managing the documen-
tation, these systems can also collect and store behavioral
information about software processes, such as who created it,
accessed or changed the documents, and the time that tasks
were submitted and completed [6].

A software process event log is a two-dimensional table
that is used in process mining to describe the information in
the event log. The event log is the beginning of the process
mining. A traditional event log is defined as follows.
Definition 1 [Event, Attribute [9]]: ξ represents the event

space, which is the collection of all possible event identifiers.
Events are described by attributes, where AN is a collection
of attribute names. For any event e ∈ ξ , the attribute name an
∈ AN, #an(e) represents the value of attribute an for event e.
If event e does not contain any attribute names, then #an(e) =
⊥(null).
Definition 2 [Case, Trace, Event Log [9]]: ζ represents

the case space, which is the collection of all possible case
identifiers. The case is related to events and has attributes in
which the trace is a special mandatory attribute of the case,
expressed as #trace(c) ∈ ξ∗. A trace is a finite sequence of
events, denoted by σ , σ ∈ ξ∗. An event log is a collection of
cases, denoted as L, L ⊆ ζ .
On the basis of the traditional event log, the definition of

the software development process event log is given below.
Definition 3 [Software Development Process Event,

Attribute [17]]: ξ is the event space of the software devel-
opment process; that is, the collection of all possible event
identifiers. Events are described by attributes, whereAN is the
collection of attribute names. For any event le ∈ ξ , attribute
name an ∈ AN, #an(le) represents the value of attribute an of
event le. If event le does not contain any attribute names, then
#an(le) = ⊥(null).
Definition 4 [Software Development Process Trace, Soft-

ware Development Process Log [17]]: Let A be a set of
activities, then a sequence σ ∈ A∗ is a trace of the software
development process andL ∈ P(A∗) is a software develop-
ment process log, where P(A∗) is a power set of A∗.
The attributes of software development process events are

abstracted from the process data and the determination of the

attribute is dependent on whether it can effectively support
the subsequent mining work. This article defines the attribute
set AN = {id, date, paths, msg} of software development
process event le. The id attribute is the unique identifier of
the event, and the date attribute specifies the moment when
the event occurs. The paths attribute specifies which files are
affected by the development activity and themsg attribute is a
description of the event. These attributes can be nested, such
as the paths attribute which is composed of multiple path
attributes, and the path is composed of action and address,
in which action indicates file operations such as the creation,
deletion, or modification of a file. The address attribute is a
specific path.

The software development process log L is simply referred
to as the process log and the software development process
trace σ can simply be referred to as the process trace. The
definition is defined from the point of view of the activity,
while in reality there is no activity and case information in
the process data, only events. The event log contains a lot
of information about the whole event, but in the theoretical
aspect of process mining, most of the time we are only
concerned with the name of the activity, case, event, and so
on. Therefore, in order to simplify the event log, the concept
of a simple event log is given below.
Definition 5 [Simple Process Log [17]]:A simple develop-

ment process log L is a collection of traces that is defined as
a multiple set of traces on A; that is, L ∈ B(A∗). For example,
L1 = [< a, b, c, d >4, < a, e, f , g >8, < a, e, d >], from
which it can be seen that the simple process log L1 contains
13 traces, of which trace < a, b, c, d > occurs four times,
trace < a, e, f , g > occurs eight times, and trace < a, e, d >
occurs once. In the simple process log, there are no attributes,
time stamps, or resource information, and the order of events
from left to right represents the order in which the events
occurred.
Definition 6 [Association Between Event and Activ-

ity [17]]: In process mining, processes are composed of activ-
ities and activities consist of tasks. A log is a record or a true
reflection of a set of tasks and is also a collection of multiple
event traces. Here, a case is an event trace that manifests itself
as a form of trace consisting of activities, such as < a, b,
c, d >. The relationship between activities and events is a
mapping relationship. The association between event le and
activity a is record leRa, which is a subset of cartesian set
E × A in event log spaces E and A among software activity
sets; that is, leRa ∈ {<le, a > |le ∈ E ∧ a ∈ A}, and the
correlation function R(le) = a.
Definition 7 [Activity Classifier) [17]]: Let L be a process

log, A is a collection of activities on L. The correlation
between process events and activities is R, then the event
sequence <le1, le2, . . ., len > is transformed into a trace
where σ =< R(le1), R(le2), . . . ,R(len) >. For example,
suppose that there are event sequences<le1, le2, le3, le4, le5,
le6, le7 >; among them, {le1, le2, le3} Ra, le4Rb, {le5, le6}
Rc, le7Rd. The event sequence can be transformed into trace
< a, b, c, d > by the activity classifier.
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FIGURE 1. Flow diagram of activity mapping.

III. GENERAL FRAMEWORK
There is only one case in the software process log and there
are no activities in the events contained in the case, and this
is an important reason for why we cannot directly apply
business processmining algorithms. Therefore, it is necessary
to extract activities from the case and classify them to carry
out subsequent software process mining. The events of the
software process log are contained within implicit semantic
information; we do not knowwhat each event did directly, but
we can find out which events are doing similar or different
things. Based on this idea, this study conducted activity dis-
covery and classification on the software process logs using
the techniques of clustering and classification. The overall
flow of this method is divided into three main parts (Fig. 1).

Firstly, software development process events are vector-
ized. The vectors can be used to compute the similarity
between events. We preprocess the software log to extract the
path andmsg attributes of each event. Then we organize these
attributes using natural language processing. The preprocess-
ing includes the removal of noise, extraction of word stems
and selection of speech. Then, we process the structured data
to obtain a corpus to complete the vectorization of data based
on semantic features. In natural language processing, word
vectorization is a way to create a vocabulary library where
every word in the sequence is numbered. In practical appli-
cation, sparse coding is widely used, based on the number
of words. One of the biggest problems for this method of
representation is that it cannot capture the similarity between
words, it ignores the semantic relevance of words and it is
prone to dimensionality problems. To address this problem,
this study, inspired by theDistributed representationmethod,
maps every word onto a K -dimensional real number vector
by training (K is generally a hyper-parameter in the model),
and the semantic similarity between words is represented by
the distance between them. We use the Word2Vec model for
this task. Word2Vec is an open source tool, developed by
Google, that obtains word vectors by training on a corpus
and then evaluates them [23]. The word vector obtained
by training the Word2Vec model contains semantic informa-
tion, retains semantic similarity between words, and over-
comes the problem that traditional text-feature-representation
methods do not represent semantic information and context.

In Word2Vec, the degree of similarity between word vectors
is found by computing a distance, which represents the simi-
larity between words.

Secondly, the K-means approach is used to cluster events
as activities based on parts of datasets and then use these
labeled datasets to train the Activity Classifier. We clus-
ter the vectored data based on the distance between them
and determine the optimal number of clusters by quadratic
differential derivation. After training, we extract the most
relevant events by clustering, using semantic mapping, and
then relate them to the same activity. By extracting activities
in this way, it is possible to represent the internal cohesion
of events in the software process log and so discover the
relationship between each event and activity. The K-means
algorithm is a widely used clustering algorithm that expresses
classes of centroids and clusters by digital attributes. The
K-means is an iterative process, which first selects k objects
in the data space as initial cluster centers, where each object
represents one class center [27]. For other data objects, the
K-means algorithm calculates the Euclidean distance
between them and the cluster center, then assigns them to the
most similar cluster center according to their distance from it.
Next, it calculates the average value of all the objects in each
class as a new clustering center and then calculates the sum of
squares distance from all the data to their cluster center until
the clustering center and the sum of squares distance does not
change. The clustering process is complete when the sum of
squares of distance is minimized.

In K-means clustering, it is necessary to define the number
of cluster categories beforehand and the choice has a signifi-
cant effect on the results. We can set a reasonable range of
clusters by comparing the clustering results and then base
subsequent work on those results. Since software process logs
are constantly updated, a lot of new event data is added after
the relationship between events and activities has been found.
To associate events in the new software process log with
activities, we can construct an activity classifier and predict
the activity class of the new data by using data in the training
set.

Thirdly, the trained Activity Classifier is used to discover
the activities from the new data based on a naive Bayes
approach, thereby achieving a dynamic incremental method
of event-activity mapping. The clustering results are obtained
as the training sample to construct the classifier and complete
themapping between activities and classes. The classification
is divided into four stages; namely, preparation, training,
application, and evaluation.

IV. ACTIVITY EXTRACTION FROM THE SVN LOG BASED
ON SEMANTIC FEATURES
A. VECTORIZATION OF THE SVN LOG
SVN (Subversion) is a common software configuration man-
agement (SCM) system whose log is a record of software
development activities. The SVN log can be used to ana-
lyze and mine the software development process. It can be
exported as an XML document. The SVN log is composed of
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FIGURE 2. Tree structure of an SVN log.

entries in the log and each entry represents an event. These
records hold the version (Revision), the author (Author),
the date (Date), the path (Path), and the behavior (Msg). They
can be represented as a tree structure, as shown in Fig. 2.

The record of events in the SVN log does not contain
any case information and does not have any associated
activity information. The structural comparison between the
traditional event log and the SVN log data is shown in
Fig. 3.

The information we use for event mining is presented as
text in the SVN log; the natural language information in the
text cannot be used for mining activities directly. Text must
be converted for machine processing. The software process
log has only one case, and the case information is presented
as natural language text. Unstructured data is a common
format for storing information in natural language processing.
This study first realizes the conversion from unstructured to
structured text. The significance of preprocessing is that noise
can be removed, and the textual data can be structured to
represent semantic information more effectively. The tradi-
tional method of text processing is to quantify words to create
a thesaurus, but this ignores the semantic information and
context; thus, it does not convey the meaning of words. If we
cannot reflect the word meaning, natural language processing
becomes purely statistical. The Word2Vec1 open source tool
can learn high-dimensional word vectors from a large corpus
and has been used to represent linear semantic relationships
amongword vectors. In this study,Paths andMsg information
are extracted from the SVN log and vectorized. The result
of the quantification will be used as input to the clustering
activities to further study the effect of clustering based on
semantic relationships in activity mining. This study uses
the skip_gram training framework, which has three layers:
the input layer, the projection layer, and the output layer,
as showed in Fig. 4.

For the training samples, we predict the contextual infor-
mation of the word based on knowledge of the current word.
First, the word vector corresponding to the current word w is
input, and the word vector corresponding to the current word
is projected. A binary frequency tree is constructed using the
word frequency of the corpus where the word is located as
the weight, and the leaf node corresponds to the word in the
vocabulary. Suppose the number of leaf nodes is N and the

1https://code.google.com/archive/p/word2vec/

FIGURE 3. Comparison of structures for traditional event logs and SVN
log data.

FIGURE 4. Framework for Skip_gram training.

number of non-leaf nodes is N -1. For the sample [w, context
(w)], when its context word w′ = w, the tag is set to 1, oth-
erwise the tag is set to 0. The word vectors in the vocabulary
and auxiliary vectors corresponding to the output non-leaf
nodes are taken as training parameters. Finally, we output the
corresponding vector of leaf nodes and the auxiliary vector
corresponding to non-leaf nodes.

B. ACTIVITY CLUSTERING BASED ON K-MEANS
After the case text is structured, this paper uses K-means
clustering of the word vectors with the semantic features
contained in the event information obtained by theWord2Vec
method to complete the clustering of the texts of each event
in the case and then obtains categories. The labels serve
as the training set for the activity classifier. Here, we use
the K-means clustering algorithm to cluster log activities as
follows.

First, the eigenvectors of k structured log text messages
are randomly assigned as the initial vector coordinates of
k centroids. Then, the sequence number and representation
vectors of short text Mi are extracted from the structured log
information M = {M1, M2, . . .Mn}. Next, we calculate the
distance from Mi to the k centroids and select the center of
mass nearest to the centroid. Finally, we output the sequence
number of the cluster center and representation of vectorsMi.
It can be seen from the above steps that the number of
K-means clusters directly affects the results and they are
not consistent owing to the random element in the initial
centroid determination process. Therefore, this study presents
a method of determining the optimal number of activities
based on a quadratic differential.
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C. DETERMINING THE OPTIMAL NUMBER OF ACTIVITIES
As the number of clusters affects the results and the value of
k needs to be set in advance, we can iterate over a range to
determine the optimal value of k using a Cost Function. The
minimum value of the corresponding k indicates how many
clusters of K to select. In practice, since K-means clustering
is generally used for data preprocessing or for assortment
classification labeling, k is usually set to a small number.
It is possible to enumerate k from 2 to a fixed value such
as 10 and run K-means repeatedly on each value of k to
find the best solution and then calculate the average contour
coefficient of the current k , and finally to select it. The value
of the largest contour coefficient corresponds to k as the
final number of clusters. This paper adopts the method of
setting the number of clusters within a certain range. In order
to avoid finding a local rather than a global solution, this
paper uses the second derivativemethod to choose the optimal
value of k . In the second derivative formula, x represents
the argument, y is the dependent variable, and h is the step
size:

y′′ = [y(x0 + h)− 2 ∗ y(x0)+ y(x0 − h)]/h2 (1)

The K-means clustering method can find the average dis-
tance between the clustering result and the cluster center.
In theory, the smaller the value, the better the clustering effect.
However, as the number of clusters increases, the distance
will also decrease. Therefore, distance alone is not a reliable
estimate of the optimum number of clusters. However, when
the value decreases slowly, increasing the number of clusters
further does not enhance the clustering effect significantly.
To address this problem, this study uses the method of cal-
culating the rate of change and selects the number of clusters
corresponding to the inflection point of the fastest-growing
clustering effect. Since our data are discrete, we can use the
method of function fitting to form these data into functions,
and then take the derivative of the function. However, the pro-
cess is complex, and so we use the second derivative of the
difference formula.

V. DYNAMIC INCREMENTAL METHOD OF
EVENT-ACTIVITY MAPPING
A. CREATING A NAIVE BAYES CLASSIFICATION MODEL
The software process development log is not tagged with
activities. Constructing a classifier is applied as a supervised
learning method so that we can assess the classification
results by mapping activities from unsupervised learning to
supervised learning. We need to generate a more reliable
label, and so we propose a K-means clustering method based
on the Word2Vec vectorization method, and which considers
semantic information, because there is no real label from
the beginning. The sample set is divided into K clusters
according to the distance between the samples, and the points
in the cluster are kept as close together as possible to make
the distance between clusters as large as possible. What we
obtain will be semantically similar text content for the label.
One of the advantages of machine learning is its ability to

handle new data. We cannot put the new data into the training
data because the number of clusters may be affected. Hence,
we build a classifier to handle the new data. The purpose of
clustering is to obtain classes for training purposes, and then
the classifier is used to categorize new data into these tags.

We study software development process log attributes
through keyword extraction and analysis, and then process
the new activity information. The log of the software devel-
opment process facilitates the subsequent process mining
research. Based on this condition, naive Bayesian classifica-
tion is applied to classify log events to avoid the problem of
an over simplistic assumption of independence. In practice,
the classification information contained in some features of
the naive Bayesian classifier can provide higher accuracy.
Therefore, we use the previously obtained clustering cate-
gories to train the naive Bayesian classifier; that is, to classify
the object class mark obtained by clustering a known class
mark in the naive Bayesian classification problem in order to
complete event-to-activity category mapping. In the classifi-
cation problem, the category is the target variable and a k-fold
cross validation method is used to test the accuracy and recall
rate of the classification results.

We assume that X = {M1, M2, . . . ,Mn} is a set of n mes-
sages to be classified and that they are mutually independent.
Let C = {Y1, Y2, . . . ,Yn} be a collection of categories in the
software development process. The mapping rule Y = f (M )
is determined such that anyMi ∈ X has only one Yi ∈ C such
that Yi ∈ f (Mi) holds where f is the classifier. The training
dataset is set to T = {(M1, Y1), (M2, Y2), . . . , (Mt , Yt )}.
We choose the class with the largest posterior probability as
the final classification of themessage and achieve expectation
riskminimization. The derivation ofmaximizing the posterior
probability according to the expected risk minimization is
explained in detail by Li [28]. The work involved in this
section is divided into four stages: preparation, training,
application, and evaluation.

1) PREPARATION
During preparation, the main task is to determine the charac-
teristics of the attributes, and some of the data to be classified
are labeled for training. We have used clustering annotation
instead of manual annotation. The input data is classified and
then output as feature attributes and training sample data.
The quality of the results of this stage is dependent upon
the training sample data by the characterization of attributes.
Feature attribute classification is often more important than
classifier selection.

2) TRAINING
The main aim of the training phase is frequency calculation.
We calculate the frequency and feature attributes that appear
in the training sample data for the category. Then, we divide
the conditional probability estimates for each category. In this
stage, the input is the attributes and training sample data. The
output is the classifier.
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3) APPLICATION
In the application stage, we use the classifier. Here, the input
is a classifier and the items to be classified. The output is the
mapping between the item to be classified and the category.

4) EVALUATION
In this phase, the original test data is input as labels. The
label of the cluster corresponds to the test set data. The
classifier label of the test set corresponds to the test data,
and the evaluation index is output. From the literature on
existing classification evaluation methods, we can see that
the generally accepted method is to calculate the accuracy,
the recall, and the harmonic mean. Hence, we compare the
classification results with the original clustering based on the
accuracy P, the recall rate R, and the harmonic mean F of
each classification index:

P = A/B (2)

R = A/C (3)

F − measure = (α2 + 1)×P× R/α2×(P+ R) (4)

where A = the number of correct classifications, B = the
number of classifications, and C = the number of items in
the sample.

B. EVENT-ACTIVITY MAPPING AND DYNAMIC UPDATES
As the software development and maintenance work pro-
gresses, new data will be appended to the software process
log. Our goal is to map the activities of newly added events.
In order to conduct real-time mining of the whole process,
we update and control the activity mining process dynami-
cally by regularly updating the logs as follows: the training
data set is updated once every 3 months, the event data in the
most recent software process log is marked as a training set by
clustering. The new log events added each time will be used
as the test set and the naive Bayesian classification model
will be used for activity mapping before the next update of
the training set. The result of the mapping will be marked as
the current activity of adding the event information. After the
next training set is updated, the log event information that has
already been marked by the activity will be added as a new
training set to the original training set and re-labeled through
clustering. This dynamic update cycle is represented in Fig. 5.
In each training set update, the initial activity label will be
updated accordingly. The best activity number is also updated
to improve the activity map. For example, for a newly added
event e, it needs to be classified according to the existing
activity classifier C , which is done in real time. But in order
to increase the accuracy of the classifier model, it is necessary
to re-update the classifier as the training data after a period of
time to obtain classifier C’.

VI. EXPERIMENTATION
A. INSTANCE SPECIFICATION
This experiment uses the software development process
logs as the experimental data set. We extract ArgoUML

FIGURE 5. Real-time dynamic mining log activity cycle.

FIGURE 6. Part of the argolog.xml software process log document.

software development process log information and jEdit soft-
ware development process log information to conduct the
experiment. ArgoUML is a well-known open source UML
modeling tool. It can support all the diagrams of the latest
UML standards, has good cross-platform features and can
run on all Java platforms; jEdit is a mature programmer’s
text editor with hundreds of person-years of development
behind it. Figure 6 shows parts of the data in the software
process log document argolog.xml. It contains 85,792 events,
covering development information from 1998 to 2015, which
is sufficient for our purpose.

We extract two attributes for each event, msg and path,
to support activity discovery. The pretreatment is carried out
according to three steps.

1) NOISE REMOVAL
We remove non-text data from the original content (e.g., dig-
ital information and punctuation) to avoid potential problems
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FIGURE 7. Preprocessed software process log document
argolog_preprocess.txt.

encountered in data processing. The result after processing is
a string that only consists of words and spaces.

2) SELECTION OF PARTS-OF-SPEECH
The activities of each event in the case are mainly expressed
by verbs but individual verbs do not convey the complete
meaning. An event is composed of the verb and a correspond-
ing noun. This study uses the natural language processing
tool NLTK to filter the part-of-speech of the content. Finally,
we obtain the gerund (a verb that acts as a noun) of the
attributes msg and path and show them in a row.

3) STEM EXTRACTION
This article considers software development process logs
in English. Here, it is necessary to have words with the
same general form. The same English word exists in many
forms, with different singular and plural tenses. For example,
the word make can take the forms makes, made, making, etc.
We would like all of them to be converted to the prototype
stem ‘‘make’’. After the above processing, the event log is
expressed as a collection of verbs, nouns, and space symbols,
all of which have value in representing the meaning of the
text. Figure 7 is a partial representation of the preprocessed
data.

B. SETTING TRAINING PARAMETERS
To allow for variance in the experimental data, we divide
the entire dataset into two parts: training and test data. Con-
sidering the impact of different parts of the datasets on the
overall results, we perform 10 experiments using k-fold cross
validation. The principle is that the data are divided into k
sub-samples. In each experiment, a different sample is taken
as the verification data and the remaining k−1 samples act as
the training data.

C. ANALYSIS OF EXPERIMENTAL RESULTS
Sufficient data are collected from three randomized experi-
mental data sets to conductWord2Vec vectoring andK-means
clustering. We set the number of clusters from 1 to 100 to
find the relationship between the number of clusters k and
the Average Distance of the corresponding points for each
category label relative to the clustering center. After creating
the relationship graph, we take the second derivative of the
difference formula to obtain a new graph that reflects the
relationship between the number of clusters k and the rate
of change in an average distance of the corresponding points

FIGURE 8. Function curve of clustering.

FIGURE 9. Selecting the number of clusters.

FIGURE 10. Effect of optimal cluster number.

for each category label relative to the cluster center. Take the
ArgoUML log experiment as an example (Fig. 8), curve a is
the function between k and the average distance, and curve
b is the corresponding function of k and the average rate of
change in distance.

As each initial point in the K-means clustering is set at
random while the training set in the experiments is fixed,
we conducted 20 repetitions of the clustering and selected the
average of the number of clusters as the final optimal number.
Figure 9 is a composite of 20 experiments showing the second
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FIGURE 11. Validation of the classifier.
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FIGURE 12. Average distances using two contrasting methods.

TABLE 1. Manual verification of partial clustering tags.

derivative relational graph of the difference between formula
clustering number k and the Average Distance. We take the
average of the corresponding k in 20 experiments as the final
number of clusters when the second derivative drops to zero,
as shown in Fig. 10.

After automatic clustering, we extract part of the event
information and conduct manual confirmation to verify tag
partition appropriateness, as shown in Table 1, which depicts
some paths and message information content of logentry as
well as their corresponding cluster tags. This part of the
data covers four categories. Among them, updating scale and

TABLE 2. Results of classifier validation for the ArgoUML log (units:
centesimal system).

TABLE 3. Results of classifier validation for the jEdit log (units:
centesimal system).

TABLE 4. SVN log revision number bound to active Class 6.

updating label is a class, adding and deleting information is
a class, repairing events is a class, and authorized displaying
events is a class, all of which appear plausible.

After determining the number of clusters, we divide the
data into a validation set and a training set and extract 1/10 of
the training set each time. After 10 experiments, we calculate
the precision rate, recall rate, and their harmonic mean,
known as theF-Measure using parameters of 0.5, 1.0, and 1.5.
Then, we conduct 10-fold cross validation. The results of the
10 experiments and of the 10-fold cross validation are shown
in Fig. 11a–j and Table 2, respectively. The results of 10-fold
cross validation for the jEdit log is shown in Table 3.

The results show that training a data set based on our
improved naive Bayesian classification algorithm for activity
mapping of SVN log events is more accurate than the fuzzy
clustering method. Take the ArgoUML log experiment as an
example, by using the fuzzy clustering method for the same
data set, we find that the optimum number of clusters is
k = 31 and the average distance between cluster centers is
383.77. The optimum number of clusters obtained using the
proposed method is k = 14 and the average distance between
cluster centers is 1267.42. Compared with the rate of change
of the evaluation distance between the two, as shown by curve
b of Fig. 12, when k = 14, it has reached the inflection point
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FIGURE 13. Clustering effect diagram using two contrasting methods.

and the subsequent change has little effect on curve a. At the
same time, compared with the rate of change of the evaluation
distance between the two methods, we find that using the
proposed method is better for mapping the results.

The clustering map does not change significantly when
the number of clusters is reduced from 31 (Fig. 13a) to 14
(Fig. 13b).

This experiment is based on the software development
process log information of ArgoUML and realizes a method
of extracting activities from the software process log. In order
to address the problem of a lack of activity attributes in the
log, we propose a method to extract software process activ-
ities based on the correlation between events and activities.
We extract each record of events in the SVN log and map
its contents. Then, we move from unsupervised learning to
supervised learning by constructing a classifier to map new
activities based on the tag of activities by clustering. Finally,
we assessed the results of the classification using precision
rate, recall rate, and the F-measure.

The results show that this method can effectively extract
activity information from the log and solve the problem of
the lack of initial activity tags, which makes the initial label
partitioning plausible. For the ArgoUML log, on using the
test data sets, we find that the average precision rate, recall
rate, and F-measure (using parameters of 0.5, 1 and 1.5)
produce values of 0.85, 0.87, 0.83, 0.84, and 0.85 respec-
tively. For the jEdit log, on using the test data sets, we find
that the average precision rate, recall rate, and F-measure
(using parameters of 0.5, 1 and 1.5) produce values of 0.68,
0.84, 0.69, 0.72, and 0.75 respectively. These results illustrate

FIGURE 14. Adding activity categories tags to the SVN log.

FIGURE 15. Example of the mapping method based on document path
name.

the effectiveness of this method in multiple dimensions of
evaluation.

The final goal is to insert the activity categories tag by
mapping into the original SVN log without activity categories
tags. As shown in Fig. 14, the original SVN log (Fig. 14a)
becomes a new SVN log (Fig. 14b) to begin a follow-up that
generates the single trigger sequence in process mining.

To verify the validity of our results, they are compared
with those from the commonly used mapping method. The
mapping method first defines several activities, such as the
four activities defined in Fig. 15 (Design, DES; Code, CODE;
Test, TEST; and Review, REV), based on the correlation
between the name of the document path involved and the
defined activity, and log filtering.

The mapping method [8], [6], [29] supports the nam-
ing of the document, but ignores the semantic informa-
tion of each modification, which makes the approach less
applicable and less accurate. Table 3 shows the revision num-
ber of logentry in the SVN log bound to active Class 6 after
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FIGURE 16. Binding two logentry in the same activity.

mining by the method proposed in this study. At the same
time, the relationship can be further viewed between each
logentry. The records for revision number 23820 and revision
number 23298 are shown in Fig. 16; we find that both have
modified FAQ information. Through this comparison, it can
be easily found that the proposed method not only considers
the semantic information of the path, but also increases the
accuracy of the activity discovery, taking into account the
message information of each log.

VII. CONCLUSION AND FURTHER WORK
In this study, we developed a method to extract software
process activities based on the correlation between events and
activities. This method extracts each record of events in the
log and processes its contents. Then, it uses unsupervised
and supervised learning by constructing a classifier based on
clustering to extract software process activities. We assess
the result of the classification in terms of precision rate,
recall rate, and the F-measure. The method addresses the
problem that software process logs do not contain initial
activity labels. It enables the classification of initial labels and
represents labels whose semantic information is similar to
that of labels whose semantic information is different. At the
same time, this study effectively addressed the problem of
determining the optimum number of clusters. The optimal
clustering number occurs when the average distance between
cluster centers decreases at the fastest rate. This paper also
enables the mapping of activities in the software process log
and introduces a method of calculating multiple harmonic
averages for the accuracy and recall rate in the evaluation of
the classifier.

However, there remain areas for improvement: The size
of the existing database sample of events in the software
process log is limited. However, with the continued use of
the software development process, the log will be continually
updated. At the same time, we will obtain more data for
clustering, which will improve the accuracy of the classifier.
In addition, the weight of certain indicators used in event
mapping is uncertain, and there is no unified standard of
measurement. Finally, since there is no standard method of

evaluating the results of unsupervised learning and the envi-
ronment that it is used in is complex, there is more scope for
development in this aspect of unsupervised learning.
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