
Received September 22, 2019, accepted October 6, 2019, date of publication October 11, 2019, date of current version October 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946939

Superpixel Tensor Pooling for Visual Tracking
Using Multiple Midlevel Visual Cues Fusion
CHONG WU 1, (Student Member, IEEE), LE ZHANG2, JIAWANG CAO3,
AND HONG YAN 1, (Fellow, IEEE)
1Department of Electrical Engineering, City University of Hong Kong, Hong Kong
2Department of Computer Science and Technology, Tongji University, Shanghai 200092, China
3School of Automation, China University of Geosciences, Wuhan 430074, China

Corresponding author: Chong Wu (chongwu2-c@my.cityu.edu.hk)

This work was supported in part by the Hong Kong Research Grants Council under Project C1007-15G, and in part by the City University
of Hong Kong under Project 7005230.

ABSTRACT In this paper, we propose a method called superpixel tensor pooling tracker which can fuse
multiple midlevel cues captured by superpixels into sparse pooled tensor features. Our method first adopts
the superpixel method to generate different patches (superpixels) from the target template or candidates.
Then for each superpixel, it encodes different midlevel cues including HSI color, RGB color, and spatial
coordinates into a histogram matrix to construct a new feature space. Next, these matrices are formed to a
third order tensor. After that, the tensor is pooled into the sparse representation. Then the incremental positive
and negative subspaces learning is performed. Our method has both good characteristics of midlevel cues
and sparse representation hence is more robust to large appearance variations and can capture compact and
informative appearance of the target object. To validate the proposed method, we compare it with state-of-
the-art methods on 24 sequences with multiple visual tracking challenges. Experiment results demonstrate
that our method outperforms them significantly.

INDEX TERMS Incremental positive and negative subspaces learning, multiple midlevel visual cues fusion,
superpixel tensor pooling, visual tracking.

I. INTRODUCTION
The study of visual tracking has been achieved great suc-
cesses in recent years. Visual tracking is a process of locating
a moving object or multiple objects over time in a video
stream or using a camera. It can be divided into three steps:
(1) object detection; (2) location prediction; (3) data asso-
ciation. Before using tracking algorithm to perform these
steps, for each video application, a shot boundary detection
needs to be performed to extract the sequence [1]. However,
because of the heavy occlusion, drifts, fast motion, severe
scale variation, large shape deformation, etc., visual tracking
is still a challenge in computer vision [2]–[4].

Many advanced visual tracking methods have been devel-
oped to solve these challenges, such as sparse representa-
tion based approaches, correlation filter (CF) based methods,
deep learning (DL) based methods, etc. Sparse representa-
tion has been introduced successfully into the construction
of the appearance model in visual tracking [3]–[5]. It uses
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the sparse linear representation to represent the candida-
tes [3], [5]. It can use very few but most related target tem-
plates to reduce impacts of background noise [4]. Moreover,
it can use local sparse codes to model the target appearance
adaptively and exploit the discriminative nature [4]. Some
effective sparse representation based methods has been pro-
posed [3]–[5]. The work in [4] has introduced the tensor
pooling into the construction of the discriminative appearance
model, which can deliver intrinsic structural information and
robust against drifting and environmental noise. Nonneg-
ative local coordinate factorization in visual tracking and
the inverse nonnegative local coordinate factorization into
constructing the discriminative appearance model proposed
in [5] shows a strong discriminative ability between the target
and the background. However, most of these methods have a
defect of high computational cost. CF based methods use the
correlation filter theory from the signal processing field [6].
CF based methods can achieve a high-speed and real-time
tracking and a high accuracy. But most of them does not
work well in tracking a rapidly moving object, a large object
scale variation, or a non-rigid object. To solve these problems,
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some improved CF based methods have been propo-
sed [6]–[8]. Recently, deep learning has been used success-
fully in the visual tracking [8]. Compared to conventional
tracking methods, the DL based methods have shown larger
improvements in tracking performance. The work in [9] has
introduced a convolutional neural network (CNN) into visual
tracking, which is one of the first works of introducing
CNN into the visual tracking. Another classical DL based
trackers is the multi-domain convolutional neural networks
(MDNet) [10]. It trains a multi-domain CNN to distinguish
the object and the background and has achieved a high track-
ing accuracy and success rate [7]. However, it suffers from a
slow speed. To avoid the training problem, some works using
pre-trained CNN for feature extraction have been developed.
Paper [11] uses a pre-trained CNN to obtain hierarchical con-
volutional features and improve the accuracy and robustness.

One important aspect of visual tracking is the appearance
modeling. Different levels of appearance and spatial cues are
successfully applied in the appearance modeling [12], [13].
Compared to high-level information (eg. structural informa-
tion) and low-level visual cues (eg. pixels), midlevel visual
cues (eg. group of pixels such as superpixels) are shown
to be more effective in representing the structure of the
image [12]–[15]. Some researchers applied superpixel meth-
ods to obtain the midlevel cues in visual tracking and
their methods show robust against heavy occlusion and dri-
fts [12]–[16]. Superpixel is a group of pixels which are sim-
ilar in some properties like color [17]–[19]. Superpixels can
reduce the redundancy and preserve the structure from the
image [17], [19]–[22]. Through substituting thousands of pix-
els with only hundreds of superpixels, subsequent image pro-
cessing tasks are also speeded up [17], [19], [20], [23], [24].
But the utilization of superpixels will reduce the dimension of
original data (for a matrix, it will be vectorized). It will cause
the loss of spatial information of the target object. Hence,
how to fuse spatial information into the appearance model
constructed by midlevel cues is still a challenge [16]. Some
researchers used the Euclidean distances from the target to
the candidates as the weight to integrate spatial informat-
ion [12], [13]. It can preserve some spatial information to
some extent. However, the spatial information like the shape
of the target is still lost. Hence, some of these methods are
more sensitive to color variations than spatial variations and
this might result in a poor performance in a tracking chal-
lenge such as background clutters. Some researchers have
shown that integrating more information in sparse repre-
sentation can improve the tracking performance [25]. Some
other researchers tried to fuse the depth cue with superpixel-
based target estimation using graph-regularized sparse coding
and improved the discriminative ability of the trackers [16].
Moreover, different color channels are suitable to different
tracking scenarios. Integrating different color channels into
a unified framework will also help to improve the robust-
ness of tracker. Hence, it is of great interest to develop an
elegant method for fusing multiple midlevel cues in sparse
representation.

In this paper, we propose a visual tracking method called
superpixel tensor pooling tracker (SPTPT) which can inte-
grate multiple midlevel cues (such as the information of
different color channels, spatial coordinates, shape, etc.)
obtained by superpixels in a unified sparse coding ten-
sor form. With the utilization of sparse representation and
midlevel cues, ourmethod has both good characteristics of the
midlevel cues and sparse representation. In addition, through
fusing multiple midlevel cues, our method is more robust
than some state-of-the-art methods under large appearance
variations. The contribution of this paper can be summarized
as follows,

1) This is the first attempt of using superpixels to obtain
tensor-pooled sparse features. With the utilization of
superpixels, the patches obtained are more meaningful
than the patches obtained by sliding window.

2) Our method provides an effective fusion framework for
fusing multiple midlevel cues in a unified sparse repre-
sentation. Hence the constructed discriminative appear-
ance model can take the advantage of different midlevel
cues.

To validate our method, we select 11 state-of-the-art track-
ing methods and 24 sequences with multiple tracking chal-
lenges from the benchmark [26], and we compare their
reasonable lower-bound performances (we used one default
parameter for all sequences without any tuning). Experiment
results show that the lower-bound performance of our method
is significantly better than existing ones.

The rest of this paper is organized as follows. In Section 2,
we first introduce the superpixel segmentation method used
in our method. Then we describe the fusion model and the
incremental positive and negative subspaces learningmethod.
At the end of this section, we introduce the motion model and
give a brief summary of the proposed algorithm. In Section 3,
we first illustrate the experiment settings and evaluation
metrics. We then analyze the experiment results. Finally,
we present the conclusion in Section 4.

II. SUPERPIXEL TENSOR POOLING TRACKER
In this section, we will introduce four main parts and provide
an algorithm summary of the proposed SPTPT.

A. PATCHES EXTRACTION USING SUPERPIXEL
SEGMENTATION
Producing meaningful patches is important to construct
tensor-pooled sparse features. Compared to the patches
obtained by sliding window [3], [4], superpixels are more
meaningful, because superpixels can preserve the image
structure and reduce the redundancy. Hence, we introduce
superpixel segmentation into patches (superpixels) extrac-
tion in SPTPT. To construct tensor-pooled sparse features,
we need to keep the number of patches obtained precisely.
Hence, a superpixel method which can control the superpixel
number precisely is needed. We select simple non-iterative
clustering (SNIC) [18], which can generate precise number
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FIGURE 1. The process of patches extraction and features construction using the superpixel segmentation. (1) Select the target template of size
n1 ∗ n2; (2) Generate n3 superpixels to cover the template exhaustively; (3) Calculate the normalized histograms of multiple midlevel visual cues as
the features for each superpixel.

of superpixels as the superpixel method in SPTPT (compact-
ness coefficient: 20, in this paper). SPTPT uses a template
of size n1 ∗ n2 to select a target template. Then, SNIC is
adopted to generate n3 non-overlapping superpixels to cover
the template exhaustively. In this paper, we set n1 = n2 = 32,
n3 = 30. We use normalized histograms in HSI color space,
RGB color space, and spatial information respectively as the
features for each superpixel. Each histogram vector for each
midlevel cue in a superpixel is as follow,

f = [f1, f2, . . . , fn]T, (1)

where, n is the number of bins of each histogram. Each ele-
ment in f represents the frequency of each bin in a superpixel
region. It can be calculated as follow,

fi =
c
r
, (2)

where, c is the number of pixels corresponding to bin i in a
superpixel region and r is the total number of pixels in this
superpixel region.

B. FUSION MODEL FOR MULTIPLE MIDLEVEL CUES
Before combining these vectors into a unified matrix form,
it is important to evaluate the correlation between the HSI
color space and the RGB color space. To calculate the cor-
relation of different color spaces, we vectorize all images of
the dataset we used in HSI color space and RGB color space
respectively. Then we use the Pearson’s linear correlation
coefficient to calculate the correlation of these vectors pair-
wise. And finally, we get the overall Pearson’s linear correla-
tion coefficient ρ = 0.0591 and a p-value p = 0.003 < 0.05,
which means they are correlated but the correlation is very
weak. Hence, we can combine these color spaces directly.
These vectors are combined to construct the feature matrix
of each superpixel as follow,

F = [f1, f2, . . . , fm], (3)

where, m is the number of features, and in this paper, m = 8
(H, S, I, R, G, B, x, y). The process of patches extraction and
features construction is shown in Fig. 1.

We apply local sparse codes to encode these histogram
features. We reshape the feature matrix to a feature vector
a ∈ RB of each superpixel and compute the sparse coefficient
vector h ∈ Rz of it using the formula as follow,

min
hi
||ai − Dhi||22 + λ||hi||1, (4)

where, B = n×m, D ∈ Rz×s is the dictionary matrix learned
by the clustering result of a of the superpixels obtained in the
first frame, z is the number of cluster centroids and s is the
number of superpixels.

Then, we arrange the sparse coefficient vector h of each
superpixel of each candidate in a unified third order tensor
T ∈ Rz×s×v according to the spatial order of their correspond-
ing superpixels in the candidate templates. v is the number of
candidate templates.

C. INCREMENTAL POSITIVE AND NEGATIVE
SUBSPACES LEARNING
The update and learning scheme used in SPTPT is based on
the incremental subspace learning [27]. In order to make the
tracker more robust against drifts, we refer to papers [3], [4]
to introduce discriminative framework called negative sub-
space learning into the learning scheme. Hence, the learning
scheme used in SPTPT is called incremental positive and
negative subspaces learning.

If the algorithm reaches the update rate u (in this paper, u is
set to 5), then a third order tensor T ∈ Rz×s×u corresponding
to positive subspace is constructed. We use the incremental
rank tensor subspace analysis (IRTSA) algorithm [27] to find
the dominant projection subspaces of it. The details of IRTSA
can be referred in [27]. To learn the positive subspace, it is
necessary to evaluate the likelihood between the candidate
sample and its approximation in the learned positive sub-
space. Given a third order tensor J ∈ Rz×s×1 of a candidate
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FIGURE 2. The workflow of the proposed tracker.

FIGURE 3. Screen shots obtained by four top ranked trackers in the tracking of Bird1, Basketball, Skating2, and Bolt videos.
Cyan box: Ours; Yellow box: robust superpixels tracking (SPT); Red box: discriminative tracking using tensor pooling (TPT);
Green box: correlation-filter based scale-adaptive visual tracking with hybrid-scheme sample learning (KCFS).

in the new frame, the evaluation of its likelihood in the learned
positive subspace can be determined by the reconstruction
error as follows,

RE1 =
2∑
i=1

||(J(i) −M(i))− (J(i) −M(i))
2∏
j=1

×j(U (j)
· U (j)T)||2, (5)

RE2 = ||(J(3) −M(3))− (J(3) −M(3)) · (V (3)
· V (3)T)||2,

(6)

RE = γRE1 + (1− γ )RE2, (7)

where, M is the mean tensor of T , M(i)(i = 1, 2, 3) is the
mode-i unfolding matrix ofM, J(i)(i = 1, 2, 3) is the mode-i
unfolding matrix of J , U (j)(j = 1, 2) is the mode-j column
projection matrix of the learned subspace, V (3) is the mode-
3 row projection matrix of the learned subspace, and γ is the
control weight, in this paper, γ = 0.5.
As to the negative subspace learning, in contrast to the pos-

itive subspace learning which collects the positive samples
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FIGURE 4. Overall success plots of 12 trackers. Rank: Ours, KCFS, TPT, SPT,
STRUCK, TLD, VTD, INCLF, CSK, SMS, CT, LK.

FIGURE 5. Overall precision plots of 12 trackers. Rank: Ours, KCFS, TPT,
SPT, STRUCK, VTD, SMS, TLD, CSK, INCLF, CT, LK.

per frame using the tensor-pooled sparse features obtained
from the tracked frames and is incremental learned by
IRTSA, the negative samples are only collected in the last
tracked frame through extracting superpixels a certain dis-
tance threshold (several pixels) around the estimated loca-
tion of the target [3], [4]. Since these negative samples
are collected in only one frame rather than a sequence of
frames, the negative subspace is learned directly by doing
tensor decomposition (TD) of the sparse pooling tensors
of these samples. The likelihood can also be calculated by
Equations (5)-(7).

D. MOTION MODEL BASED ON BAYESIAN INFERENCE
The motion model of SPTPT is based on Bayesian inference.
Let Xt = {xt , yt , ϑt , ot , βt , φt } represent the state (affine
transformation parameters) at tth frame, where xt is the x
translation, yt is the y translation, ϑt is the rotation angle, ot is
the scale, βt is the aspect ratio, and φt is the skew direction,
let St represent a set of the observations {S1, S2, . . . , St } at
time t . The posterior probability is calculated as follow,

p(Xt |St ) ∝ p(St |Xt )
∫
p(Xt |Xt−1)p(Xt−1|St−1)dXt−1, (8)

where, p(St |Xt ) represents the observation model here is
the likelihood function, and p(Xt |Xt−1) denotes the dynamic
model between states Xt and Xt−1. We apply a particle fil-
ter [28] to generate samples (number of positive samples:
600 and number of negative samples: 200, in this paper)
through estimating the distribution. The optimal state can
be obtained by using the maximum a posteriori (MAP)
estimation,

X̂t = argmax
X it

p(S it |X
i
t )p(X

i
t |Xt−1), i = 1, 2, . . . , b, (9)

where, b is the number of samples and X it represents the sam-
ple i of state Xt . The dynamic model p(Xt |Xt−1) is formulated
using the random walk as follow [4],

p(Xt |Xt−1) = N (Xt ;Xt−1, �), (10)

where, � is a diagonal covariance matrix. Its diagonal ele-
ments are σ 2

x , σ
2
y , σ

2
ϑ , σ

2
o , σ

2
β , σ

2
φ , respectively.

Finally, the likelihood of a candidate in both positive and
negative subspaces is formulated as follow:

p(Yt |Xt ) ∝ exp(RE (−)
− RE (+)). (11)

To make the tracker more robust and avoid overfit-
ting, SPTPT uses the likelihood function above to con-
trol the learning: only when the best candidate’s likelihood
exp(RE (−)

−RE (+)) > 8, it can be accepted into the updating
scheme, where 8 is a threshold, in this paper, it is set to 0.

E. ALGORITHM SUMMARY
Fig. 2 illustrates the workflow of the proposed tracking
algorithm:
1) Use the particle filter (PF) and affine transformation to

produce some candidates.
2) Use simple non-iterative clustering (SNIC) to generate

superpixels.
3) Compute the histograms of color and spatial information

in each superpixel.
4) Construct the histograms to a third order tensor.
5) Continue Steps 3-4 until the features of all superpixels

of all candidates are obtained.
6) Determine whether the current frame is the first frame.

If yes, produce the dictionary matrix D, store the tensor
T of it into an updating sequence and then go to Step 1,
otherwise go to Step 7.

7) Use D to do the pooling of tensors obtained in Steps 3-5
to obtain the sparse pooling tensors J .

8) Evaluate the likelihood of J in positive and negative
subspaces using Equation (11).

9) According to the likelihood, update the discriminative
appearance model. If the max likelihood > 0, store the
tensor J of max likelihood into the updating sequence
and use PF to draw some negative samples to update
negative subspace and if algorithm reaches update rate
u, use IRTSA to update positive subspace.

Continue Steps 1-9 until the last frame is processed.

III. EXPERIMENTS AND RESULTS
To validate the proposed method, we follow the protocol of
the benchmark [26]. We compared our method with eleven
state-of-the-art methods: discriminative tracking using tensor
pooling (TPT) [4], robust superpixel tracking (SPT) [13],
correlation-filter based scale-adaptive visual tracking with
hybrid-scheme sample learning (KCFS) [8], inverse non-
negative local coordinate factorization (INCLF) [5], optical
flow method using observation model based on intensity
restrictions (LK) [29], structured output tracking with kernels
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FIGURE 6. The success plots of 12 trackers about 11 challenging attributes on the benchmark.

(STRUCK) [30], P-N learning: bootstrapping binary clas-
sifiers by structural constraints (TLD) [31], visual tracking
decomposition (VTD) [32], circulant structure of tracking-
by-detection with kernels (CSK) [33], mean-shift blob track-
ing through scale space (SMS) [34], real-time compressive
tracking (CT) [35] and tested them on 24 sequences (Basket-
ball, Biker, Bird1, Bird2, Bolt, CarScale, DragonBaby, Foot-
ball1, Lemming, Liquor, MountainBike, Panda, RedTeam,
Rubik, Singer1, Skating1, Skating2, Soccer, Subway, Surfer,
Tiger2, Trans, Trellis, Woman) with multiple visual tracking
challenges (illumination variation, scale variation, occlusion,
deformation, motion blur, fast motion, in-plane rotation, out-
of-plane rotation, out-of-view, background clutters, and low
resolution) from the benchmark [26]. SPTPT is implemented
using MATLAB and conducted on a Mac with OSX 10.14,
Intel Core i5 2.3 GHz 4 cores CPU, and 16 GBRAM. To keep
the fairness, all methods are used one default parameter for
all sequences without any tuning, that is to say, the results
shown in this section are the lower-bound performance of
each method.

A. EVALUATION METRICS
Precision plots and success plots [26] are used to evaluate the
overall performance and robustness of trackers. A precision
plot illustrates the ratio of frames whose center location error
is within a threshold distance to the ground truth. A success

plot illustrates the percentage of frames of which overlapping
rate between tracked results and ground truth is larger than
a certain threshold. The final rank is according to the area
under the curve (AUC) of each tracker. The precision and suc-
cess rate of all trackers are tested under one-pass evaluation
(OPE).

B. PERFORMANCE ANALYSIS
Fig. 3 shows some screen shots obtained by four top ranked
trackers: the proposed tracker, SPT, TPT, and KCFS in the
tracking of Bird1, Basketball, Skating2, and Bolt videos.
In the Bird1 sequence, the target undergoes the tracking
challenges of deformation, fast motion, and out-of-view. Our
method can track more shots accurately than other three
trackers. In the Basketball sequence, the target undergoes
the tracking challenges of illumination variation, occlusion,
deformation, out-of-plane rotation, and background clutters.
SPT fails in tracking this video. Our method and KCFS
achieve the comparable performance in this video and are
better than TPT. In the sequence of Skating2, the target under-
goes scale variation, occlusion, deformation, fast motion, and
out-of-plane rotation. As shown in Fig. 3, our method can
track the target more accurately. In the sequence of Bolt,
the target undergoes occlusion, deformation, in-plane rota-
tion, and out-of-plane rotation. TPT fails in tracking this
video. To sum up, our method is more robust against multiple
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FIGURE 7. The precision plots of 12 trackers about 11 challenging attributes on the benchmark.

visual tracking challenges than other three trackers. Figs. 4-5
demonstrate the overall performance achieved by our method
and state-of-the-art trackers. In Fig. 4, we can see that our
method obtains the highest success rate and outperforms
the second one (KCFS) by 5.6%. In Fig. 5, our method also
obtains the highest precision rate and outperforms the second
one (KCFS) by 3.7%. Figs. 6-7 illustrate attributed-based per-
formance. From Fig. 6, we can see that our method achieves
the highest success rate in all challenging attributes except
background clutters, illumination variation, low resolution,
and scale variation. In terms of background clutters, the suc-
cess rate of proposed tracker (58.6%) is just inferior to KCFS
(65.4%). As to the illumination variation, the success rate
achieved by ourmethod (52.5%) is almost the same compared
to the best score achieved by KCFS (53.0%). In terms of
low resolution and scale variation, our method also achieves
the second best success rate. From Fig. 7, our method
achieves the highest precision rate in all challenging attributes
except background clutters, illumination variation, and scale
variation. In terms of background clutters, illumination varia-
tion, and scale variation, our method also achieves the second
best precision rate. In conclusion, our method shows more
robust against different visual tracking challenges compared
to state-of-the-art trackers. Table 1 shows the average running
time of four top ranked trackers in this paper, compared
with TPT, SPT, KCFS (three top ranked trackers): 2.3s per
frame (Ours), 2.7s per frame (TPT), 0.8379s per frame (SPT),
0.0072s per frame (KCFS), our method is faster than TPT by

TABLE 1. The average running time of four top ranked trackers in this
paper.

17.4% but inferior to SPT and KCFS and fails to meet real-
time requirement.

IV. CONCLUSION
In this paper, we propose a visual tracking method which
can fuse multiple midlevel cues obtained by superpixels
to construct tensor-pooled sparse features. The discrimina-
tive model of our method has both good characteristics of
midlevel cues and sparse representation. In the validation, our
method shows more robust against different visual tracking
challenges than state-of-the-art methods. One main defect of
our method is that it cannot meet the real-time requirement
which is caused by large computation of IRTSA and tensor
decomposition. We are studying using FPGA to implement
an accelerator to speed up the tensor computation. In future,
we will use the accelerator to implement a real time version
of our method.
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