IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 16, 2019, accepted October 1, 2019, date of publication October 11, 2019, date of current version October 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946683

An Energy-Efficient Off-Loading Scheme for Low
Latency in Collaborative Edge Computing

JIN WANG “12, WENBING WU', ZHUOFAN LIAO"!, (Member, IEEE),
ARUN KUMAR SANGAIAH 3, (Member, IEEE), AND
R. SIMON SHERRATT “4, (Fellow, IEEE)

"Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, School of Computer and Communication Engineering, Changsha
University of Science and Technology, Changsha 410000, China

2 School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

3 School of Computing Science and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India

#School of Systems Engineering, University of Reading, Reading RG6 6AY, U.K.

Corresponding author: Zhuofan Liao (zfliao@csust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772454, Grant 61811530332, and
Grant 61811540410, and in part by the Degree & Postgraduate Education Reform Project of Hunan Province under Grant 2019JGZDO057.

ABSTRACT Mobile terminal users applications, such as smartphones or laptops, have frequent computa-
tional task demanding but limited battery power. Edge computing is introduced to offload terminals’ tasks
to meet the quality of service requirements such as low delay and energy consumption. By offloading com-
putation tasks, edge servers can enable terminals to collaboratively run the highly demanding applications
in acceptable delay requirements. However, existing schemes barely consider the characteristics of the edge
server, which leads to random assignment of tasks among servers and big tasks with high computational
intensity (named as ‘‘big task’) may be assigned to servers with low ability. In this paper, a task is divided into
several subtasks and subtasks are offloaded according to characteristics of edge servers, such as transmission
distance and central processing unit (CPU) capacity. With this multi-subtasks-to-multi-servers model, an
adaptive offloading scheme based on Hungarian algorithm is proposed with low complexity. Extensive
simulations are conducted to show the efficiency of the scheme on reducing the offloading latency with
low energy consumption.

INDEX TERMS Latency, energy, offloading, edge computing.

I. INTRODUCTION

Mobile terminal devices are connected through the internet to
accomplish many different applications and services, such as
smartphones, laptops, sensors, machines, and vehicles, etc[1].
To extract valuable information from the huge amount of
users’ data, local computation with terminal devices are no
longer provide demanding quality of services such as low
latency and energy consumption[2], [3], especially for video
image stream data processing[4]-[6]. In-vehicle networks,
tasks with high latency sensitivity require lower processing
time. Otherwise, message propagation among vehicles may
fail [7]. Therefore, light-weighted servers are deployed on
the edge around terminals to bring computation and storage
resource from the centralized cloud (CC), which is called
as Mobile Edge Computing (MEC) [8]. Tasks generated

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

149182

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

by terminals can be offloaded and processed on edge
servers [9]-[10] instead of being transferred to CC with
large delay, and tasks or applications can effectively meet
the delay requirements [11]-[13]. As privacy and security
become more important in our daily life [14]-[17], a low
delay would be particularly important in privacy and security
issues for mobile edge computing systems.

Many researches are devoted to reduce the offloading
time and energy consumption for edge computing. More and
more researchers considered the difference of tasks, such
as computation-intensive task, delay-sensitive task, etc. For
these scenarios, relationships between servers are also con-
sidered, such as the hierarchical servers, called as collabora-
tive edge computing (CEC). CEC allows multiple servers to
collaboratively offload different type of tasks to efficiently
reduce time and energy consumption.

However, previous work only focused on how to offload
different types of task. The difference of computation

VOLUME 7, 2019

https://orcid.org/0000-0001-5473-8738
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-0229-2460
https://orcid.org/0000-0001-7899-4445

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

IEEE Access

intensity caused by different types of demand are rarely taken
into account in existing designs. Meanwhile, characteristics
of servers, such as physical distance and CPU capacity, are
not considered. If tasks with high computational intensity
which we name as “big tasks™ is assigned to servers with low
ability or long task processing queue, the delay of offloading
will be very large and the whole offloading process is choked.

In this paper, we focus on the relationship between tasks
and servers, characteristics of edge servers, and a task can
be divided into several subtasks to be offloaded to different
servers. An adaptable offloading scheme based on Hungarian
algorithm is designed to allocate subtasks to edge servers to
reduce offloading latency and energy consumption. The main
contributions of this paper are as follows:

1) A collaborative task offloading model is proposed in

edge computing system.

2) We formulate the task offloading problem and design

a distributed task offloading scheme to solve this
problem.

3) Extensive simulations

performance.

The rest of this article is organized as follows.
Section 2 introduces related works. Section 3 introduces the
offloading model. The offloading scheme is presented in
Section 4. In Section 5, simulation results are illustrated and
discussed. And Section 6 concludes the paper.

are designed to evaluate

Il. RELATED WORK

In order to get low latency and energy consumption in edge
computing, offloading is considered and widely adopted.
For efficient offloading, existing offloading method can be
summarized into three categories: partial offloading, fully
offloading and preference offloading.

A. PARTIAL OFFLOADING

Considering that the storage and computation capacity of
servers is limited, to guarantee the each task can be executed
in one time slot, a task is divided into two or more parts,
one part is processed at the local server, and the others
is processed remotely [18]-[20]. By dividing task reason-
ably, the execution time or energy of the whole task can
be effectively reduced. Shurman and Aljarah [21] proposed
a collaborative method of distributing marginal resources
for pre-partitioned application modules, which maximized
the utilization of edge resources. This method leaded to
less latency and less traffic over the network compared to
executing modules on the cloud, which provides users with
faster service delivery and reduced core network traffic.
Wu et al. [22] proposed a dynamic task partitioning algorithm
that can determine the optimal allocation of tasks performed
locally or remotely. A weighted resource consumption map
(WRCM) was constructed and a Minimum Cost Offloading
Partition Algorithm (MCOP) is further proposed. The adap-
tive partitioning was briefly analyzed by program profiler,
network profiler and network profiler. The algorithm can
effectively reduce network overhead and can be applied when
the network changes. He et al. [23] studied how to improve

VOLUME 7, 2019

the computation capacity of cellular networks. A device-to-
device mobile edge computing (D2D-MEC) technology is
proposed and a mixed integer nonlinear problem is formed.
This problem can be divided into two sub-problems, the first
sub-problem minimizing the need of computation resources
for a given edge D2D pair, the second sub-problem was based
on the first sub-problem solution, maximizing the number
of devices the system can support. By solving these two
sub-problems, the computational capacity was effectively
improved.

B. FULLY OFFLOADING

Fully offloading means the whole task offloaded to a
device or a server, and the device or the server can process
the task in a reasonable latency. Chen et al. [24] analyzed the
multi-channel and multi-user computing offloading decision
problem in edge computing system. They proved that this
problem will always admits a Nash equilibrium, and designed
a distributed computing offloading algorithm to achieve Nash
equilibrium and effectively reduced time consumption by
effectively solving problems. Wei et al. [25] investigated the
scenario of multiple cell phone upload tasks to an MEC
server and the challenge of allocating limited server resources
and wireless channels between devices. A Select Maximum
Saved Energy First (SMSEF) algorithm was proposed to
solve the energy optimization problem of mobile devices
with dividable tasks. Xing et al. [26] studied a new D2D
multi-assistant MEC system. The authors employed a time
division multiple access (TDMA) transport protocol. In this
protocol, local users offloaded tasks to multiple assistants
and download results from them at predetermined orthogonal
intervals, which reduced computational latency, computa-
tional frequency of task execution, and algorithm complexity.
Zhang et al. [27] proposed a contract-based computation
resource allocation method, which improved the utility of the
vehicle terminal in mobile edge computing. Xu et al. [28]
explored a resource allocation method in the Internet of things
(IoT) environment. A model named Zenith is proposed to
establish an auction-based resource allocation contract, and
a task scheduling model is developed according to specific
tasks. Kim er al. [29] studied the resource management of
mobile devices in a tradeoff environment. A series of short-
term goals are obtained by using Lyapunov optimization
technology, and an optimization algorithm was proposed.
Chen et al. [30] took the task offloading problem as a stochas-
tic optimization problem, and used a stochastic optimization
technology to transform a random problem into a determin-
istic optimization problem. Zhang et al. [31] studied the
trade-off relationship between energy consumption and time
consumption in edge computing. An energy-aware offloading
scheme was proposed to jointly optimize communication and
computing resources with limited energy and delay sensitiv-
ity for time and energy reducing

C. PREFERENCE OFFLOADING
Some researches focused on offloading tasks according to
some preferences. Jiang et al. [32] studied the relationship

149183

IEEE Access

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

B

User Equipment layer Edge server layer Cloud layer

——— Task Input link _____ + Result link

________ Cellular link

FIGURE 1. The edge computing system model.

between content popularity and user preference and task
offloading in edge computing. The user popularity is pre-
dicted in the online phase and the user’s preferences are
learned in the offline phase. Through “Follow The (Proxi-
mally) Regularized Leader” (FTRL-Proximal) algorithm and
Online Gradient Descent (OGD) algorithm, the cache-hit
rate is improved. This method can reduce the computational
complexity and optimize the edge cache problem.

In the paper, we focus on partial task assignment in edge
computing system, but differ from above works. The above
work about partial task assignment did not consider that a
task can be divided into several subtasks and the synergy of
servers. In this scheme, local server divides big tasks into
subtasks and assigns them to neighbor servers based on Hun-
garian algorithm is designed, which take the characteristics
of servers into account.

IIl. SYSTEM MODEL

Considering a mobile edge system consists of M user equip-
ment and N edge servers. Edge servers connect with each
other by cellular link. For each user, the nearest server that can
provide task offloading service is called as the local server,
while servers that are one-hop far away from the local server
are called as neighbor servers of the local server. Assumed
that each user generate only one task at a time slot and the ith
task is described by a triple tuple < D;, C;, Ti’”l”‘”e >, 0=
{1,2,---, M}, where D; is the data size, C; is the CPU cycle
required to successfully process the ith task and T/° lerate i the
time tolerance of the ith task. Each task can be divided into
several subtasks, especially for video and image streaming
tasks. Then subtasks can be distributed to different servers to
process [22]. This assumption also works for interdependent
tasks, because such tasks can be partially offloading. One
part of subtasks are processed locally and the rest part are
processed remotely [20], [22], [33]-[35].

Servers will also provide computation offloading service
to users and share computation resources among other edge
servers to solve the problem of limited capacities of user
equipment and other edge servers. Servers will periodically

149184

exchange their own information with their neighbors through
cellular link. The servers’ information is presented as a triple
<fi.dj,wj >,j=1{1,2,---, N} todescribes the characteris-
tics of each server, where f; is the CPU capacity of the server j,
d; is the distance, and wj is the waiting time if subtask need
to be executed in server j.

A local server is considered being connected with K neigh-
bor servers, and it will divide each task into (k + 1) subtasks.
One subtask will be left on the local server and the others
will be assigned to the k neighbor servers. The information of
each subtasks is presented as a triple < Dj y, Ci.u, Ti{‘zll”‘”e >,
where D; y, is the subtask size, C; , is the required CPU cycle
and Tl{‘l)jer‘”e is the time tolerance of subtask.

A. TIME CONSUMPTION

In practical researches, the latency mainly consists of three
parts: transmission latency, computation latency and queuing
latency. In this work, transmission latency is the time spent on
transferring a subtask from the local server to a neighboring
one. Computation latency is the subtask processing time on
the server. Queuing latency is the waiting time that a subtask
Ccosts on a server.

In this work, the orthogonal multiple access (OMA) based
communication technology is adopted during the communi-
cation between edge servers. OMA based communication is
the communication technology in present fourth generation
(4G) and widely used in daily life since non-orthogonal multi-
ple access (NOMA) based communication technology of the
fifth Generation (5G) technology communication technology
is still in a research and development stage. Thus the signal
interference during transmission can be ignored [34]. Accord-
ing to Shannon formula [35], the system date rate between
local server and neighbor server j is given as follows.

tra
P ihuj
r(u, j) = Blog (1 + M))
No

, where B is the network bandwidth,, Ny is the background
noise power, p’u’ ‘]‘ is the transmission power, h, j is the channel
power gain between subtask u# and neighbor server j. Then,
the transmission latency for the subtask u to edge server j can

be presented as follows:

tra __ ﬂ

)
If a subtask is processed on the local sever, the transmission
delay zero. Noting that the download transmission delay and
packet loss of the subtask is not considered because the size
of subtask shrinks sharply after processed [24].

The computation latency when subtask u is executed in
edge server j is depending on the server’s computing capacity
and can be described as follows [20], [29], [33]-[36].

C.
reom — S 3
i 7 3)

By adding the three types of latency, the total latency

T,jf’]?“l of the subtask u allocating to the server j is constructed

(@)

VOLUME 7, 2019

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

IEEE Access

as follows:
Tlf,(])'m + wj, if subtask u executed
Tut?jtal — in local server “4)
Tuc?m + T,j’j“ +wj, otherwise

where wj is the waiting time when subtask executed in edge
server j. As mentioned above, one subtask will be left in local
server for executing to make fully use of limited resource in
local server. Thus T,j’j“ = 0 if subtask executed in local server
due to subtask doesn’t need to be transferred to neighbor
server.

B. ENERGY CONSUMPTION
In this work, we focus on the energy consumption which is
the major concern that needs to be addressed. Energy con-
sumption is mainly composed of two parts: the consumption
of energy generated in the procedure of transmission; the
consumption of energy generated in the procedure of server
processing tasks.

On the one hand, the energy consumption in the procedure
of transmission is as follows:

D: tra_
tra __ l’upu,]

T r))
On the other hand, the energy consumption in the proce-
dure of processing tasks in the server is as follows[20]:

&)

. com
Cz,upj

fl'.
where p$°™" is the energy consumption of per second of
server j. By adding the two type of energy consumption, the
total energy consumption is obtained as follows:

, Q)

com __
Eu,j -

E;?’" if subtask u executed
E;‘];“l = in local server @)
com tra .
Eu,j + Eu’j , otherwise

If the subtask is executed in local server, then Elir;‘ =0
because the subtask does not need to be transferred to neigh-
bor server.

energy
Gi
LS NS1 --- NSj NS K
[~ rrtotal total total total 7]
Elf,)oa El?la : El(,)ja E101g subtask 1
“ | E IZ”(’)“I E IZ”{“I . E;"}“l Eloidl subtask u
total total total total
EK+1,0 EK+1,1 EK+1,j EK+1,K subtask K +1
3

A subtask will have different energy consumption when
it is executed on different edge servers which are different in
computation capacity, distance, transmission power, and CPU
cost. The energy consumption matrix G;'*" for subtasks is
constructed as a matrix shown in expression (8). Eff}“l stands

VOLUME 7, 2019

for the energy consumption when subtask u executed on edge
server j. The row is the energy consumption of subtask if it
is offloading on corresponding edge servers where the local
server is denoted as LS, the jth neighbor server is denoted
as NS;. And the column is the energy consumption of differ-
ent subtasks on the same edge server.

C. OPTIMIZATION GOAL

A vector X = (x1,...,Xy,...,X¢+1) is used to indicate
which server the subtask u of task i is assigned to, x, = 0
indicates subtask uis executed on local server, x,, = jindicates
subtask u is executed on neighbor server j. Then we can
formulate the optimization goal as follows

min XM:E;‘:;‘” (%)
sty Tl < jelerate (9b)
xL; <k (9¢)
& >T (9d)

No

where constraints (9b) indicates that the sum time consump-
tion of all subtasks should be less than task time toler-
ance. Constraints (9¢) indicates that the subtask can be only
assigned among k neighbor servers and the local server. Con-
straints (9d) indicates that the Signal to Noise Ratio (SNR)
must be higher than a threshold value to ensure successful
transmission.

IV. ALGORUTHM DESIGN

In this section, we propose an energy overhead optimize task
offloading scheme under multiple subtasks and multiple edge
servers. The task offloading scheme consists of two phases,
(1) the task division phase and (2) the subtask assignment
phase. A task is divided according to the number of neighbor
servers in the first phase of the algorithm, then we focus on
the assignment strategy in the second phase. Next, a specific
illustration is given on how a local server assign subtasks to
its neighbor servers.

A. ILLUSTRATION OF ALGORITHM

As shown in Figure 2, when a task arrives at the local server, it
may be divided locally into several subtasks, which depends
on the computational intensity of the task and the computer
capabilities of the local server. If the local server is busy in
computation or has a long task-processing queue, subtasks
will be assigned to other selected neighbor servers.

In task division phase, the number of subtasks is deter-
mined by the number of neighbor servers to make full use of
the resources. At least one subtask is kept on the local server
to take full advantage of the resources of the local server.

After the task is divided into subtasks on the local server,
the subtasks would then be assigned to the neighbor servers
considering several realistic factors of the server including
local server resource limits, physical distance, server CPU
capacity which goes to the second assignment phase.

149185

IEEE Access

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

subtask 1
subtask 2

@ H
Tk |y 228 | 7 [obtaski |—

server
subtask n
subtask n+1

neighbor server 1
2
.
L]
neighbor server i
(]
L[]
L

FIGURE 2. Illustration of the proposed algorithm.

Noting that the subtask assigned to neighbor servers have
different transmission time and energy consumption. The
physical distance and transmission power between different
neighbor servers in the real world are different, which makes
the transmission time consumption and energy consump-
tion different. For example, the distance between the local
server and the selected neighbor server may be very long,
but the computing capacity of the neighbor server may be
very high [28]. The distance between the local and neighbor
servers may be short, but the computing capacity of the
neighbor server may be low. Therefore, it is necessary to
select neighbor servers elaborately to effectively reduce the
energy consumption of the entire tasks.

B. SOLUTION

Since different subtasks are processed on different servers
with different time and energy consumption, it is critical to
assign which subtask to which server with minimum energy.
After the first phase, two sets are produced, one is subtasks
set, and the other is neighbor server set. To determine the best
server for each subtask, a Multi-subTasks-to-Multi-Servers
offloading scheme (MTMS) is proposed based on the Hun-
garian algorithm to assigning subtasks during the subtasks
assignment phase.

Because edge servers broadcast the information about
themselves, include CPU frequency, position and some net-
work information and so on, each local server will maintain
and update information about its neighbor servers. After the
first division phrase, the local server decides to assign tasks
to neighbor servers. The local server makes a calculation
about transmission time and execution time when subtasks
processed in servers, then forms an energy overhead matrix
by add the transmission energy and the computation energy
about subtasks processed in neighbor servers. After that, Hun-
garian algorithm is used to make the perfect decision about
subtasks assignment. Finally, local server assigns subtasks
to those servers. The detailed description is presented in
Algorithm 1 as follows.

C. STABILITY AND COMPLEXITY ANALYSIS

Given a subtask set and a neighbor server set, the MTMS
algorithm is stable if can each subtask can be successfully
be offloaded by a server. Because we assume that a server
accepts only one subtask in a time slot, and the number of
subtasks to be assigned is equal to the number of neighbor
servers plus one (local server). According to the Hungarian

149186

Algorithm 1 The Multi-SubTasks-to-Multi-Servers
Offloading Scheme (MTMS)

I: Input: server number, servers’ position, servers’ CPU
capacity, task number, tasks’ size, tasks’ CPU cycle

2: Output:task assignment decision.

3: Initialization with task set {t;} and server set {s;},
ie{l,...M}j € {1,...N} Each server broadcasts
its information, including CPU frequency, position and
SO on.

4: for eachtaskti, i€ {1,...M}do

/I Task division phase
7: splitting the task ti it got into (k + 1) subtasks in local
server, k is the number of neighbor servers, k < N.

// subtask assignment phase.

9: calculating the transmission time and
computation time of each subtask to each neighbor
servers.

10 calculating the transmission energy and computation
energy of each subtask if it would be assigned to corre-
sponding neighbor server.

11: generating the energy overhead matrix A by adding
the transmission and computation energy.

12: while exist subtask not assigned do

14: choose a subtask « from subtask set

15: choose the edge server w which has minimum
energy consumption when execute subtask u according
to the overhead matrix A

a

*®

16: if w hasn’t accept any subtask then

17: assign subtask u to w

18: else//w has accept subtask u’

19: if the energy consumption of subtask u’ lower
than that of subtask u in w then

20: subtask u is not assigned to w

21: else

22: w discord subtask «’ and accept subtask u

23: subtask #’ back to subtask set

24: end while

25: assigning subtasks to servers according to the subtask
assignment decision.

26: end for

algorithm, each subtask will be assignment to at least one
neighbor server.

The other major advantage of the MTMS algorithm is the
low-degree polynomial complexity [37]. From a practical
point of view, Hungarian algorithm has produced solutions
to many industrial problems that were hitherto intractable.
A task is divided into (n + 1) subtasks, and each subtask
need to compute the transmission and execution energy on
every servers, then an overhead matrix is formed by adding
transmission and execution energy, so the time complexity
is O(n?) in constructing overhead matrix. The time complex-
ity is O(n®) in decision making by using Hungarian algorithm.
Thus the time complexity of MTMS is O(n°), and 7 is the
number of subtasks.

VOLUME 7, 2019

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

IEEE Access

V. EVALUATE THE PERFORMANCE

In this section, the performance of the multi-server task
offloading scheme is investigated. We compare MTMS with
a Non-assignment scheme, Greedy assignment scheme [23]
and Random assignment to evaluate the performance.

1) Non-assignment scheme: tasks are stored and pro-
cessed on the local server.

2) Greedy assignment scheme [25]: when the task is not
processed on the local server, the neighboring server
with the largest CPU capacity is chosen to be the server
that the whole task is offloaded to.

3) Random assignment scheme: a task is divided into sev-
eral subtasks and randomly assigned to multiple neigh-
bor servers for processing. This is the most common
and widely used task unloading method in industry at
present.

We simulated the experiment on a windows computer,
which contains a dual-core CPU, 4 gigabytes of memory
and 200 gigabytes of external memory. Here, 10 servers are
set up in the range of 50m x 50m. Without losing gen-
erality, we refer to the parameter settings in the existing
work [20]. The size of the input data and tasks required for
the number of CPU cycles are respectively [200, 400] kB and
[1 X 109, 5 x 109],each server’s CPU cyclesisin [1, 2] GHz
random selection. The bandwidth is set up as 20 MHZ, trans-
mission energy pi™ is set to 36 dBm, receiving noise power
Np is set to 2 x 10°, and the channel power gain pfjm is set
as —40d—*, where d is the distance between each server,
energy consumption of per second p]?"m setas [5, 20] w, w is
short for watt.

Figure 3(a) shows that the total delay of the greedy assign-
ment method is reduced by 40.39% compared with the non-
assignment method. Compared with the greedy assignment
method, the delay of the random assignment method is
reduced by 80.14%. This is not surprising, because our
method is to divide the task into multiple subtasks and assign
them to multiple servers for processing in a distributed way.
Compared with the random assignment method, the delay of
the MTMS method is reduced by 40.93%. This is because
MTMS is to assign subtasks based on the minimum energy
consumption on the server. In response, our time will be less
than random assignment. From the figure, we can see that as
the number of tasks increases, the total delay of tasks will be
reduced more and more by using the optimization method.
Therefore, our proposed method is suitable for large-scale
tasks assignment scenarios. When the number of neighbor
servers is fixed, the delay of the task execution will be
affected by the increased size of the input data of the task.
As shown in Figure 3(b), the size of the input data increases
from 400kB to 800kB and the number of tasks required for
the number of CPU cycles increases accordingly. Compared
with the non-assignment method, the total delay of the greedy
assignment method is reduced by 41.12%. Compared to the
greedy method, the random method can reduce the delay
by 83.26%. Furthermore, compared with the random

VOLUME 7, 2019

—®— non assignment
—#— greedy assignment
—&— random assignment
—v— MTMS

304

)
31
1

total time (s)
— L
w =}
1 1

10

0 5 10 15 20 25 30
task number
(a) Total time over different number of tasks

—=— non assignment
—e— greedy assignment
—&— random assignment
—v— MIMS

T T T T T T
400 450 500 550 600 650 700 750 800

task size (KB)

. (b) Total time over different size of tasks

FIGURE 3. The delay of different schemes.

assignment method, the delay of the optimization method is
reduced by 30.21%. This means that our approach is very
suitable for handling large tasks and can be adapted to the
upcoming 5G era.

As can be seen from Figure 4, the average delay of
greedy assignment is reduced by 39.87% compared to the
non-assignment method. Compared to the greedy assignment
method, the average delay of random assignment is greatly
reduced. Moreover, the average time of optimization assign-
ment is 40.91% less than that of random assignment. From
Figure 4, we can see that the time efficiency of random assign-
ment method and optimal assignment method is much higher
than that of non-assignment method and greedy assignment
method, which proves that the idea of dividing tasks into mul-
tiple sub-tasks can effectively reduce the time consumption.
And the MTMS algorithm has good time efficiency.

When we fixed the task size and the CPU cycles required
to complete the task, as the number of server increases, our
total latency will gradually decrease. As can be seen from

149187

IEEE Access

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

—®— non assignment
—#— greedy assignment
—&— random assignment
—v— MTMS

=
[
1

=
=3
I

average time (s)
s o
Lol ==
Il Il

task number

FIGURE 4. Average time over different number of tasks.

—®— non assignment
—e— greedy assignment
—&— random assignment
—w— MIMS

i I
@ =3}
1 1

total time(s)
o
'S
1

0.2

0.0 T T T T T
0 2 4 6 8 10

server number

FIGURE 5. Total time of different number of servers.

Figure 5, the delay of the greedy assignment method is
reduced by 44.32% compared to the non-assignment method,
and the delay of the random assignment method is greatly
reduced compared to the greedy assignment method. Com-
pared to the random assignment method, the delay of the
MTMS method is reduced by 29.13%. When there is only
one server, it means that only the local server is processing the
task, so the delay in the four schemes are the same. However,
as the number of neighbor servers increases, the number
of subtasks after the task division phase increases, and the
data size of each subtask decreases. So the more the number
of neighbor servers, the better the time efficiency of our
MTMS method.

It can be seen from Figure 6(a) that the energy consump-
tion generated by our MTMS method is reduced by 50.15%
compared with the non-assignment method, and the energy
consumption generated by the MTMS method is reduced
by 27.74% compared with the greedy assignment method.
Compared with the random assignment method, the energy
consumption of the MTMS method is reduced by 16.69%.
This shows that the MTMS algorithm can effectively reduce
energy consumption. And the distributed task assignment
method has less energy consumption than the centralized
task assignment method. As shown in Figure 6(b), when the

149188

—=— non assignment
—¢— greedy assigmment
—&— random assignment

—v— MIMS

400 7

350 1

=5 300 4
—
=

2250
Z
o

200 4

B 200

[=y
@

— 150
©
°

+ 100 H

509

0 T T T T T T
0 bl 10 13 20 25 30

task number

(a) Total energy over different number of tasks.

—=— non assignment
—+— greedy assignment
—A— random assignment

—v— MIMS

250 4

& 2004
=
[=}
NS

55150 1
&
(5
=
L

— 100 A
©
3
(=}
s

50 1

0= T T T T T T T T
400 450 500 560 600 650 700 750 800

task size(KB)
(b) Total energy over different size of tasks.

—=— non assignment
—#— greedy assignment
—&— random assignment
—¥— MTMS

124 L & & = - -

—
=
1

total energy(joule)

=1
ra
.
@
o0
=
=

server number
(c) Total energy over different number of servers.

FIGURE 6. Energy consumption of schemes under different tasks and
servers.

number of servers are fixed, the energy consumption of
the MTMS scheme was reduced by 47.36%, 24.63%, and
15.66%, compared to the non-assignment method, the greedy
assignment method, and the random assignment method
respectively. As the size of the task increases, the energy

VOLUME 7, 2019

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

IEEE Access

—=— non assignment
—8— zreedy assignment
—&— random assignment

—w— MIMS

189

16 4
=
= 141
[=]
A
12
=
oo
@
= 10
[+4]
&
g %]
I
v
=
o 6

4

T T T T T T T
0 5] 10 15 20 25 30

task number

FIGURE 7. Average energy over different number of tasks.

consumption gap between the optimization algorithm and
the other three distribution methods will become larger and
larger, indicating that the MTMS algorithm is very suitable
for processing large data volume tasks. As shown in Fig-
ure 6(c), the task input size and the required number of CPU
cycles are fixed. And as the number of servers increases,
the energy consumption of the MTMS method is reduced by
45.99%,5.30%, and 16.75% compared to the non-assignment
method, the greedy assignment method, and the random
assignment method respectively. It can be seen from the
figure that as the number of servers increase, the total energy
consumption of the random assignment method will be higher
than that of the greedy assignment method, so random assign-
ment has limitations in reducing energy consumption.

It can be seen from Figure 7 that the average energy
consumption generated by the MTMS scheme is reduced
by 51.51% compared with the non-assignment method, and
the average energy consumption generated by the MTMS
method is reduced by 26.94% compared with the greedy
assignment method. Compared with the random assignment
method, the average energy consumption of the MTMS
method is reduced by 16.70%. As can be seen from the figure,
the MTMS can effectively reduce the energy consumption as
the number of tasks increases, the energy consumption shows
a downward trend. Therefore, the proposed MTMS is very
suitable for the Internet of Things environment with a large
number of devices and tasks.

VI. CONCLUSION AND FUTURE WORK

To effectively reduce the time and energy consumption of
task processing, task segmentation is combined with edge
server collaboration. In this work, big task can be divided
and be assigned to neighbor servers to minimize the energy
consumption of the whole offloading process. Therefor a
Multi-subTasks-to-Multi-Severs offloading scheme (MTMS)
based on the Hungarian algorithm is proposed. The MTMS
algorithm can provide the optimal assignment decision for

VOLUME 7, 2019

subtasks offloading, which minimizes the time and energy
consumption of the entire task processing. Experiments and
simulations verify the effectiveness of our ideas and methods.
In this paper, the orthogonal channel is used as a trans-
mission channel, but in the upcoming fifth-generation (5G)
era, the channels are non-orthogonal. The advantage of non-
orthogonal channels is that the efficiency of the frequency
can be improved, including frequency rate and bandwidth.
Non-orthogonal channels can improve access quality and can
transmit multiple tasks simultaneously. How to combine edge
computing with 5G is the focus of our work in the future.

REFERENCES

[1] B. M. Nguyen, H. T. T. Binh, T. T. Anh, and D. B. Son, “Evolutionary

algorithms to optimize task scheduling problem for the IoT based bag-of-

tasks application in cloud—fog computing environment,” Appl. Sci., vol. 9,

no. 9, pp. 1730-1749, Apr. 2019.

Z.Liao,R.Zhang, S. He, D. Zeng, J. Wang, and H.-J. Kim, “Deep learning-

based data storage for low latency in data center networks,” IEEE Access,

vol. 7, pp. 26411-26417, 2019.

[3] Y. T. Chen, W. H. Xu, J. W. Zuo, and Y. Kai, “The fire recognition
algorithm using dynamic feature fusion and IV-SVM classifier,” Cluster
Comput., vol. 10, pp. 1-11, Mar. 2018.

[4] X.Q.Ma,Y. Zhao, L. Zhang, H. Y. Wang, and L. M. Peng, “When mobile

terminals meet the cloud: Computation offloading as the bridge,” IEEE

Netw., vol. 27, no. 5, pp. 28-33, Sep./Oct. 2013.

D. Zhang, T. Yin, G. Yang, M. Xia, L. Li, and X. Sun, “Detecting

image seam carving with low scaling ratio using multi-scale spatial

and spectral entropies,” J. Vis. Commun. Image Represent., vol. 48,

pp. 281-291, Oct. 2017.

M. Long, F. Peng, and Y. Zhu, “Identifying natural images and computer

generated graphics based on binary similarity measures of PRNU,” Multi-

media Tools Appl., vol. 78, no. 1, pp. 489-506, Jan. 2017.

[7] D. Cao, Y. Liu, X. Ma, J. Wang, B. Ji, C. Feng, and J. Si, “A relay-

node selection on curve road in vehicular networks,” IEEE Access, vol. 7,

pp. 1271412728, 2019.

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘““Mobile edge computing:

A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450465, Feb. 2018.

Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and

E. Benkhelifa, “The future of mobile cloud computing: Integrating

cloudlets and mobile edge computing,” presented at the 23rd Int. Conf.

Telecommun., Thessaloniki, Greece, May 2016, pp. 1-5.

[10] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mobile edge
computing,” Future Gener. Comput. Syst., vol. 70, pp. 138—147, May 2017.

[11] M.T.Beck, M. Werner, S. Feld, and S. Thomas, “Mobile Edge Computing:
A Taxonomy,” presented at 6th Int. Conf. Adv. Future Internet, Lisbon,
Portugal, Nov. 2014.

[12] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” pre-
sented at the 10th Int. Conf. Intell. Syst. Control, Coimbatore, India,
Jan. 2016.

[13] W. Shi, H. Sun, J. Cao, Q. Zhang, and W. Liu, “Edge computing-an
emerging computing model for the Internet of everything era,” J. Comput.
Res. Develop., vol. 54, no. 5, pp. 907-924, May 2017.

[14] C.Yin,J. Xi, R. Sun, and J. Wang, “Location privacy protection based on
differential privacy strategy for big data in industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3628-3636, Aug. 2018.

[15] B. Xiong, K. Yang, J. Y. Zhao, and K. Q. Li, “Robust dynamic network
traffic partitioning against malicious attacks,” J. Netw. Comput. Appl.,
vol. 87, pp. 20-31, Jun. 2017.

[16] S. He, W. Zeng, K. Xie, H. Yang, M. Lai, and X. Su, “PPNC: Privacy
preserving scheme for random linear network coding in smart grid,” KSI/
Trans. Internet Inf. Syst., vol. 11, no. 3, pp. 1510-1532, Mar. 2017.

[17] L.Y. Xiang, Y. Li, W. Hao, P. Yang, and X. B. Shen, ‘“Reversible natural
language watermarking using synonym substitution and arithmetic cod-
ing,” Comput. Mater. Continua, vol. 55, no. 3, pp. 541-559, 2018.

[18] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling,” IEEE
Trans. Commun., vol. 64, no. 10, pp. 4268-4282, Oct. 2016.

2

—

[5

—

[6

—

[8

—

[9

—

149189

IEEE Access

J. Wang et al.: Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative Edge Computing

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397-1411, Mar. 2017.

B. Gu, Y. P. Chen, H.J. Liao, Z. Y. Zhou, and D. Zhang, ‘A distributed and
context-aware task assignment mechanism for collaborative mobile edge
computing,” Sensors, vol. 18, no. 8, p. 2423, Jul. 2018.

M. M. Shurman and M. K. Aljarah, ““Collaborative execution of distributed
mobile and IoT applications running at the edge,” presented at the Int.
Conf. Elect. Comput. Technol. Appl., Nov. 2017.

H. Wu, W. Knottenbelt, and K. Wolter, ““An efficient application partition-
ing algorithm in mobile environments,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 7, pp. 1464-1480, Jul. 2019.

Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet mobile edge
computing for enhanced computation capacity in cellular networks,” IEEE
Trans. Commun., vol. 18, no. 3, pp. 1750-1763, Feb. 2019.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2015.

F. Wei, S. Chen, and W. Zou, “A greedy algorithm for task offloading
in mobile edge computing system,” China Commun., vol. 15, no. 11,
pp. 149-157, Nov. 2018.

H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and
resource allocation for d2d-enabled mobile-edge computing,” IEEE Trans.
Commun., vol. 67, no. 6, pp. 4193-4207, Jun. 2019.

K. Zhang, Y. M. Mao, S. P. Leng, A. Vinel, and Y. Zhang, “Delay con-
strained offloading for mobile edge computing in cloud-enabled vehicular
networks,” presented at the 8th Int. Workshop Resilient Netw. Design
Modeling, Halmstad, Sweden, Sep. 2016.

J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” presented at the 1st Int. Conf.
Edge Comput., Honolulu, HI, USA, Jun. 2017.

Y. Kim, H.-W. Lee, and S. Chong, ‘“Mobile computation offloading for
application throughput fairness and energy efficiency,” IEEE Trans. Wire-
less Commun., vol. 18, no. 1, pp. 3-19, Jan. 2019.

Y. Chen, N. Zhang, Y. C. Zhang, X. Chen, W. Wu, and X. S. Shen, “Energy
efficient dynamic offloading in mobile edge computing for Internet of
Things,” IEEE Trans. Cloud Comput., to be published.

G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay
tradeoff for dynamic offloading in mobile-edge computing system with
energy harvesting devices,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 46424655, Oct. 2018.

Y. X. Jiang, M. L. Ma, M. Bennis, F. C. Zheng, and X. H. You, “A novel
caching policy with content popularity prediction and user preference
learning in fog-RAN,” presented at the 8th Int. Workshop Resilient Netw.
Design Modeling, Halmstad, Sweden, Sep. 2016.

P. F. Wang, C. Yao, Z. Zheng, G. Sun, and L. Song, “Joint task assignment,
transmission, and computing resource allocation in multilayer mobile edge
computing systems,” IEEFE Internet Things J., vol. 6, no. 2, pp. 2872-2884,
Apr. 2018.

B. Gu, Z. Liu, C. Zhang, K. Yamori, O. Mizuno, and Y. Tanaka, ‘A stackel-
berg game based pricing and user association for spectrum splitting macro-
femto hetNets,” IEICE Trans. Commun., vol. E101B, no. 1, pp. 154-162,
Jan. 2018.

T. S. Rappaport, Wireless Communications: Principles and Practice.
Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5506-5519, Aug. 2018.

A. Frank, “On Kuhn’s Hungarian method—A tribute from Hungary,” Nav.
Res. Log., vol. 52, no. 1, pp. 2-5, Feb. 2007.

JIN WANG received the B.S. and M.S. degrees
from the Nanjing University of Posts and
Telecommunications, China, in 2002 and 2005,
respectively, and the Ph.D. degree from Kyung
Hee University, South Korea, in 2010. He is cur-
rently a Professor with the Changsha University of
Science and Technology. He has published more
than 300 international journal and conference arti-
cles. His research interests mainly include wireless
sensor networks, network performance analysis,

and optimization. He is a member of ACM.

149190

WENBING WU is currently pursuing the mas-
ter’s degree with the Changsha University of
Science and Technology. His research interests
include mobile edge computing, fog computing,
and machine learning. He is good at Python and
C and familiar with Linux OS.

ZHUOFAN LIAO (M’14) received the Ph.D.
degree in computer science from Central South
University, China, in 2012. From 2017 to 2018, she
was a Visiting Scholar with the University of Vic-
toria, Canada, supported by the China Scholarship
Council. She is currently an Assistant Professor
with the School of Computer and Communication
Engineering, Changsha University of Science and
Technology, China. Her research interests include
wireless networks optimization, big data, and edge
computing for 5G. She has published articles in leading transactions and
conferences as the first author in the above areas. She has served as a
Reviewer for the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
and the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

ARUN KUMAR SANGAIAH (M’10) received
the ML.E. degree from Anna University, Chennai,
India, in 2007, and the Ph.D. degree from the
Vellore Institute of Technology, Vellore, India,
in 2014, where he is currently an Associate Pro-
fessor with the School of Computing Science and
Engineering. He has authored or coauthored more
than 250 scientific articles in high-standard Sci-
ence Citation Index (SCI) journals. His research
interests include software engineering, computa-
tional intelligence, wireless networks, bioinformatics, and embedded sys-
tems.

R. SIMON SHERRATT (M’97-SM’02-F’12)
received the B.Eng. degree in electronic systems
and control engineering from Sheffield City Poly-
technic, U.K., in 1992, and the M.Sc. degree in
data telecommunications and the Ph.D. degree in
video signal processing from the University of
Salford, in 1994 and 1996, respectively. In 1996,
he has appointed as a Lecturer in electronic engi-
neering at the University of Reading, where he is
currently a Professor of consumer electronics and
the Head of the wireless and computing research. He is also a Guest Professor
with the Nanjing University of Information Science and Technology, China.
His research topic is on signal processing in consumer electronic devices con-
centrating on equalization and DSP architectures, specifically for personal
area networks, USB, and Wireless USB. He has served the IEEE Consumer
Electronics Society as a Vice President (Conferences), in 2008 and 2009,
an AdCom Member, from 2003 to 2008 and since 2010, and the Awards
Chair, in 2006 and 2007. He received the IEEE Chester Sall First Place
Best TransacTioNs ON ConsuMER ELEcTRONICS Paper Award, in 2004, and
the Best Paper Award in the IEEE International Symposium on Consumer
Electronics, in 2006. He served as the IEEE International Conference on
Consumer Electronics General Chair, in 2009, and the IEEE International
Symposium on Consumer Electronics General Chair, in 2004. He has been
a member of the IEEE Transactions oN ConsuMER ELEcTRONICS Editorial
Board, since 2004, and the Editor-in-Chief, since 2011.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	PARTIAL OFFLOADING
	FULLY OFFLOADING
	PREFERENCE OFFLOADING

	SYSTEM MODEL
	TIME CONSUMPTION
	ENERGY CONSUMPTION
	OPTIMIZATION GOAL

	ALGORUTHM DESIGN
	ILLUSTRATION OF ALGORITHM
	SOLUTION
	STABILITY AND COMPLEXITY ANALYSIS

	EVALUATE THE PERFORMANCE
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JIN WANG
	WENBING WU
	ZHUOFAN LIAO
	ARUN KUMAR SANGAIAH
	R. SIMON SHERRATT

