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ABSTRACT In permanent-magnet synchronous machine (PMSM) applications, traditional deadbeat
predictive current control (DPCC) utilizes the PMSM model to evaluate the expected voltage vector and
applies it to the inverter through space vector pulse width modulation (SVPWM). Once the expected voltage
vector is inaccurate, the torque ripple and speed fluctuation are amplified. There are two main factors that
cause the inaccurate voltage vector, namely model parameter mismatch, and current measurement error.
To enhance the robustness of DPCC, first, this paper proposes an accurate PMSM voltage model with
nonperiodic and periodic disturbance models. Second, this paper proposes a novel current and disturbance
observer (NCDO) which is able to predict future stator currents and disturbances caused by model parameter
mismatch and current measurement error simultaneously. Finally, the scheme of the proposed DPCC with
NCDO is presented to enhance the robustness. This paper presents a comparative study of two types of
algorithms, namely traditional DPCC and the proposed DPCC with NCDO. The theoretical verification,
simulation results, and experimental results are demonstrated to verify the effectiveness of the proposed
DPCC with NCDO.

INDEX TERMS Permanent-magnet synchronous machine (PMSM), deadbeat predictive current control
(DPCC), iterative learning control (ILC), sliding-mode control (SMC).

I. INTRODUCTION
Recently, permanent-magnet synchronous machines
(PMSMs) have been widely used in the modern applications
because they have a range of benefits such as high effi-
ciency, high torque density, and excellent control precision.
To achieve high steady-state and dynamic performance, some
control strategies have been applied in the drive system of
PMSMs, such as classical proportional–integral (PI) con-
trol [1], hysteresis control, and predictive control.

A. LITERATURE REVIEW
Hysteresis control [2] has good robustness, fast current
responses, and simple computation, but there are large cur-
rent ripples in the control system. Compared with hysteresis
control, PI control has some benefits such as small current
ripples and fixed switching frequency, which is popular in
practical applications. However, the PI parameters need to be
tuned, which is time-consuming. Recently, predictive control
is applied in PMSMdrives within ten years. Predictive control
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has some advantages, such as excellent performance in the
transient state [3]. It can be categorized into two types of
predictive control normally, namely finite control set model
predictive control (FCS-MPC) [4] and deadbeat predictive
control (DPCC). FCS-MPC applies finite voltage vectors
based on characteristic of inverters to predict next instant
motor stator currents by minimizing cost functions. However,
limited voltage vectors can lead to large current ripples com-
pared with DPCC. DPCC is based on a discrete mathematical
model to predict a voltage vector and apply it to the inverter
through space vector pulse width modulation (SVPWM) [5].

There has been extensive research in the area of pre-
dictive control. Disturbance suppression is quite signifi-
cant in predictive control since DPCC bases the motor
model parameters to control the motor. To deal with the
disturbances in the field of PMSM drives, many methods
have been proposed. Reference [6] proposed model-free
control strategies that can suppress parameter mismatch
disturbances. This method can predict the next instant
voltage vectors based on current sampling information,
but there is a stagnant current update in the algorithm.
In order to deal with this problem, [7] proposed an improved
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model-free control. The specific procedure is to conduct two
current measurements within each sampling period, the sec-
ond of which is delayed for a fixed time after the switching
state begins, but this method may lead to current spikes.
Reference [8] proposed an improved model-free control with
single-current sampling technology, which can reduce current
ripples. In addition to model-free control strategies, [9] pro-
posed a novel speed-control method composed of an adaptive
feedforward control term, which compensates for the nonlin-
ear and uncertain factors. Reference [10] proposed a novel
estimator based on the model reference adaptive system for
online estimation and tracking of stator resistance, which can
overcome the motor resistance mismatch disturbance. How-
ever, this method cannot deal with inductance mismatch dis-
turbance. Reference [11] developed a reduced-order observer
to suppress the inductance mismatch disturbances, but the
disturbance estimation is imprecise and time-consuming.
References [12], [13] proposed predictive control with cur-
rent errors to modify the motor model continually, which can
suppress the model parameter disturbances. However, it is
only applied in FCS-MPC applications instead ofwithDPCC.
Reference [14] proposed a lunenberger disturbance observer
based on Xilinx Zynq SoC XC7Z020-CLG484-1 and FPGA
implementations to estimate the lumped disturbances in the
speed and current loops. In addition, [15] proposed a novel
generalized proportional integral observer to estimate distur-
bances caused by machine model parameters.

It is generally known that sliding-mode control (SMC) is
a type of nonlinear control to deal with nonperiodic distur-
bances. Reference [16] proposed a nonlinear speed-control
algorithm with an SMC disturbance observer, but it is mainly
applied in the PI speed controller. Reference [17] proposed an
improved DPCC combined with a second-order SMC distur-
bance observer for a PMSM drive to reduce current harmon-
ics, but the algorithm is quite complex and time-consuming.
To reduce computation, [18] proposed a first-order SMC
disturbance observer to estimate the parameter mismatch
disturbances. However, it is hard to suppress disturbances due
to currents measurement errors because the switching gain
in the SMC becomes large when the value of disturbances
increases, which can cause sliding-mode chattering.

In the traditional DPCC, the current sampling informa-
tion is significant since the disturbances can lead to speed
pulsation [19]. Thus, the current sampling error needs to
be reduced to increase the DPCC performance. The current
sampling errors mainly include current-measurement offset
and scaling errors, which belongs to periodic disturbances.
To deal with the disturbances, [20] proposed a speed-control
method for PMSMswith iterative learning control (ILC) [21].
ILC is a method of tracking control for systems that work
in a repetitive mode. By incorporating feedback, ILC has
better robustness compared with other feedforward control
methods [22]–[24]. Reference [25] proposed a novel speed
controller with an ILC module and adaptive SMC observer,
but [25] focused on a speed controller in which the con-
trolled output is the q-axis current reference and the current

controller is still a traditional PI regulator, which is not suit-
able for DPCC.

B. MOTIVATION AND INNOVATION
Because the traditional DPCCmainly based on model param-
eter and current measurement information, the challenges of
the traditional DPCC is to suppress the disturbances caused
by model parameters mismatch and current measurement
errors simultaneously. The method of [25] can suppress both
but it is not suitable for DPCC. To overcome the aforemen-
tioned drawbacks in the traditional DPCC, the new DPCC
scheme is proposed in this paper. In the proposed DPCC
scheme, it can suppress the parameter model disturbance and
current sampling disturbance simultaneously.

There are four contributions in this paper. (1) An accurate
PMSM model considering the influence of parameter mis-
matches and measurement errors is analyzed and a modified
DPCC that contains an accurate PMSM voltage model and
nonperiodic and periodic disturbance models is proposed.
(2) Unlike previous studies, which added the ILCmodule into
the speed controller, this paper takes the predicted periodic
disturbances f ′i+1(θe) as the controlled output in the modified
DPCC, and the ILC law is different from that in the previous
study. (3) This paper proposes a novel current and disturbance
observer (NCDO) in the modified DPCC. The disturbances
that the NCDO predicts are regarded as the feedforward
voltage compensation and are directly added into a modified
PMSM voltage model, which is different from the speed
controller in [25]. The proposed disturbance observer can
predict the total disturbances and the stator currents at the
next time, which can operate well with a modified DPCC.
(4) The simulation and experimental results are demonstrated
to verify the performance of the proposed DPCC with NCDO
under parameters mismatch and current-measurement error
conditions.

C. PAPER ORGANIZATION
This paper is organized as follows. Section II illustrates
the principle of DPCC and the accurate PMSM model con-
sidering parameters mismatches and current measurement
errors. Then, the proposed DPCC with NCDO is shown in
Section III. Section IV and V present the simulation and
experimental results for the traditional DPCC and the pro-
posed DPCC with NCDO. Finally, the conclusions are pre-
sented in Section VI.

II. DEADBEAT PREDICTIVE CURRENT CONTROL
In the traditional DPCC, the expected voltage vector is
obtained through motor mathematical model. In this section,
first, the mathematical model of PMSM is introduced and
then the principle of the traditional DPCC is presented.
Finally, an accurate PMSM model under the influence of
parameters mismatches and current measurement errors is
analyzed and established.
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A. MATHEMATICAL MODEL OF PMSM
This paper chooses the surface-mounted PMSM as the
research target and ignores some trivial parameters of PMSM.
Therefore, the mathematical model of the PMSM equations
can be presented as

Us = Rsis +
dψs
dt

(1)

ψs = Lsis + ψme jθr (2)

Te = 1.5pψmiq (3)

where Rs, Ls, and9m denote the PMSM stator resistance, sta-
tor inductance, and rotor flux linkage, respectively; is and Us
stand for the stator current vectors and stator voltage vec-
tors, respectively; p and θr are the number of pole pairs
and electrical rotor angle, respectively; and 9s denotes the
stator flux vector. The mechanical equation of PMSM can be
expressed as

Te − Tl = η
dωm
dt

(4)

where Te denotes the electromagnetic torque, η stands for
machine inertia, ωm stands for the PMSM mechanical rotor
speed, and Tl stands for load torque.

B. PRINCIPLE OF DPCC
The principle of DPCC is to utilize motor voltage equation to
obtain the expected voltage vector. According to Eq. (1) and
Eq. (2), the PMSM voltage equation on stationary frame can
be presented as

Us = Rsis + Ls
dis
dt
+ jψmωmpe jθr (5)

In the digital system, the selected voltage vector using mea-
surements at the kth instant will continue being applied after
(k+1)th instant. In this case, delay compensation needs to be
considered, and the specific procedure can be expressed as
follows.

First, based on [26], the delay compensation should be
applied in DPCC. In this case, to reduce the calculation, this
paper adopts the first-order Euler discretization to acquire the
next time stator current is(k+1), which can be expressed as

is(k+1)=is(k)+
Ts
Ls

(
Us(k)∗ − Rsis(k)− jψmωmpe jθr

)
(6)

where Us(k)∗ denotes the known voltage vectors at the
kth instant. After obtaining the stator currents is(k+1) at the
(k+1)th instant, the voltage equation at the (k+1)th instant
can be expressed as

Us(k+1)=
Ls
Ts
i
ref

s (k+2)-
Ls
Ts
is(k+1)+Rsis(k+1)+jψmωmpe jθr

(7)

Because the sampling period is quite short, this paper neglects
the variation in θr between the (k+1)th instant and the
kth instant. Therefore, the amplitude of the reference stator
currents irefs (k+2) is equal to the amplitude of reference stator
currents irefs (k+1), which can be presented as

i
ref

s (k+2) = i
ref

s (k+1) (8)

FIGURE 1. The traditional DPCC scheme of PMSM drives.

Substituting Eq. (6) and Eq. (8) into Eq. (7), the desired
voltage vector is obtained and be applied in inverter through
SVPWM modulation. The traditional DPCC scheme of
PMSM drive is presented in Fig. 1, where delay block stands
for a one-step delay in practical system.

C. ESTABLISHMENT OF ACCURATE
MATHEMATICAL MODEL
According to Eq. (5), there are some PMSM parameters
including the resistance, inductance, and flux linkage param-
eters. These values might not be determined precisely, and
sometimes the values might change during operation. The
parameter mismatch disturbances will have adverse impacts
on the performance of motor operation.

In addition to parameter mismatch disturbances, there
are some periodic disturbances. For example, stator cur-
rents are measured through the Hall sensor or high-precision
resistance, which can lead to periodic measurement errors.
The currents measurement errors include current dc offsets
and scaling errors. Reference [25] presented that dc offsets
can cause the measured current error in the dq coordi-
nates to oscillate at the electrical angle frequency and
the scaling errors can cause the measured current error
in the dq coordinates to oscillate at twice the electrical
angle frequency. Previous analysis shows that measured cur-
rents consist of a fundamental component together with the
1st- and 2nd-harmonic components, which are periodic cur-
rent ripples. The currents can be expressed as Eq. (9) and
Eq. (10).

idm =
∥∥∥i0d∥∥∥+ ∥∥∥i1d∥∥∥ sin(θe)+ ∥∥∥i2d∥∥∥ sin(2θe) (9)

iqm =
∥∥∥i0q∥∥∥+ ∥∥∥i1q∥∥∥ sin(θe)+ ∥∥∥i2q∥∥∥ sin(2θe) (10)

where ||i0d || and ||i
0
q|| are the dc components; ||i1d ||, ||i

2
d ||,

||i1q||, and ||i2q|| denote the 1st- and 2nd-harmonic cur-
rent amplitudes of the periodic disturbances in the dq
coordinates; idm and iqm are crude measured currents,
which contain a dc component and periodic components;
and θe denotes the electrical angle of the harmonic cur-
rent. In particular, when the crude measured current
iqm is taken as the feedback current, it generates the
1st- and 2nd-harmonic pulsating torque T0. T1 is the
dc-offset torque caused by ||i0q||, which can be expressed
as Eq. (11). The 1st- and 2nd-harmonic current torque T0
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can lead to motor speed fluctuation according to Eq. (4).
Therefore, to increase the robustness of DPCC, the suppres-
sion of stator current measurement error is crucial.

Te = T1 + T0 (11)

Considering parameter mismatch and current measure-
ment error disturbances, the accurate PMSM mathematical
model is established in this paper. The accurate PMSM volt-
age equations in the dq coordinates can be expressed as

Ud = L ′s
didm
dt
+ R′sidm − ωmpL

′
siqm + rd − fd

rd = 1Ls
didm
dt
+1Rsidm − ωmp1Lsiqm

fd = Ls
d1idm
dt
+ Rs1idm − ωmpLs1iqm

(12)


Uq = L ′s

diqm
dt
+ R′siqm + ωmpL

′
sidm + ωmpψ

′
m + rq − fq

rq = 1Ls
diqm
dt
+1Rsiqm + ωmp1Lsidm + ωmp1ψm

fq = Ls
d1iqm
dt
+ Rs1iqm + ωmpLs1idm

(13)

where L ′s, R
′
s, and 9

′
m are the crude motor parameters that

are measured initially;1Ls,1Rs,19m are the variation of the
motor parameters; and Ls, Rs, and 9m are the actual motor
parameters. In this case, Ls = L ′s + 1Ls, Rs = R′s + 1Rs,
and 9m = 9

′
m+19m; and rd and rq denote the nonperiodic

disturbances of parameter variations. Furthermore, 1idm and
1iqm are current ripple variations, and id and iq are real
stator currents. In this case, id=idm-1idm and iq=iqm-1iqm,
and fd and fq denote the periodic disturbances of current
measurement error.

III. PROPOSED DPCC WITH NCDO
After obtaining the accurate PMSM model, it can be seen
that the stator current, periodic disturbances fd and fq, and
nonperiodic disturbances rd and rq at the (k+1)th instant
need to be predicted in the modified DPCC. Therefore, this
paper proposes NCDO to satisfy the needs of the modified
DPCC. The pioneering study shows that ILC can suppress
the periodic disturbances and SMC can deal with parameter
disturbances. The difficulty encountered in this research is
that the periodic and nonperiodic disturbances are difficult to
be suppressed at the same time.

In this case, NCDO can be designed to have the features of
both ILC and SMC. First, the principle of an improved ILC
module needs to be presented.

The principle of ILC is to learn and amend the controlled
output according to the last and the present controlled input
during every iteration cycle. After several iteration cycles,
the learned and amended controlled outputs are predicted
to end. According to the aforementioned analysis, currents
measurement error can lead to pulsating torque according to
Eq. (3), which can in turn lead to pulsating speed according

FIGURE 2. Schematic diagram of PD-type ILC module.

to Eq. (4). Unlike the other study on ILC, which took the
q-axis reference current as the controlled output, this paper
takes the predicted disturbances voltage f ′i+1(θe) as the con-
trolled output and takes the mechanical rotor speed error as
the controlled input. Furthermore, because the differential of
mechanical rotor speed is linked to the torque ripple, to con-
firm the convergence of ILC, the proportional–differential
(PD) type ILC law can be taken as the ILC law. The diagram
of the proposed ILC module is shown in Fig. 2 and the
proposed ILC formula can be expressed as Eq. (14).

f ′i+1(θe) = f ′i (θe)+ kf 1
d
(
ωm(θe)i − ωref(θe)i

)
dt

+ kf 2
d
(
ωm(θe)i+1 − ωref(θe)i+1

)
dt

(14)

where θe denotes the electrical angle of periodic distur-
bances, i represents the ith iteration cycle, and there are
several system sampling periods per iteration cycle. Because
the disturbances of current-measurement error have periodic
characteristics, f ′i+1(θe) = f ′i+1(2π + θe); kf 1 and kf 2 denote
ILC parameters and the selection principle of parameters is
introduced in Section III-B; f ′i+1(θe) denotes the controlled
output in the (i + 1)th iteration cycle. The initial controlled
output value of f ′i (θe) is zero and it is assumed that the desired
motor rotor speed is differentiable with the change in time t .
Because the motor speed pulsations are periodic with respect
to the motor electrical angle, the learning update mechanism
learns and amends the controlled output f ′i+1(θe) according to
the electrical angle θe instead of time t . Through memory-
based learning, f ′i+1(θe) is stored in memory during the entire
iteration cycle and is used for the next iteration cycle.

It has been noted that the ILC-controlled output f ′i+1(θe)
can be obtained when the system operates at steady state
for several iteration cycles, and if the system operates in
the transient state, the ILC-controlled output f ′i+1(θe) cannot
be obtained and the value f ′i+1(θe) remains zero. The ILC
controlled output f ′i+1(θe) can be regarded as the predicted
feedforward voltage compensation fd and fq, which can be
applied directly in the inverter through SVPWM. Actually,
the proposed ILC would study and amend the disturbances
caused by q-axis current ripple. For example, the proposed
ILC can predict the actual resistance feedforward voltage
compensation caused by q-axis current ripple. Whereas in
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traditional ILC, as described by [25], the controlled output
is the q-axis reference current, it can only predict the crude
resistance voltage compensation because the actual resistance
parameters cannot be obtained. Therefore, the traditional ILC
is only suitable for PI current controllers under parame-
ter mismatch. Overall, the proposed method can study and
amend the voltage compensation, and the voltage compensa-
tion can be regarded as the feedforward compensation. The
compensation can generate pulsating torque, as indicated by
Eq. (11), that can counteract the pulsating torque T0 caused
by the 1st- and 2nd-harmonic currents ||i1d ||, ||i

2
d ||, ||i

1
q||, and

||i2q||, as in Eq. (9) and Eq. (10). Furthermore, the proving
process is introduced in Section III-B.

After introducing the ILC module, the SMC module is
proposed to suppress nonperiodic disturbances in NCDO and
acquire the predicted stator currents id (k+1) and iq(k+1) at
instant k+1. To avoid switching chatting and to make the
controlled variables error approach zero quickly, the pro-
posed sliding-mode function is presented. According to the
sliding-mode control theory, the procedure is as follows. The
first step is to design the sliding-mode surfaces sd and sq.{

sd = i′d − idm
sq = i′q − iqm

(15)

where i′d and i′q denote the estimates of the currents in the dq
coordinates, sd and sq are sliding-mode surfaces, and idm and
iqm are crude measured currents.

The second step is to design the sliding-mode function.
Unlike the traditional sliding-mode function, to make the
state-variable error approach zero, the sliding-mode functions
vd and vq are designed as follows.

vd = kkd sat(sd )+ kld sd (16)

vq = kkq sat(sq)+ klqsq (17)

sat(s) =


1 if (s ≥ 1)
s if (s ∈ (−1, 1))
−1 if (s ≤ −1)

(18)

where kkd , kkq, kld , and klq denote sliding-mode parameters.
The specific selection principle of parameters is introduced
in Section III-B.

It should be noted that because the currents measurement
error in the d-axis does not lead to torque ripple and motor
speed fluctuation, the currents measurement error in the
d-axis only leads to flux-weakening control and magnetiza-
tion control. This paper does not consider the disturbances
under the influence of current variation 1idm between the
accurate current id and measured current idm. The current
variation1iqm belongs to the main periodic disturbances that
can lead to motor speed fluctuation and pulsating torque T0,
so the predicted disturbances f ′di and f ′qi under the influ-
ence ofcurrent variation 1iqm between the accurate current
iq and measured current iqm are considered in this paper.
Therefore, the equations of NCDO can be designed as

follows:
Ud = L ′s

di′d
dt
+ R′si

′
d − ωmpL

′
siqm + r

′
d − f

′
di + vd

dr ′d
dt
= kgdvd

f ′di = f ′di−1 + kf 3
d
(
ωmi−1 − ω

ref
i−1

)
dt

+ kf 4
d
(
ωmi − ω

ref
i

)
dt

(19)
Uq = L ′s

di′q
dt
+R′si

′
q+ωmpL

′
sidm+ωmpψ

′
m+r

′
q − f

′
qi+vq

dr ′q
dt
= kgqvq

f ′qi = f ′qi−1+kf 1
d
(
ωmi−1 − ω

ref
i−1

)
dt

+ kf 2
d
(
ωmi − ω

ref
i

)
dt

(20)

where vd and vq represent sliding-mode control function;
r ′d and r

′
q are the estimates of nonperiodic disturbances caused

by PMSM parameter mismatch; f ′di and f
′
qi denote the esti-

mates of periodic disturbances caused by ripple current1iqm;
i′d and i′q denote the estimates of currents in the dq coordi-
nates; kf 1, kf 2, kf 3, and kf 4 denote ILC parameters; and kgd
and kgq are the SMC disturbance observer parameters.

i′d (k+ 1) =
Ts
L ′s
Ud (k)+

(
1−

R′sTs
L ′s

)
i′d (k)+ Tsωmpiqm(k)

−
Ts
L ′s

(r ′d (k)− f
′
di(k))−

Ts
L ′s

vq(k)

r ′d (k+1) = Tskgdvd + r ′d (k)

f ′di(k) = f ′di−1(k)+ kf 3
d
(
ωm(k)i−1 − ωref(k)i−1

)
dt

+ kf 4
d
(
ωm(k)i − ωref(k)i

)
dt

(21)

Because the practical system is discrete, the first-order
Euler discretization is adopted to acquire the predicted stator
currents id (k+1) and iq(k+1), predicted nonperiodic distur-
bances r ′d (k+1) and r

′
q(k+1), and predicted periodic distur-

bances f ′di(k) and f
′
qi(k). The discrete equation of NCDO can

be expressed as Eq.(21).

i′q(k+1) =s
Ts
L ′s
Uq(k)+

(
1−

R′sTs
L ′s

)
i′q(k)− Tsωmpidm(k)

−
Ts
L ′s
ψ ′mωmp−

Ts
L ′s

(r ′q(k)− f
′
qi(k))−

Ts
L ′s

vq(k)

r ′q(k+1) = Tskgqvq + r ′q(k)

f ′qi(k) = f ′qi−1(k)+ kf 1
d
(
ωm(k)i−1 − ωref(k)i−1

)
dt

+ kf 2
d
(
ωm(k)i − ωref(k)i

)
dt

(22)

Because the change in the electrical angle is too slow com-
pared with the system sampling time, the values of f ′di(k+1)
and f ′qi(k+1) are approximately equal to the values of f ′di
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FIGURE 3. The proposed DPCC with NCDO scheme of PMSM drives.

(k) and f ′qi(k), respectively. After the NCDO is designed,
according to Eq. (12) and Eq. (13), the proposed DPCC with
NCDO scheme of PMSM drives is shown in Fig. 3.
Stability Analysis of the Proposed DPCCWith NCDO: The

stability of analysis of the proposed DPCC with NCDO is
introduced in this section. Because NCDO includes the SMC
and ILC modules simultaneously, this paper will analyze the
two parts. First, this paper analyzes the convergence property
in sliding-mode control, and then analyzes the convergence
property in the proposed ILC.

To ensure the convergence property of the sliding-mode
surface, this paper utilizes the Lyapunov theorem to analyze
the observer stability. The Lyapunov function is defined as

V =
1
2
s2 (23)

To make the function converge, the following equations are
used. 

dVd

dt
=
dsd
dt
· sd ≤ 0

dVq

dt
=
dsq
dt
· sq ≤ 0

(24)

Where sd = i′d -idm and sq = i′q –iqm. Subtract Eq. (19) and
Eq. (20) from Eq. (12) and Eq. (13), and the currents error
equation becomes

0 = L ′s
dsd
dt
+ R′ssd + r

′
d − rd −

(
f ′di − fd

)
+ vd

0 = L ′s
dsq
dt
+ R′ssq + r

′
q − rq −

(
f ′qi − fq

)
+ vq

(25)

Substituting Eq. (16), Eq. (17), and Eq. (25) into Eq. (24)
yields
dVd

dt
= −

1
L ′s

(R′ssd + r
′
d − rd − (f ′di − fd )+ vd )sd

dVq

dt
= −

1
L ′s

(R′ssq + r
′
q − rq − (f ′qi − fq)+ vq)sq

=


−
1
L ′s

((R′s+kld )s
2
d+sd (r

′
d−rd−(f

′
di−fd )+kkd sat(sd )))

−
1
L ′s

((R′s+klq)s
2
q+sq(r

′
q−rq−(f

′
qi−fq)+kkq sat(sq)))

(26)

According to Eq. (26), in order to make the system stable,
kkd , kkq, kld , and klq should be satisfied as follows.

kld > −R′s (27)

klq > −R′s (28)

kkd >

∣∣r ′d − rd − (f ′di − fd)∣∣
|sd |

(29)

kkq >

∣∣∣r ′q − rq − (f ′qi − fq)∣∣∣∣∣sq∣∣ (30)

After the system reaches the sliding-mode surface in a finite
time, the errors sd , sq and their derivatives can approach zero.
Bd and Bq are defined as the variation rates of parameter
disturbances rd and rq. According to Eq. (19) and Eq. (20),
the errors of the disturbances can be simplified as

d
(
r ′d − rd

)
dt

+ Bd + kgd
(
r ′d − rd

)
= 0

d
(
r ′q − rq

)
dt

+ Bq + kgq
(
r ′q − rq

)
= 0

(31)


(
r ′d − rd

)
= e−kgd t

[
C+

∫
Bdekgd tdt

]
(
r ′q − rq

)
= e−kgqt

[
C+

∫
Bqekgqtdt

] (32)

where C is a constant. From Eq. (32), it is found that the
values of kgd and kgq must be positive.

To ensure the convergence property of ILC, this paper com-
pares the error value of the controlled variable between the
ith iteration cycle and the (i+1)th iteration cycle to analyze
the observer stability, assuming the motor speed fluctuation is
mainly caused by current measurement error and the system
has been at steady state for several iteration cycles. To ensure
the convergence in ILC, the absolute rotor speed error is
defined in Eq. (33). If inequation (34) is satisfied, the system
is convergent.

ei+1 =
∥∥∥ωm(θe)i+1 − ωref(θe)i+1

∥∥∥ (33)

ei+1 < ei (34)

where i+1 represents the (i+1)th iteration cycle, ei+1 denotes
the absolute value of the rotor speed error at the (i+1)th itera-
tion cycle, and ei denotes the absolute value of the rotor speed
error at the ith iteration cycle. To testify the convergence in
ILC, Eq. (4) can become Eq. (35).∫

1
η

(
1.5pψmiq − Tl

)
dt = ωm (35)

Substitute Eq. (35) into Eq. (33) and Eq. (36) can be presented
as

ei+1 =

∥∥∥∥∫ 1
η

(
1.5pψmiqi+1 − Tl

)
dt

−

∫
1
η

(
1.5pψmirefqi+1 − Tl

)
dt

∥∥∥∥ (36)

where iqi+1 denotes the actual stator current at the (i+1)th
iteration cycle, irefqi+1 denotes the reference stator current at
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the (i+1)th iteration cycle, and Eq. (36) can be turned into
Eq. (37) and Eq. (38).

ei+1 = g1

∫ (∥∥∥iqi+1 − irefqi+1∥∥∥)dt (37)

g1 =
1
η
(1.5pψm) (38)

According to the aforementioned analysis in Eq. (10), the
actual current can be presented as Eq. (39).

iqi = iqmi −1iqmi

=

∥∥∥i0q∥∥∥i + ∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe)−1iqmi (39)

where iqmi is the measured q-axis current at the ith iteration
cycle, ||i0q||i denotes the measured q-axis dc-offset currents at
the ith iteration cycle, 1iqmi is the ILC current disturbance
compensation of the 1st- and 2nd-harmonic current ampli-
tudes of the periodic disturbances at the ith iteration cycle,
and iqi is the real q-axis current at the ith iteration cycle after
the ILC compensation. Because the current contains a peri-
odic measurement error, ||i1q||i and ||i

2
q||i denote the 1st- and

2nd-harmonic current amplitudes of the periodic disturbances
at the ith iteration cycle. Because iqmi is a periodic signal,
when iqi is steady, the value of iqmi is equal to the value of
iqmi+1 at the same electrical angle. If the convergence in ILC
is satisfied, inequation (40) is as follows.

ei+1 < ei =
∥∥∥iqi+1 − irefqi+1∥∥∥ < ∥∥∥iqi − irefqi ∥∥∥ (40)

Substitute Eq. (39) into inequation (40). Assuming the system
only contains the current measurement error, the value of
||i0q||i is equal to the value of irefqi . The inequation can be
expressed as follows.∥∥∥∥∥∥
∥∥∥i1q∥∥∥i sin(θe)+∥∥∥i2q∥∥∥i sin(2θe)−1iqmi

∥∥∥∥∥∥ >
∥∥∥∥∥∥
∥∥∥i1q∥∥∥i+1 sin(θe)+∥∥∥i2q∥∥∥i+1 sin(2θe)−1iqmi+1

∥∥∥∥∥∥
(41)

When t=0, the value of 1iqmi is equal to zero. The object
of ILC is to generate the value of 1iqmi which is generated
by the predicted disturbances f′di and f′qi to counteract the
value of ||i1q||i and ||i

2
q||i caused by current measurement error.

It has been noted that when the value of ||i1q||i and ||i
2
q||i

is greater than the value of 1iqmi within several iteration
cycles, the system does not perform iterative control and the
predicted disturbances f′di and f′qi are fixed until the system
enters another steady state. Therefore, inequation (42) and
inequation (43) can are as follows.∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe) > 1iqmi (42)∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe) > 1iqmi+1 (43)

In this case, according to Eq. (41)–(43), the condition of
convergence can be written as inequation (44) within several
iteration cycles.

1iqmi+1 > 1iqmi (44)

As for the predicted disturbances f′qi+1 (θe), according to
Eq. (37), Eq. (20) can be turned into Eq. (45), which is
expressed as follows.

f ′qi+1(θe) = f ′qi(θe)+kf 1g1
(
iqi−irefqi

)
+kf 2g1

(
iqi+1−irefqi+1

)
(45)

where f′qi (θe) denotes the predicted periodic disturbances at
the ith iteration cycle and θe denotes the electrical angle of the
periodic disturbances. Substituting Eq. (39) and Eq. (13) into
Eq. (45), according the aforementioned analysis, Eq. (46) is
as follows.

f ′qi+1(θe)

= f ′qi(θe)+ kf 1g1
(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe)−1iqmi)

+ kf 2g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)−1iqmi+1
)

= Ls
d1iqmi
dt

+ Rs1iqmi + ωmpLs1idmi

+ kf 1g1
(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe)−1iqmi)

+ kf 2g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)−1iqmi+1
)

(46)

Substituting Eq. (13) into Eq. (46), Eq. (47) is as follows.

Ls
d
(
1iqmi+1 −1iqmi

)
dt

+ Rs
(
1iqmi+1 −1iqmi

)
+ωmpLs (1idmi+1 −1idmi)

= +kf 1g1
(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe)−1iqmi)

+ kf 2g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)−1iqmi+1
)

(47)

If we take the values of the ILC parameter kf 2 to be
equal to the value of the ILC parameter -kf 1, Eq. (47)
becomes Eq. (48).

Ls
d
(
1iqmi+1 −1iqmi

)
dt

+ Rs
(
1iqmi+1 −1iqmi

)
+ωmpLs (1idmi+1 −1idmi)

= −kf 2g1
(
1iqmi+1 −1iqmi

)
+ kf1g1

(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe))
+ kf 2g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)
)

(48)

It has been noted that, because this paper does not con-
sider the ILC current disturbance compensation 1idmi at the
ith iteration cycle, the value of 1idmi+1 -1idmi can be taken
as zero. Furthermore, because the 1st-and 2nd-harmonic
current amplitudes are all generated by the same method
of measurement, the values of ||i1q||i+1 and ||i2q||i+1 at the
(i+1)th iteration cycle are equal to the values of ||i1q||i and
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||i2q||i at the ith iteration cycle. In this case, Eq. (49) can also
be considered constant.

C2 = kf 1g1
(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe))

−ωmpLs (1idmi+1 −1idmi)

+ kf 2g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)
)

= −ωmpLs (1idmi+1 −1idmi) = 0 (49)

Therefore, after substituting Eq. (49) into Eq. (48), Eq. (50)
is as follows.

d
(
1iqmi+1−1iqmi

)
dt

+

(
Rs+kf 2g1

)
Ls

(
1iqmi+1−1iqmi

)
= 0

(50)

Take the term of 1iqmi+1-1iqmi as an unknown variable, and
Eq. (50) can be solved as follows.(

1iqmi+1 −1iqmi
)
= C1

(
e
(Rs+kf 2g1)

Ls
t

)
(51)

When t>0, if the condition of convergence can be satisfied
as in Eq. (44), C1>0. When t→ +∞, because the value of
1iqmi+1 –1iqmi is not infinite and slows the increase rate of
1iqmi+1, inequation (52) can be satisfied as follows.(

Rs + kf 2g1
)

Ls
< 0 (52)

It can be found that kf 2g1 < −Rs. In this case, according to
Eq. (38), the ILC parameters kf 1 and kf 2 can be satisfied as
follows.

kf 2 < −
Rs

1
η
(1.5pψm)

(53)

kf 1 > −
Rs

1
η
(1.5pψm)

(54)

As for determining the ILC parameters kf 3 and kf 4, according
to Eq. (37), Eq. (19) can be turned into Eq. (55).

f ′di+1(θe) = f ′di(θe)+kf 3g1
(
iqi−irefqi

)
+kf 4g1

(
iqi+1−irefqi+1

)
(55)

where f′di (θe) denotes the predicted periodic disturbances at
the ith iteration cycle. Similarly, substituting Eq. (39) and
Eq. (12) into Eq. (55),

Ls
d (1idmi+1 −1idmi)

dt
+ Rs (1idmi+1 −1idmi)

+ωmpLs
(
1iqmi+1 −1iqmi

)
= +kf 3g1

(∥∥∥i1q∥∥∥i sin(θe)+ ∥∥∥i2q∥∥∥i sin(2θe)−1iqmi)
+ kf 4g1

(∥∥∥i1q∥∥∥i+1 sin(θe)+ ∥∥∥i2q∥∥∥i+1 sin(2θe)−1iqmi+1
)

(56)

Solve Eq. (56) to obtain Eq. (57).

1iqmi+1 = 1iqmi

(
ωmpLs − kf 3g1

)(
ωmpLs + kf 4g1

) (57)

If the condition of convergence can be satisfied as shown in
Eq. (57), the ILC parameters kf 3 and kf 4 can be satisfied as
follows. (

ωmpLs − kf 3g1
)(

ωmpLs + kf 4g1
) > 1 (58)

IV. SIMULATION STUDY
The PMSM parameters are listed in Table 1. This paper
testifies the correctness of the methods under different con-
ditions through MATLAB software. This paper defines the
first method as traditional DPCC, and the second method is
the proposedDPCCwith NCDO. Considering that the control
system contains one-step delay, the delay time is set to one
control period and the system sampling time is set to 50 µs.
This paper adopts the speed-loop control strategy to drive the
PMSM, and the maximum output value of speed controller
is limited to 10 A. Because the PMSM is a surface-mount
motor, this paper adopts the id = 0 control strategy to drive
the PMSM. The switching frequency is set to 20 kHz and the
simulation parameters are kkd = kkq = 10, kld = klq = 10,
kgd = kgq = 830, and kf 1 = 15, kf 2 = −15, kf 3 = 20, and
kf 4 = −15 based on the system stability condition.

TABLE 1. PMSM parameters.

First, when the system has no parameter mismatch or
current measurement error and the target speed is set to
600 r/min, the two methods almost have the same perfor-
mance. Fig. 4 shows the current iA, id, and iq of the two
methods from speeds of 0 r/min to 600 r/min and the load
torque change from 4 Nm to 6 Nm at 0.15 s when 9 ′r = 29r.
From (c), it can be found that iq exceeds 10 A with increasing
speed, which means that the q-axis current cannot track the
reference current well. When 9 ′r = 1/29r, it has the same
condition. The total harmonic distortion (THD) computations
at different conditions are listed in Table 2.

FIGURE 4. Simulation results of iA phase current, id current, and speed
under 9′

r = 29r at 600 r/min: (a), (c) method 1; (b), (d) method 2.
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TABLE 2. THD comparisons of two methods in simulation results.

FIGURE 5. Simulation results of iA phase current, id current, and speed
under L′

s = 2Ls at 600 r/min: (a), (c) method 1; (b), (d) method 2.

Fig. 5 shows the current comparisons of the two methods
under L ′s = 2Ls at 600 r/min from 4 Nm to 6 Nm. From the
graph, we can see that the current ripple in method 1 is higher
than that in method 2.

To observe the high-speed performance between the two
methods, Fig. 6 shows the iA, id, and iq performance compar-
isons of the two methods under L ′s = 2Ls at 1200 r/min from
4 Nm to 6 Nm. It can be seen that method 2 has the lowest
current ripple.

FIGURE 6. Simulation results of iA phase current, id current, and speed
under L′

s = 2Ls at 1200 r/min: (a), (c) method 1; (b), (d) method 2.

To verify that the influence of resistance mismatch dis-
turbance in DPCC, Fig. 7 shows the current comparison of
the two methods under R′s = 10Rs at 600 r/min. From this
graph, it can be seen that the measured currents can track
the reference currents well in method 2, which indicates that
method 2 can suppress the resistance mismatch disturbance.

To testify the proposed method possesses the advantage to
suppress nonperodic and periodic disturbances, method 2 and

FIGURE 7. Simulation results of iA phase current, id current, and iq
current under R′

s = 10Rs at 600 r/min: (a), (c) method 1; (b), (d) method 2.

FIGURE 8. Simulation results of iA phase current, id current and speed
under L′

s = 2Ls at 1000r/min: (a1), (a2), (a3) method 1; (a4), (a5), (a6)
method 2; (a7), (a8), (a9) method 3.

method 3 are redefined as the DPCC with SMC distur-
bance observer in [18] and proposed method respectively.
Fig. 8 shows current iA, iq current and speed performance
comparisons of three methods under L ′s = 2Ls at 1000r/min.
It can be seen that method 3 and method 2 has the same
performance, which can testify that method 3 can have the
same ability to suppress the nonperiodic disturbance with
method 2. In addition to suppressing the PMSM parameter
mismatch disturbances, and to testify that method 3 can
restrain the current measurement error disturbance, this paper
adds a sinusoidal disturbance to the d-axis current id and the
q-axis current iq to simulate the periodic harmonic currents.
The sinusoidal disturbance’s amplitude is set to the value
of 1 A and the frequency is same with the PMSM phase’s
stator currents frequency. It has been noted that because the
system is based on speed control, the output in the speed
controller can track the measured currents. In this case,
the pulsating torque is not obvious. This paper observes the
speed error between the target speed and the measured speed
performance of the system. Furthermore, the ILC algorithm
requires several iteration cycles to estimate the periodic dis-
turbances, so the disturbances are compensated at several
iteration cycles. Fig. 9 shows that the PMSM speed error at
400r/min in three methods. From graph (a3) which begins
to iterate from 0.05s to 0.4s, ten iterations are carried out,
and it can be found that the PMSM speed error decreases
with the iteration increasing. Fig. 10 shows that the frequency
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FIGURE 9. Simulation results of motor speed error at 400r/min:
(a1) method 1; (a2) method 2; (a3) method 3.

FIGURE 10. Simulation results of the frequency spectrum at 400r/min:
(a1) method 1; (a2) method 2; (a3) method 3.

spectrum comparisons of three methods at 400r/min. It can be
seen that the amplitude of sinusoidal disturbance frequency
is decreased in (a3). In this case, the proposed DPCC can
suppress the parameter mismatch disturbances and current
measurement error disturbances in simulation, which is better
than the method 2 in [18].

V. EXPERIMENTAL RESULTS
In this section, the experimental platform is established.
Before describing the performance of the two methods under
different conditions, the experimental platform of motor
drives is introduced. The platform includes a power supply
(400 V), 2-kW drive PMSM, DSP emulator, oscilloscope,
Siemens control system that can be taken as a load motor sys-
tem, drive PMSM controller, and PC. This paper utilizes the
TMS320F28377d as the main chip for the PMSM controller
and selects the FNC42060F-type IPM as the power devices in
the two-level inverter. The PMSM drive system is presented
in Fig. 11.

The system sampling period is set to 50 µs, which is the
same as in the simulation. The experimental parameters are

FIGURE 11. Experimental platform of a two-level inverter PMSM drive.

FIGURE 12. Experimental results of id current and iq current under
9′

r = 29r at 600 r/min: (a) method 1, (b) method 2.

kkd = kkq = 20, kld = klq = 20, kgd = kgq = 630,
kf 1 = 25, kf 2 = −25, kf 3 = 35, and kf 4 = −25.
To observe the transient and steady-state performance of the
two methods, the load is set from 3 Nm to 6 Nm and then
to 3 Nm during the experiment. When there is no parameter
mismatch or current measurement error disturbances, the two
methods almost have the same performance in the experimen-
tal results. Fig. 12 shows the comparison of the currents of the
two methods under 9 ′r = 29r at 600 r/min. From the graph,
it can be seen that the current ripple in method 1 (traditional
DPCC) is higher than that in method 2 (proposed DPCC),
and the measured current iq can track the reference current
iq in method 2. Similarly, the THD computations at different
conditions are listed in Table 3. Fig. 13 shows that current
performance of the twomethods under L ′s = 2Ls at 600 r/min.

TABLE 3. THD comparisons of two methods in experimental results.
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FIGURE 13. Experimental results of id current and iq current under
L′

s = 2Ls at 600 r/min: (a) method 1, (b) method 2.

It can be seen that the current ripple in method 1 is smaller
than that in method 2.

To demonstrate the high-speed condition, Fig. 14 shows
the id and iq performance comparisons of the two methods
under L ′s = 2Ls at 1200 r/min. It can be seen that the currents
ripple is lower in method 2, which indicates that the method
can suppress inductance mismatch disturbances.

FIGURE 14. Experimental results of id current and iq current under
L′

s = 2Ls at 1200 r/min: (a) method 1, (b) method 2.

For R′s = 10Rs at 600 r/min, Fig. 15 shows the currents
of the two methods. It can be seen that the measured current
iq cannot track the reference current iq in method 1, and
the currents ripple is too high compared with the current
performance in method 2.

FIGURE 15. Experimental results of id current and iq current under
R′

s = 10Rs at 1200 r/min: (a) method 1, (b) method 2.

To observe the iA performance in the two methods under
L ′s = 2Ls at 600 r/min, the load torque is set from 2 Nm
to 5 Nm. From Fig. 16, which was graphed by oscilloscope,
it can be seen that the iA ripple in method 1 is too high.
Furthermore, the multiple-parameter mismatch test is car-

ried out in this paper. When the PMSM parameters are under

FIGURE 16. Experimental results of iA current under L′
s = 2Ls at

600 r/min: the left is method 1; the right is method 2.

FIGURE 17. Experimental results of id current, iq current, and motor
speed under R′

s = 5Rs, L′
s = 2Ls, and 9′

r = 0.59r: (a), (c) method 1;
(b), (d) method 2.

the R′s = 5Rs, L ′s = 2Ls, and 9 ′r = 0.59r condition,
the current and PMSM speed performance of the twomethods
are shown in Fig. 17. The torque ripple is set to 5 Nm at all
times. The speed target is set from 700 r/min to 1100 r/min,
and then decreased from 1100 r/min to 900 r/min. From this
result, we can see that method 2 can suppress the parameters
mismatch disturbances.

FIGURE 18. Experimental results of the motor speed error under 1-A
current-offset disturbance: (a) method 1; (b) method 2.

To establish the current measurement error disturbance in
DPCC, the dc-offset current disturbance (current values of
1 A and 2 A) are added into the system. The frequency of
the periodic offset currents is the same as the motor phase’s
stator current frequency. Fig. 18 and Fig. 19 show the PMSM
speed error performance under 1-A and 2-A dc-current offset
disturbances at 400 r/min for the two methods. Because the
sampling data is limited, after ten iteration cycles are over,
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FIGURE 19. Experimental results of the motor speed error under 2-A
current-offset disturbance: (a) method 1; (b) method 2.

FIGURE 20. Experimental results of the frequency spectrum under 1-A
current-offset disturbance: (a) method 1; (b) method 2.

FIGURE 21. Experimental results of the frequency spectrum under 2-A
current-offset disturbance: (a) method 1; (b) method 2.

the data is measured through the PC. In this case, we can
see that the speed error is small in method 2. Fig. 20 and
Fig. 21 depict the frequency spectrum of the two methods
under 1-A and 2-A current offset. It can be seen that the
amplitude of the 26.67-Hz signal, which is at the same fre-
quency as the PMSM phase’s stator current at 400 r/min,
is reduced from 0.7468 to 0.2875 under a 1-A current-offset
disturbance. Similarly, the amplitude of the 26.67-Hz signal
is reduced from 1.39 to 0.5758 under a 2-A current-offset
disturbance. Therefore, from the experimental result, the pro-
posed DPCC with NCDO not only suppresses the influence
of parameter mismatch disturbances but also suppresses the
influence of current measurement error disturbances.

VI. CONCLUSION
From the simulation and experimental results, under con-
ditions without parameter mismatch disturbance, it can be
found that the traditional DPCC and the proposed DPCC
with NCDO have the same performance. When parame-
ter mismatch disturbances occur, the proposed DPCC with
NCDO is able to suppress the influence of the disturbance
and reduce the current harmonic. Apart from that, when there
are periodic disturbances such as current measurement error
disturbances in the system, the proposed DPCC with NCDO
can also compensate. Therefore the proposed DPCC with
NCDO can be experimentally applied to PMSM drives.
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