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ABSTRACT Automatically segmenting bile ducts and hepatolith in abdominal CT scans is helpful to
assist hepatobiliary surgeons for minimally invasive surgery. High-deformation characteristics of bile ducts
and small-size characteristics of hepatolith make this segmentation task challenging. To the best of our
knowledge, we make the first attempt to simultaneously segment bile ducts and hepatolith in this paper.
Inspired by U-Net, a novel two-dimensional end-to-end fully convolutional network named M-Net is
designed to implement this segmentation task. The M-Net is composed of four streams involving two
encoder-decoder processes. Multi-scale dilated convolutions are designed to extract abundant semantic
features and multi-scale context information at different scales. To make full advantages of multi-scale
feature maps, a multi-stream feature fusion strategy is proposed to transfer the most abundant semantic
features produced in the first stream to the other streams. To further improve the segmentation performance,
a novel loss function is defined to focus the M-Net on hard pixels (difficultly distinguished) in the edges of
bile ducts and hepatolith, which is based on the online bootstrapped method and cross entropy. By discarding
pixels (easy to distinguish) with higher probability of class, the decline of loss is focused on hard pixels
so that the training become more efficient and directional. Experimental results indicate that our proposed
M-Net is superior to the state-of-the-art deep-learning methods for simultaneously segmenting bile ducts
and hepatolith in the abdominal CT scans. The M-Net can simultaneously segment bile ducts and hepatolith
in abdominal CT scans at a high performance with 98.678% Recall, 84.427% Precision, 89.831% DICE and
90.998% F1-score for bile ducts, and 99.894% Recall, 55.132% Precision, 71.248% DICE and 71.051%
F1-score for hepatolith.

INDEX TERMS Segmentation of bile ducts and hepatolith, U-Net, multi-scale dilated convolution, multi-
stream feature fusion, online bootstrapped loss function, cross entropy.

I. INTRODUCTION
Hepatobiliary stone disease is one of the most common surgi-
cal conditions in the world, especially in Asia [1]. At present,
minimally invasive surgery for hepatolith removal is the dom-
inate surgical method for the treatment of hepatolithiasis. Bile
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ducts and hepatolith should be well positioned in CT scans for
preoperative plans so that hepatobiliary surgeons can make
accurate surgical plans. This task should be cautiously done
by the experienced hepatobiliary surgeons to achieve success-
ful minimally invasive surgery. If an automatic segmentation
method for bile ducts and hepatolith is designed, it will assist
hepatobiliary surgeons to obtain accurate positions of bile
ducts and hepatolith in CT scans so that they can achievemore
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FIGURE 1. (a) An abdominal CT image; (b) Corresponding visualization of
the lesion region: bile ducts are marked with the red region, and the
hepatolith is marked with the green region.

intuitive judgments to improve the success rate of surgery.
Fig. 1 illustrates an automatic segmentation example for bile
ducts and hepatolith in abdominal CT scans. Bile ducts and
hepatolith should be simultaneously and automatically seg-
mented from the input original CT image. Here, bile ducts
are marked with the red region, and the hepatolith is marked
with the green region.

Classical image processing methods have successfully
dealt with medical image segmentation, such as random
forest classification [2], accurate model-based segmenta-
tion [3], level set [4] and sparse decomposition [5]. Recently,
more and more researchers have introduced deep learning
into medical image segmentation [6]–[20] due to its excel-
lent ability of self-learning from a large amount of data
through its special convolutional structures. Among them,
U-Net [6], [7], [9], [10], [15]–[19], [22]–[24], an end-to-
end full convolutional neural network, is a most promising
network for medical image segmentation. Thanks to its skip-
connection at different resolutions, more image details can
be involved in the decoder process, resulting in better image
segmentation [6]. A variety of researchers employed U-Net
to segment tissues/organs or lesions such as brain tumor, left
ventricle, prostate [7], [9], [10]. U-Net has an inherent archi-
tecture of pooling in the encoder process and interpolation
in the decoder process, which will influence segmentation
performance.

To improve segmentation performance, some researchers
have modified the original U-Net by incorporating some
modules or by adjusting some sub-structures [15]–[19], [22].
Zhang et al. [15] combined residual network (ResNet)
and U-Net to propose a new end-to-end network named
Res-U-Net, which was applied to ultrasound nerve segmen-
tation. Md. Zahangir Alom [16] incorporated the ideas of
recurrent convolutional neural network and residual network
into U-Net to propose a novel network named R2U-Net.
The R2U-Net makes full advantages of feature accumula-
tion with recurrent residual convolutional layers and U-Net.
Compared with the original U-Net and Res-U-net, it achieves
better results in blood vessel segmentation in retina images,
skin cancer segmentation, and lung lesion segmentation.
Oktay et al. [17] proposed the Attention U-Net (Att U-Net)
by introducing a novel attention gate model into the standard

U-Net, which was used for multi-class medical image seg-
mentation. The proposed attention gate model can suppress
irrelevant regions and highlight salient features so that the
prediction performance of the standard U-Net is improved.
Jaeger et al. [18] proposed a Retina U-Net to detect lung
nodules in CT scans, which fused the Retina Net one-stage
detector with the U-Net architecture. Its architecture relearns
the missing details by complementing object detection with
an auxiliary task. Christ et al. [19] cascaded two standard
U-Nets for a two-stage segmentation of the liver and its
lesions, respectively. The first U-Net is trained to segment the
liver from the CT image as an ROI input for the secondU-Net.
Then, the second U-Net is solely trained to segment lesions
from the predicted liver ROIs. Explicitly, their network is
not an end-to-end network. NasUnet [22] incorporates the
Neural architecture search (NAS) strategy into the U-Net
for medical image segmentation. Three types of primitive
operation set on search space are designed to automatically
find two cell architecture DownSC and UpSC. NAS can be
seen as the subfield of AutoML (auto machine learning) and
has significant overlap with hyper-parameter optimization
and meta-learning. These improved U-Nets have succeeded
in segmenting the tissues/organs or lesions from medical
images.

To the best of our knowledge, no literature reports simul-
taneously segmenting bile ducts and hepatolith in abdominal
CT scans. Bile ducts have high-deformation shapes and hep-
atolith in bile ducts is sometimes filled in bile ducts. Also,
hepatolith stones are commonly of small sizes and separated
individually. Thus, the multi-class segmentation for bile ducts
and hepatolith is challenging. In this paper, we propose a
novel U-Net to perform a multi-class task of bile ducts and
hepatolith segmentation, which is named as M-Net since its
structure looks like the characterM. TheM-Net cascades four
streams including two encoder-decoder processes. Multi-
scale dilated convolutions are designed to achieve abundant
semantic features and different scale context information of
bile ducts and hepatolith. Furthermore, the most abundant
semantic features in the first stream is transferred to the other
streams. Thus, multi-stream features are fused in the network
to preserve edge details of segmented objects. To further
refine the segmentation, an improved Bootstrapped loss func-
tion is defined by incorporating the idea of cross entropy into
the Online Bootstrapped loss function [25], [26].

To summarize, this paper contains the following contribu-
tions.

(1) We propose an end-to-end network named M-Net to
segment bile ducts and hepatolith in abdominal CT scans.

The M-Net combines two U-Nets via the strategy of multi-
stream feature fusion. This end-to-end cascaded U-Net can
avoid the problems of the reduction of the resolutions of
feature maps and the loss of semantic features.

(2) The strategy of multi-stream feature fusion in the
network can effectively fuse shallow feature information in
different streams to preserve edge details with a high segmen-
tation accuracy.
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FIGURE 2. The sketch of the M-Net for bile ducts and hepatolith
segmentation.

(3) The designed multi-scale dilated convolutions can
effectively extract the context information at different scales.
Thus, this strategy can simultaneously and excellently seg-
ment bile ducts and hepatolith with different shapes and sizes.

(4) The defined Bootstrapped cross entropy loss function
makes full advantages of the Online Bootstrapped loss func-
tion and cross entropy. It can focus the network on hard
pixels (difficultly distinguished) in the edges of bile ducts and
hepatolith, whichwill promote the segmentation performance
of the M-Net.

II. METHODS
Our method termed as M-Net is based on two-dimensional
convolutional architecture, whose input and output are origi-
nal abdominal CT images and the corresponding segmented
images involving the marked lesion region, respectively.
As sketched in Fig. 2, M-Net is composed of two cascaded
encoder-decoders. Each coder corresponds to one stream,
because different coders use different convolutional kernels
to learn multi-scale features. The details of the M-Net archi-
tecture are described as following.

A. THE ARCHITECTURE OF THE M-NET
To improve the performance of a deep network, a com-
mon scheme for a fully convolutional network (FCN) is to
deepen the network by adding convolutional layers of the
network [27]. This scheme means a more significant increase
of the number of network parameters comparedwith the accu-
racy improvement, which will result in moremodel memories
for the network and more computation burden. It indicates
that this deepening scheme should be implemented in an
equipment with an excellent hardware. Also, more pooling
operations will result in the reduction of the resolutions of
feature maps. Therefore, this scheme is not suitable for bile
ducts and hepatolith segmentation. To avoid the above prob-
lems, some attempts have been done, such as the cascaded
U-Net [19]. The cascaded U-Net combines two U-Nets to
implement the task of semantic liver and lesion segmentation.
In this network, the first U-Net is trained to segment the liver
as the ROI input for the second U-Net. The second U-Net is
trained to segment lesions from the predicted liver ROIs via
the first U-Net. It indicates that the cascaded U-Net is not
an end-to-end network. Inspired by this network, we design
a novel fully convolutional network named M-Net, which
is an end-to-end network. The architecture of the M-Net is
illustrated in Fig 3.

As illustrated in Fig. 3, the M-Net looks like the character
M, which is divided into four streams. The four streams are

composed of two encoders and two decoders. That is to say,
Streams 1-4 imply the first encoder, the first decoder, the
second encoder and the second decoder, correspondingly.
More and more senior semantic feature information can
be extracted stream by stream. Each stream includes four
convolutional blocks with different resolutions. The shape
information of bile ducts and hepatolith is the most abundant
in Stream 1. With the flow of the information stream by
stream, the shape information of bile ducts and hepatolith
will be lost more and more. To involve more shape informa-
tion with different resolutions, a multi-stream feature fusion
strategy is proposed here. That is, each convolutional block
in Stream 1 is skip-connected with the corresponding con-
volutional block at the same resolution in Streams 2, 3, 4.
Also, the convolutions with different kernels are designed
in different streams while all the convolutions are the same
in one stream. This multi-scale dilated convolution strategy
can achieve multi-scale context information of bile ducts and
hepatolith. The inputs and outputs of the M-Net are original
CT images and the corresponding predicted images in which
bile ducts and hepatolith are segmented, respectively.

B. MULTI-SCALE DILATED CONVOLUTIONS AND
MULTI-STREAM FEATURE FUSION
It is well-known that smaller convolutional kernels are more
sensitive to small targets than larger ones [28]. Increasing
the size of the receptive field can make use of the context
information in a larger image region [29] and accelerate the
convergence of the model [30]. Since the shape sizes of bile
ducts and hepatolith are quite different in the CT images,
the convolutional kernels with different sizes are designed
for different streams in the proposed M-Net. Furthermore,
the convolutional kernels with large sizes extract some redun-
dant information, which will maybe influence the segmen-
tation performance. Dilated convolutions can expand the
receptive field without loss of resolution or coverage, which
can aggregate multi-scale context information to improve the
segmentation accuracy [31], [32]. Thus, a multi-scale dilated
convolution strategy is designed in the M-Net. 1×1 convolu-
tional kernels can achieve finer feature maps compared with
the convolutional kernels with other sizes. It means that these
maps can involve more details of bile ducts and hepatolith.
Thus, 1×1 convolutional kernels are used in each block of
Stream 1. In Streams 2-4, 3×3, 5×5, 7×7 dilated convo-
lutional kernels, correspondingly. Then, the feature maps at
different scales can be achieved by different streams. Stream
1 can produce the most abundant semantic features of bile
ducts and hepatolith. Although the semantic features can
be potentially transferred stream by stream, some semantic
features may be lost during the information transmission.
So, a multi-stream feature fusion strategy is implemented by
transferring the semantic features achieved by Stream 1 to
the other three streams. The semantic features achieved by
each convolutional block of Stream 1 are transferred to the
corresponding convolutional block with the same resolution
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FIGURE 3. M-Net: the network consists of two encoder-decoder processes, corresponding to Streams 1, 2, 3, 4, respectively. Red arrows are 2×2
up-sampling; light green arrows are 2×2 max pooling; gray arrows are 1x1 convolutions; different blue arrows are dilated convolutions with the
sizes of 3×3 in Stream 2, 5×5 in Stream 3, and 7×7 in Stream 4; and dark green arrows are concatenation.

FIGURE 4. Stream 1: the first encoder process.

in Streams 2-4. This is indicated by the dark green arrows
in Figs. 4-7.

Figs. 4-7 illustrate the implementation of each stream in
detail. In each figure, the numbers above feature maps are
the numbers of channels, and the numbers below are the
resolutions. Streams 1 and 3 implement the tasks of the first
and second encoder processes, in which a 2×2 pooling is
employed between the two adjacent blocks. Thus, the reso-
lution (512×512) of the input of the stream is reduced to a
small resolution (32×32) in the output of the stream. Streams

FIGURE 5. Stream 2: the first decoder process.

2 and 4 implement the tasks of the first and second decoder
processes, in which a 2×2 up-sampling is employed between
the two adjacent blocks. Thus, the M-Net can output the
segmented image with the same resolution as the original
input CT image.

C. THE BOOTSTRAPPED CROSS ENTROPY LOSS
FUNCTION
Cross entropy loss function (CELF) is a convex optimization
function that effectively measures subtle changes [33]. When
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FIGURE 6. Stream 3: the second encoder process.

FIGURE 7. Stream 4: the second decoder process.

the loss between the prediction and the ground-truth is large,
the gradient in the back propagation of training process also
becomes large. So, the convergence speed is faster than the
quadratic loss function. However, all the pixels in the image
are learned equally by the network with the CELF since the
CELF evaluates the class prediction for each pixel separately.
This means that most of the pixels tend to be classified as
the background pixels since bile ducts and hepatolith occupy
small regions in abdominal CT scans. That is to say, some
edge pixels of bile ducts and hepatolith are indistinguishable
and even mis-classified as the background pixels, which can
be considered as hard pixels defined in [25], [26]. The online
bootstrap loss function (OBLF) defined by Wu et al. [26] can
force the network to focus on hard pixels during training so
that it can solve the above problem during segmentation. It is
defined as

L = −
1

N∑
i=1

K∑
j=1

1
{
(yi = j) ∩

(
pij ≤ t

)}
×

N∑
i=1

K∑
j=1

1
{
(yi = j) ∩

(
pij ≤ t

)
logpij

}
(1)

TABLE 1. The numbers of the labelled CT images in the GDPU-HS.

where N and K denote the number of image pixels and the
number of pixel categories, respectively. yi = j denotes
that yi belongs to the jth category, in which yi refers to the
ground-truth label of the ith pixel. pij denotes the measured
probability of the ith pixel belonging to the jth category.
t ∈ (0, 1] is a threshold. Here 1{•} equals to 1 when the
condition inside the brackets holds, and otherwise equals to 0.

The OBLF uses the idea of maximum likelihood estima-
tion to punish the wrong classification by the logarithmic
loss. However, the logarithmic loss is not sensitive to mea-
sure subtle changes. The subtle changes between the ground
truths and the predictions can be effectively measured by the
CELF. So, we incorporate the idea of CELF into the OBLF
and define a novel loss function named bootstrapped cross
entropy loss function (BCELF), which is formulated as

Simultaneously segmenting bile ducts and hepatolith in
abdominal CT scans is a multi-class task. The model maybe
does not achieve a good segmentation result if the threshold
is a constant like t in (1). Thus, we use different thresholds
to characterize different categories. As illustrated in (2), as
shown at the bottom of this page., tj refers to the threshold
for the jth category.

III. EXPERIMENTAL RESULTS
A. DATASET, METRICS AND IMPLEMENTATION DETAILS
1) DATASET
The experimental data are clinical abdominal CT scans pro-
vided by the First Affiliated Hospital of Guangzhou Medical
University. 9 cases with 9800 CT images are involved. The
size of each CT image is 512×512. Dense segments at high
quality pixel levels were manually labelled as ground truths
by Ping Wang, an experienced hepatobiliary surgeon and one
of the authors of this paper. He used the professional anno-
tation tool named Labelme [34] to label hepatolith during
the plain scan of CT, and to label bile ducts and hepatolith
during the portal phase. Only 786 labelled CT images were
selected to establish the dataset for this paper since most of
CT images involved no bile duct or hepatolith. As shown
in Table 1, 330 labelled CT images only involve bile ducts

LOSS =

−

N∑
i=1

K∑
j=1

[yi log yi + (1− ŷi) log(1− ŷi)] · 1{(yi = j) ∩ (pij ≤ tj)}

N∑
i=1

K∑
j=1

1{(yi = j) ∩ (pij ≤ tj)}

(2)
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TABLE 2. Comparisons of M-Net models with different convolutional kernels.

and 456 labelled CT images involve bile ducts and hepatolith.
250 labelled CT images involving bile ducts and 350 ones
involving bile ducts and hepatolith are randomly selected for
training (GDPU-HS-train) from these labelled CT images.
The rest of labelled CT images are for testing (GDPU-HS-
test). A validation set is randomly split from the GDPU-HS-
test set, in which there are about one half of the samples of the
GDPU-HS-test. Finally, all the samples of the GDPU-HS-test
are used for testing. Due to case privacy and confidentiality
agreements, the GDPU-HS dataset is not open accessable.

2) EVALUATION METRICS
We use several common-used metrics to evaluate the segmen-
tation performance, which are precision, recall, Dice similar-
ity coefficient (DICE) and F1-score. For bile ducts, precision
(positive prediction value) means the proportion of bile ducts
in the correct predictions and those in the ground truths.
Recall (sensitivity) is the ratio of bile ducts in the correct
predictions and those in all the predictions. The larger their
value, the better performance of segmentation. The precision
and recall are calculated for each class, which are defined as

Precision = TP/(TP+ FP) (3)

Recall = TP/(TP+ FN ) (4)

where TP (True positive) is defined as the number of cor-
rect segmented pixels in bile ducts or hepatolith. FP (False
positive) and FN (False Negative) represent the wrongly seg-
mented foreground (bile ducts or hepatolith) and background,
respectively.

Dice similarity coefficient (DICE) and F1-score can more
intuitively reflect the overall segmentation performance com-
pared with precision and recall, which are defined as

DICE = 2TP/(FP+ FN + 2TP) (5)

F1-score =
2 · Precision · Recall
Precision+ Recall

(6)

As indicated in (5) and (6), Dice similarity coefficient and
F1-score are both related with the components TP, FP and
FN. Furthermore, the larger the value of Dice similarity
coefficient/F1-score is, the better segmentation performance
the model achieves.

3) IMPLEMENTATION DETAILS
We used Adam [35] to train the M-Net with alpha (learning
rate) 10-3, beta 1 (first decay) 0.9, beta 2 (second decay)
0.999, epsilon (Prevent division by 0) 10-8, and 300 steps
of each epoch. The model was trained until it converged
and the number of training epochs was recorded. After
cross-validation, the trained model was built for simultane-
ously segmenting bile ducts and hepatolith from abdominal
CT scans. All the experiments were performed on a single
machine with an Nvidia Quadro M2000M 4GB GPU. Our
models were modelled on Keras [36] with TensorFlow back-
end.

B. MULTI-SCALE DILATED CONVOLUTIONS
Since bile ducts and hepatolith have different shapes and
sizes, different convolutional kernels will definitely influence
the segmentation results. We conducted an experiment to val-
idate the proposed multi-scale dilated convolution strategy.

Four M-Net models are established with different con-
volutional kernels in the streams, which are simply named
as M-Nets 1-4. The digits of corresponding positions in the
parentheses correspond to the sizes of convolutional kernels
in all the convolutional layers in the corresponding streams.
For example, (1, 3∗, 5∗, 7∗) means that Stream 1 uses
1×1 convolutional kernels, and Streams 2, 3, 4 use 3×3,
5×5 and 7×7 dilated convolutional kernels, respectively.
The symbol ∗ is used to represent the dilated convolution
operation, such as 5∗ is a 5×5 dilated convolution.
As shown in Table 2, the models with multi-scale convo-

lutions achieve better segmentation performance than those
with convolutional kernels of the same scale in terms of
recall, precision and DICE. This is because the convolutions
with different scales can produce the feature maps involving
the semantic information at different levels. Furthermore,
1×1 convolutional kernels can achieve finer feature maps to
characterize more details of bile ducts and hepatolith. Com-
pared with the models without dilated convolutions, the mod-
els with dilated convolutions can segment bile ducts and hep-
atolith more excellently. This is because dilated convolutions
can expand the receptive field without loss of resolution or

148650 VOLUME 7, 2019



X. Fu et al.: M-Net: Novel U-Net With Multi-Stream Feature Fusion and Multi-Scale Dilated Convolutions

coverage. Since the multi-scale dilated convolution strategy
combines the ideas of the multi-scale convolutions and the
dilated convolutions, M-Net4(1,3∗,5∗,7∗) is the best model
to simultaneously segment bile ducts and hepatolith.

C. THE VALUES OF THE THRESHOLDS tj
For our segmentation task, bile ducts and hepatolith have
quite different shapes in terms of size and deformation.
Compared with hepatolith, the shapes of bile ducts are of
larger sizes with higher deformation. Thus, the thresholds
tj(j = 1, 2) should be elaboratively selected for excellent
segmentation. Here t1 and t2 correspond for bile ducts and
hepatolith. Some interferences between those two thresholds
will occur. We conducted an experiment to discuss the selec-
tion and the influence of the thresholds tj. In this experiment,
the M-Net4(1,3∗,5∗,7∗) models with different values of the
thresholds tj are employed to simultaneously segment bile
ducts and hepatolith. For clear illustration, the segmentation
results of bile ducts and hepatolith are separately illustrated
in Fig. 8. As indicated in Figs. 8(a) and 8(c), the models can
achieve fair good segmentation results for bile ducts when
t1 ∈ [0.6, 0.7] and t2 ∈ [0.5, 0.7]. And hepatolith can be well
segmented by the models with the thresholds t1 ∈ [0.6, 0.7]
and t2 ∈ [0.5, 0.6], as shown by in Figs. 8(b) and 8(d).
There should be one compromise selection of t1 and t2 at
the same point in Figs. 8(c) and 8(d). Thus, the thresholds
tj of the proposed M-Net can be selected to simultaneously
and well segment bile ducts and hepatolith in the range of
t1 ∈ [0.6, 0.7] and t2 ∈ [0.5, 0.6]. In this paper, the selection
of t1 = 0.65, t2 = 0.55 is both illustrated by a black spot
in Figs. 8(c) and 8(d).

D. BOOTSTRAPPED CROSS ENTROPY LOSS FUNCTION
We conducted a comparison experiment to discuss the valida-
tion of the proposed bootstrapped cross entropy loss function
(BCELF). Three kinds of loss functions of cross entropy,
online bootstrapped and bootstrapped cross entropy were
employed to train the M-Net4(1,3∗,5∗,7∗) models.
As shown in Table 3, the model with the online boot-

strapped loss function (OBLF) achieves better segmentation
performance than that with the cross entropy loss function
(CELF) in terms of recall, precision and DICE. This is
because the OBLF allows more learning opportunities for
hard pixels difficult to be segmented accurately. Further-
more, the objective evaluations of the BCELF are the best
among three loss functions. This benefits from the idea of
the OBLF and the sensitivity of cross entropy for subtle
changes.

A visualization example is illustrated in Fig. 9 to sub-
jectively show the segmentation results achieved by the
models with different loss functions. The red area marks
bile ducts and the green area marks hepatolith. As shown
in Fig. 9, the edges of bile ducts and hepatolith are
segmented by the models with the bootstrapped-based
loss function finer than that with the CELF. Especially,
the model with the proposed BCELF can well separate

FIGURE 8. Segmentation results achieved by the M-Net models with
different thresholds tj. (a) and (b) are topographic maps for bile ducts
and hepatolith, respectively; (c) and (d) are heatmaps for bile ducts and
hepatolith, respectively. The black spot denotes the selected t1, t2.

the individual hepatolith, which approximates the ground
truth. This is consistent to the objective results described
above.

VOLUME 7, 2019 148651



X. Fu et al.: M-Net: Novel U-Net With Multi-Stream Feature Fusion and Multi-Scale Dilated Convolutions

FIGURE 9. Segmentation results achieved by M-Net models with different loss functions, red and green region correspond to bile
ducts and hepatolith. (a) Ground truth; (b) Cross entropy; (c) Online bootstrapped; (d) Bootstrapped cross entropy.

TABLE 3. Comparisons of M-Net models with different convolutional kernels.

TABLE 4. Comparisons of different deep-learning-based segmentation methods for bile ducts and hepatolith.

E. COMPARISONS WITH THE STATE-OF-THE-ART
METHODS
In this section, we compare the proposed M-Net with
the BCELF with the state-of-the-art deep-learning-based

medical image segmentation methods, which are FCN-8s
[27], SegNet [37], Deeplab V3 [28], U-Net [6], Retina U-Net
[18], R2U-Net [16], Att U-Net [17], Cascaded U-Net [19],
NasUnet [22] and DEDN [20].
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FIGURE 10. Segmentation results of various deep-learning-based methods, red and green regions correspond to bile ducts and hepatolith, respectively.
(a) Original CT image; (b) ground truth; (c) FCN8s; (d) SegNet; (e) Deeplab V3; (f) U-Net; (g) Retina U-Net; (h) R2U-Net; (i) Att U-Net; (j) Cascaded U-Net;
(k) NasUnet; (l) DEDN; (m) M-Net.

As shown in Table 4, the FCN-8s achieves the worst
performance because a number of interpolation operations
resulted from its recursive upsampling will maybe introduce
many artifacts. Since pooling indices computed in the max-
pooling layers are used for upsampling in the decoder of
the SegNet, this kind of upsampling operation will neglect

the context information especially for low-resolution feature
maps. This results that the SegNet performs bad segmentation
for bile ducts and hepatolith. The strategy of atrous spatial
pyramid pooling (ASPP) in the DeepLab V3 promote the
network to focus on more context information rather than
detailed information. Bile ducts have the characteristics of
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FIGURE 11. Segmentation results of various deep-learning-based methods, red and green regions correspond to bile ducts and hepatolith, respectively.
(a) Original CT image; (b) ground truth; (c) FCN8s; (d) SegNet; (e) Deeplab V3; (f) U-Net; (g) Retina U-Net; (h) R2U-Net; (i) Att U-Net; (j) Cascaded U-Net;
(k) NasUnet; (l) DEDN; (m) M-Net.

high deformation and hepatolith stones are of small sizes and
densely appeared in bile ducts. Thus, the DeepLab V3 also
does a bad job in segmenting bile ducts and individual hep-
atolith stones. Due to the principle of junior feature fusion,
seven U-Net-based networks involved our proposed M-Net
achieve better segmentation performance than the above three

networks. The Retina U-Net is a one-stage detection model
for detecting the tissues/organs or lesions in medical images,
which makes full advantage of U-Net for semantic segmen-
tation. However, our task is to accurately segment bile ducts
and hepatolith. The strategy of pyramid dilated convolu-
tion may result that the detailed information of bile ducts
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and hepatolith will be lost in R2U-Net. Thus, Retina U-Net
and R2U-Net achieve worse segmentation performance than
U-Net. Att U-Net and Cascaded U-Net perform better in seg-
menting bile ducts and hepatolith since Att U-Net introduces
the attention mechanism into U-Net and Cascaded U-Net
cascades two U-Nets for two-stage segmentation. NasUnet
[22] achieves a fairly good performance since its neural archi-
tecture search (NAS) strategy has significant overlap with
hyper-parameter optimization and meta-learning. Our pro-
posed M-Net achieves the best evaluation metrics compared
with the above state-of-the-art deep-learning-based methods.
Also, it performs better segmentation work than the latest
deep learning network DCDN [20].

Figs. 10 and 11 illustrate two visualization examples
of segmenting bile ducts and hepatolith in abdominal CT
images (red and green regions correspond to bile ducts and
hepatolith, respectively). Also, the segmented regions are
zoomed in for clearly visual comparisons. As shown in
Figs. 10(c)-10(e), some mis-segmentation occurs in bile
ducts, which is achieved by FCN8s, SegNet and Deeplab V3.
Seven U-Net-based methods and DCDN can well segment
bile ducts in the CT images, as shown in Figs. 10(f)-10(m).
To further evaluate these seven U-Net-based meth-
ods, another CT image with many individual hepa-
tolith stones is employed for segmentation. As illustrated
in Figs. 11(g) and 11(h), the hepatolith stones are segmented
as a whole object and cannot be separated individually. Some
individual hepatolith stones in bile ducts are well segmented
by U-Net, Att U-Net, Cascaded U-Net, NasUnet and DCDN.
And the proposed M-Net achieves the best segmentation for
hepatolith stones, which even approximate the ground truth.
Also, bile ducts are segmented byM-Net the most excellently
among all the deep-learning-basedmethods. These subjective
results are consistent to the above objective results.

IV. DISCUSSION
Automatic segmentation of bile ducts and hepatolith can
assist hepatobiliary surgeons to accurately position bile ducts
and hepatolith in abdominal CT scans, which is helpful for
minimally invasive surgery. Although many deep-learning-
based methods have proliferated for medical image segmen-
tation, they may be not suitable to simultaneously segment
bile ducts and hepatolith in abdominal CT scans due to the
inherent characteristics of bile ducts and hepatolith. Hep-
atolith stones in bile ducts have small sizes and occupy
very small areas in abdominal CT scans. Also, the high-
deformation characteristics of bile ducts will result that the
pixels (hard pixels) of their edges cannot be well distin-
guished. Thus, it is a challenging task for simultaneously
segmenting bile ducts and hepatolith in abdominal CT scans.

We design the M-Net to simultaneously segmenting bile
ducts and hepatolith, which is based on a U-Net as a back-
bone network. The M-Net involves the strategies of multi-
scale dilated convolutions and multi-stream feature fusion
and a novel loss function named bootstrapped cross entropy
loss function (BCELF). Benefiting from multi-scale dilated

convolutions, the most abundant semantic features can be
effectively extracted in Stream 1 and multi-scale context
information can be learned by the streams with different
dilated convolutional kernels.Multi-stream feature fusion can
effectively promote the transferring of multi-scale feature
maps stream by stream by means of transferring the most
abundant semantic features to the other streams. Further-
more, the defined BCELF combines the advantages of the
online bootstrapped loss function (OBLF) that focuses on
hard pixels and of the cross entropy loss function (CELF)
that can characterize subtle changes. Therefore, as shown
in Table 4 and Figs 10-11, the proposed M-Net achieves
the best segmentation performance among the state-of-the-art
deep-learning-based methods. It can simultaneous segment
bile ducts and hepatolith in abdominal CT scans at a high
performance with the DICEs of 89.831% and the F1-score
of 90.998% for bile ducts, and the DICEs of 71.248% and the
F1-score of 71.051% for hepatolith.

In the future work, it is recommended to extend the
GDPU-HS dataset, which is helpful for the M-Net to fur-
ther improve the segmentation accuracy and generalization.
Moreover, the thresholds tj will be adaptively determined
according to the medical prior knowledge.

V. CONCLUSION
In this paper, we design a novel U-Net architecture named
M-Net for simultaneously segmenting bile ducts and hepa-
tolith. The M-Net depends on three strategies to effectively
improve the segmentation performance, which are multi-
scale dilated convolution, multi-stream feature fusion and
bootstrapped cross entropy loss function. Comparison exper-
iments indicate that the proposed M-Net can simultaneously
segment bile ducts and hepatolith in abdominal CT scans at a
high performance with 98.678% Recall, 84.427% Precision,
89.831% DICE and 90.998% F1-score for bile ducts, and
99.894% Recall, 55.132% Precision, 71.248% DICE and
71.051% F1-score for hepatolith, which is superior to some
state-of-the-art deep-learning methods.
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