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ABSTRACT Histopathological examination is very important for diseases diagnosis and treatment. With
the development of artificial intelligence, more and more pathological databases have been reported for
histopathological diagnosis because database is quite crucial for the validation and testing of feature
extraction, statistical analysis and deep learning algorithms. However, most of these databases are either
gray images or RGB color images of tissue sections contain limited information of samples which limited
the performance of most current deep learning algorithms. There are few publicly available pathological
databases that include more than two modalities for the same subject. This paper introduces a database
for both microscopy hyperspectral and color images of cholangiocarcinoma, including 880 scenes from
174 individuals, among which 689 scenes are samples with part of cancer areas, 49 scenes full of cancer
areas, and 142 scenes without cancer areas. In addition, all cancer areas have been precisely labeled by
experienced pathologists. The contributions of this work: a) A comprehensive and up-to-date review on
pathological imaging systems and databases; b) Detailed description of the proposed the multidimensional
Choledoch Database and login method; c) The multidimensional Choledoch Database has been published
and can be downloaded after registration and made an entry on the website.

INDEX TERMS Database, artificial intelligence, hyperspectral imaging, pathology.

I. INTRODUCTION
Histopathological examination usiually been regarded as the
‘gold standard’ of tumor diagnosis and therapy. Traditional
histopathological examination is performed by pathologist
with light microscopy, which is time-consuming and labo-
rious. With the development of image processing and arti-
ficial intelligence technology, deep learning has made great
progress in pathological analysis in recent years. For exam-
ple, some studies on pathological and normal voice identi-
fication [1], gastric cancer diagnosis [2], pathological retina
images segmentation [3], gait analysis [4], and pathological
cells recognition [5] have got high recognition accuracy.
However, there still exist certain problems in the pathological
diagnosis of the current artificial intelligence technology and
the data resources are the most important one [6]. For most of
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these studies, a standard pathological database is very impor-
tant to extract features, do data analysis and get the satisfied
diagnosis results. In addition, the availability is also signifi-
cant to guarantee the AI research results [7], [8]. So there are
several researchers publishing large numbers of pathological
database to support the development of algorithms such as
brain database [9] and lung database [10]. In recent years,
there are several latest pathological databases released for
the validation and testing of feature extraction, deep learn-
ing algorithms and statistical analysis, e.g. the VOice ICar
fEDerico II (VOICED) [8] and the National Cancer Data
Base (NCDB) [11] and also a hyperspectral database for
brain cancer [12]. Among all these databases, some classic
pathological databases such as Stanford Tissue Microarray
Databases (TMAD), Medical image databases of nuclear
segmentation, Colorectal Histology MNIST, The Univer-
sity College London (UCL) Low-density Lipoprotein Recep-
tor Gene (LDLR) Variant Database, BreakHis Database,
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and The Cancer Genome Atlas (TCGA) have been set up for
pathological analysis. However, most of these datasets are all
traditional color pathological images which can just provide
limited information and then limit the improvement of accu-
racy of pathological image processing algorithms from the
perspective of information source. In contrast, microscopy
hyperspectral images contain both spatial and spectral infor-
mation and have been utilized to identify brain cancer [13],
oral cancer [14], prostate cancer [15], tongue tumor [16], et al.
Although these studies have got certain experimental results,
most of them are based on traditional image processing meth-
ods as there are few microscopy hyperspectral pathological
datasets. In view of these problems, this paper introduced a
dataset contains both the microscopy hyperspectral images
and the RGB color images of the same field of view of
cholangiocarcinoma tissues which is unusual in the academic
sector. On top of this, all the images in the dataset are labeled
manually by experienced pathologists to generate annotations
files so as to provide a new kind of data source with both
spatial and spectral information for the pathological diagnosis
of cholangiocarcinoma by artificial intelligence.

This paper presents a multidimensional choledoch
database which contains both microscopy hyperspectral and
RGB color images with fine labeling. These images can be
classified into three types: L (samples part of cancer areas,
with annotation files), N (samples full of cancer areas) and
P (samples without cancer areas). In addition, diverse non-
blank regions are collected on each tissue specimen, as well
as one blank region collected for microscopy hyperspectral
data calibration.

II. RELATED WORK
A. EXISTING PATHOLOGICAL IMAGING SYSTEMS
High resolution whole-slide-imaging (WSI) system was first
introduced in 1999 [17] with the development of computer
technology, robotic microscopes, digital cameras and the
software converting images of histological sections on glass
slides prepared from frozen, HE (hematoxylin and eosin)
stained, formalin fixed and paraffin embedded tissue into
digital files [18]. Then it has been widely used in several
biomedical applications, especially in pathology [19]–[21].
WSI systems are composed of illumination systems, micro-
scopic optical components, and a focusing system placing in
front of a camera precisely [22]. There are various kinds of
focusing systems (virtual slide) the particular scanners can
be used, such as tiling, line scanning, dual sensor scanning,
dynamic focusing, and array scanning [23]. Most of current
WSI imaging systems use tile-based scanning or line-based
scanning methods to get the whole slide image of tissue
sections [24].

Tile-based scanning method obtains a large number of
square image frames that are assembled into a mosaic pat-
tern relying on a robotics-controlled motorized slide stage.
However, there is usually 2%-5% overlap in one image due
to the precise movement of the slide stage. Then each tile will
be captured by a charge coupled device (CCD) and stored

into the memory. Finally, these tiles will be automatically
associated with each other to ensure proper alignment so that
the patterns can be stitched correctly to get a whole slide
digital image of the histological section [19], [24].

Line-based scanning method utilizes a servomotor-based
slide stage which moves in a linear and jitter-free manner
along a single axis. Subsequently, a set of images in the
form of long and uninterrupted lines will be produced after
multiple successive passes at different locations on the slide.
Different from the tile-based scanning, this method can
greatly simplifies the alignment process as the number of
lines and the degrees of freedom associated with each line
are greatly reduced [19].

Investigators can acquire images of different resolu-
tion depending on the microscopic objective for scanning
(eg, × 4, × 20, × 40, × 100), the numerical aperture of
the objective and the quality of the CCD [25]. As a result,
the diagnostic accuracy of the images is equal to the one
taken from glass slides [26]–[28] and these images can reach
a resolution of less than 0.5µm [23]. In addition, the software
of WSI is gradually becoming more and more convenient
now. It allows investigators to freely navigate the images of
histological section they want and also preview the images
that are magnified in real time. They can capture either the
regions they want automatically after they have circled on
the virtual slides, [22] or the whole slide, and even several
slides [19], [29]. However, WSI systems require high-quality
specimen preparation and the specimen has to be cleaned
carefully so that high-quality images can be obtained [30].
Additionally, almost all the WSI scanners capture color
images only [29] and then investigators detect, segment and
analyze the lesion areas based on these images acquired.

B. EXISTING DATABASES SUMMARY AND COMPARISON
Several researchers have been making efforts to develop
pathological databases to keep in pace with pathological
image analysis algorithms. Table 1 provides a brief overview
of the most popular databases supplied for researches on
pathological detection, classification and segmentation algo-
rithms and also used as training data for deep learning algo-
rithms. As shown in Table 1, most of current pathological
databases are color images captured by WSI systems.

Stanford Tissue Microarray Database (TMAD) [31] are
widely used in several pathological image processing algo-
rithms and are constantly updated [32]–[35]. Now TMAD
has contained about 600,000 pathological images across sar-
coma, breast, lymphoma, and so on. Among TMAD, there are
some special databases such as MMMP (Multi-Dimensional
MicroscopicMolecular Profiling) database [36].MMMPwas
published in 2015 which can measure several individual
molecular properties in the same histologic section at sub-
cellular resolution. In this database, the tissue microarray
includes 102 human tissues with a panel of 15 informative
antibodies, as well as 5 histochemical stains plus DAPI of
several organs such as colon, lung and breast.
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TABLE 1. A comprarison of popular pathological databases.

Medical image database of nuclear which were pub-
lished in 2018 and available in the website (http://
nucleisegmentationbenchmark.weebly.com/website) com-
prise of labeled hematoxylin-eosin staining (H&E) images
culled from digitalized tissue samples from 30 full-section
imaging system, which contain samples of benign and dis-
eased breast, liver, kidney, prostate, bladder, colon, and
stomach. This database contains high quality features for
nuclear morphometry and can be used for computational
pathology, such as density, nucleus-mass ratio, size, shape,
and pleomorphism. The features extracted from nuclear seg-
mentation images of digital microstructure can be used to
access tumor grade and predict therapeutic efficacy. What’s
more, 30 cropped images of more than 21,000 nuclei in this
dataset were all labeled and validated by pathologist so that
the nuclear can be segmented accurately [33].

Colorectal Histology MNIST (Mixed National Institute
of Standards and Technology) published in 2016 contains
5000 histological images for eight different types of tissues
of human colorectal cancer (http://creativecommons.org/
licenses/by/4.0/) [32]. The eight types of tissues consist of
tumor epithelium, sample stroma (homogeneous composi-
tion, includes tumor stroma, extra-tumoral stroma and smooth
muscle), complex stroma (including single tumor cells and/or
few immune cells), debris (containing necrosis, hemorrhage
andmucus), immune cells (containing immune-cell conglom-
erates and sub-mucosal lymphoid follicles), normal mucosal
glands, adipose tissue, and background (no tissue). In addi-
tion, contiguous tissue areas were manually annotated and
tessellated [32]. The database has been classified into 8 types
with which researchers can make comparison among differ-
ent classification algorithms using this database.

The University College London (UCL) Low-density
Lipoprotein Receptor Gene (LDLR) Variant Database was
first set up in 1996 and gradually updated with the addition
of different variants (https://grenada.lumc.nl/LOVD2/UCL

Heart/home.php?select_db= LDLR) [37]. Now the database
contains over 1288 various variants from several familial
hypercholesterolemia (FH) patients [38]. Among these vari-
ants, 55% belong to exonic substitutions, 22% belong to
exonic small rearrangements, 11% belong to large rearrange-
ments, 10% belong to intronic variants, and 2% belong
to promoter variants [38]. This database can be used for
pathogenicity prediction.

BreakHis Database was released in 2014 and is com-
posed of 7909 images which can be sorted into benign and
malignant tumors. (available on the website http://web.inf.
ufpr.br/vri/breast-cancer-database) [39]. The benign breast
tumors are divided into four histological distinct types:
adenosis (A), tubular adenoma (TA), fibroadenoma (F), and
phyllodes tumor (PT). Malignant tumors can also be clas-
sified into four histological distinct types: ductal carcinoma
(DC), lobular carcinoma (LC), mucinous carcinoma (MC),
and papillary carcinoma (PC) [39]. Therefore, it can be used
to study classification algorithms on breast tumors.

The Cancer Genome Atlas (TCGA) started in 2006 which
contained three cancer types: lung, ovarian, and glioblas-
toma [40]. During the past ten years, TCGA has studied more
than 11,000 cases which include 33 tumor types, such as
colon and endometrial cancer (https://cancergenome.nih.gov/
publications). Therefore, it is more convenient for researchers
to train their algorithms using data from TCGA for can-
cer diagnosis and catalog specific genomic and molecular
changes [40].

III. THE MULTIDIMENSIONAL CHOLEDOCH DATABASE
A. HARDWARE AND SOFTWARE CONFIGURATION OF
ACQUISITION SYSTEM
To set up the multidimensional choledoch database,
a microscopy hyperspectral imaging system is developed
and used to capture both the hyperspectral and RGB color
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FIGURE 1. Schematic diagram of the microscopy hyperspectral imaging
system.

images of choledoch tissues. As shown in Fig. 1, the imaging
system consists of a microscope (Nikon 80i, Nikon Corp.),
an acousto-optic tunable filter (AOTF) adapter (VA310-.37-
.80-L, Brimrose Corp.), an SPF Model AOTF controller
(VFI130-140SPFB2C2exSTS, Brimrose Corp.), a gray sci-
entific complementary metal oxide semiconductor (sCMOS,
Dhyana 400D, Tucsen Corp.), a color charge coupled device
detector (color CCD, DigiRetina 16, Tucsen Corp.), and
a personal computer [41]. The light transmitted from the
choledoch tissue slice is collected by the microscope with the
objective lens of 20×, then filtered by the AOTF and imaged
on the sCMOS. Different single band images are captured
by sCMOS with the wavelength switching from 550 nm to
1000 nm at the narrow bandwidth via the AOTF. These single
band images consist of two-dimensional spatial informa-
tion and one-dimensional spectral information as illustrated
in Fig. 2. These single band images can be visualized as
a three-dimensional cube because of its intrinsic structure,
where the cube face is a function of the spatial coordinates and
the depth is a function of the wavelength. In order to compare
with those traditional RGB color image based pathological
diagnosis methods, the RGB color images with the same field
of view of hyperspectral images are captured by a color CCD
and stored into the database. The multidimensional imaging
software running on the Microsoft .NET Framework 4.0 is
programmed in C# with the character of friendly user inter-
face to control all hardware work automatically for image
capture.

B. THE MULTIDIMENSIONAL CHOLEDOCH DATABASE
The multidimensional choledoch database contains both
microscopy hyperspectral images and RGB color images of
choledoch tissues captured by the microscopy hyperspec-
tral imaging system. The choledoch tissues stained with
HE (hematoxylin and eosin) are provided by Changhai
hospital, Shanghai, China with the approval of the ethics
committee and the slide thickness is 10 microns. This
database contains 880 scenes of multidimensional images

FIGURE 2. Microscopy hyperspectral data cube.

captured from choledoch tissues of 174 patients. Among
these multidimensional images, 689 scenes are images con-
tain part of cancer areas, 49 scenes are full of cancer areas, and
142 scenes are images without cancer areas. As an example,
one scene of image 031368c-20x-roi2 are shown in Fig. 3.
It contains a microscopy hyperspectral data cube and a RGB
color image of the same field of view. Fig. 4 shows different
spectra extracted from the same microscopy hyperspectral
data cube. From the figures it can be seen that there are
differences among different parts of Choledoch section in
different single band images and spectra which can be used
for diseases identification and the development of three-
dimensional algorithms because researchers can extract the
spectral information.

IV. HOW TO USE THE DATABASE
A. IMAGE NAMING CONVENTION
In the multidimensional choledoch database, the image
filename illustrates the image information. The naming con-
vention is interpreted in Fig. 4. The format is comprised
of 3 kinds of samples: L-samples with part of cancer areas,
N-samples with full of cancer areas, and P-normal samples
without cancer areas. Each scene contains both microscopy
hyperspectral image and RGB color image. Among these
data, L images have been labeled and annotation files have
been generated. The filename consists of three parts which are
separated by dash as illustrated by the example of ‘030406-
20x-roi1’. The serial number ‘030406’ in the first part repre-
sents the number of tissue specimen. The second part ‘20x’
represents the magnification of the objective lens used. The
third part ‘roi1’ represents different field of view of the same
pathological section.

B. IMAGE FORMATTING
There are four kinds of files in the multidimensional chole-
doch database and different files have different sizes as shown
in TABLE 2. Among these files, ‘.raw’ files occupy most
of the memory because each raw file contains 60 bands
filled with spectral information. The image size of one scene
of color image is 2304 × 1728 while the image size of
single band image of the microscopy hyperspectral date cube
is 1280 × 1024. Files in ‘.hdr’ format contain description
information of ‘.raw’ files. Among several parameters in the
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FIGURE 3. A scene of multidimensional image of the dataset. (a) RGB image, (b) microscopy hyperspectral data cube, (c) 16 single band
images extracted from hyperspectral date cube.

FIGURE 4. Spectra extracted from the microscopy hyperspectral data cube.

TABLE 2. Various attributes of the files in the multidimentional
choledoch database.

‘.hdr’ file, ‘band = 60’ indicates that the hyperspectral daye
cube contains 60 bands. ‘data type = 2’ means that each
pixel in each single band image has two bytes. What’s more,
‘interleave = bsq’ is on behave of that the images are stored
in BSQ (band sequential format) format.

Each scene of microscopy hyperspectral image contains
60 band. Fig. 5 shows the 30th band images extracted from

the hyperspectral data cube on which the pathologists labeled
manually to generate annotations files, that is, ‘.xml’ files.
‘.xml’ files include coordinates of all the points that can
build up areas filled with tumor. As there are several tumor
areas on one scene usually, the coordinates of different tumor
areas are separated by the information of objects in the ‘.xml’
file. These annotations files can also be transferred from
microscopy hyperspectral images to RGB color images with
coordinate transformation method as shown in Fig. 6 and
Fig. 7. These labeled RGB color images can be used to
train the deep learning methods and compared with those
hyperspectral based methods. Therefore, the multidimen-
sional choledoch database is important for researchers to
evaluate both the RGB color image based and hyperspectral
based deep learning pathology diagnosis algorithms.

C. AN EXAMPLE TO USE THE DATABASE
In order to demonstrate the availability of the database,
we provide an example to explain how to use the released
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FIGURE 5. Database naming convention.

FIGURE 6. Single band images with annotations extracted from
microscopy hyperspectral images of the multidimensional Choledoch
database.

database. To train a deep learning method using the database,
a data preprocessing procedure is needed to remove the
effects of noises, artifacts, and inhomogeneous spectral
response of the microscopy hyperspectral images [42]. These
effects in the original data can be corrected by some flat-
field correction methods [43]. The database contains the cal-
ibration data cube for each scene of microscopy hyperspctral
images which captured under the same illumination with the
samples. Fig. 8 shows the 20th single band image, the spec-
trum before and after preprocessing. From the figure, it can
be seen that the influence of the inhomogeneous spectral
response of the system can be removed and the spectrum of
samples can be retrieved. Then, these corrected microscopy
hyperspectral images can be used for further processing such
as segmentation, classification, and training some algorithms.

To evaluate the database, the Neural Net (NN) [44], [45]
and Support Vector Machine (SVM) [46]–[48] algorithms
are used to segment tumor areas from the preprocessed

FIGURE 7. RGB color images with transferred annotations in the same
field of view.

FIGURE 8. Preprocessing of the microscopy hyperspectral image. The 20th

single band image before (a) and after preprocessing (c); spectrum
extracted from the data cube before (b) and after preprocessing (d).

images [49]. The parameters of each algorithm used in this
experiment are illustrated in TABLE 3. The comparison
between the annotation image and segmentation results of NN
and SVM are shown in Fig. 9. Several accuracy parameters
are calculated and listed in Table 4. From the tables and
figures it can be seen that the multidimensional choledoch
database can be used to evaluate algorithms and develop new
identification methods.

FIGURE 9. Comparison between the annotation data and the results of
segmentation algorithms. (a) single band image with annotation; (b) NN;
(c) SVM.
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TABLE 3. Parameters for NN and SVM.

TABLE 4. Accuracy parameters of NN and SVM.

D. HOW TO ACCESS
Availability of the database is of great importance for research
in AI field. The multidimensional choledoch database pre-
sented in this paper can be accessed through the website
http://bio-hsi.ecnu.edu.cn/. To access to the database, one
should register and get the authorization from the adminis-
trator. Then both the microscopy hyperspectral images and
RGB color images of choledoch with annotations can be
downloaded by login the website.

V. CONCLUSION
Histopathological analysis is usually regarded as the ‘gold
standard’ of tumor diagnosis and clinical treatment. In recent
years, artificial intelligence (AI) has been used to perform
pathologic diagnosis and made great progress. However,
the data sources most of these methods used are color
images captured by traditional light microscopy, which limits
the performance of these methods as this kind of images
contain limited pathological information. As a result, two-
dimension algorithms for image processing have been devel-
oped into maturity and researcher are committed to studying
three-dimension algorithms to obtain more accurate results
with more information. Nevertheless, few three-dimensional
databases are published online for researches. In this paper,
a multidimensional choledoch database which contains both
microscopy hyperspectral images and RGB color images at
the same field of view is proposed for deep learning studies.
All images in this database have been evaluates and labeled
by experienced pathologists which is suitable for training
neural networks. This database is very useful for researchers
to investigate newmultidimensional deep learning algorithms
for pathologic diagnosis as it contains morphology, spectrum,
and biochemical changes information of samples. And that’s
the point of this paper, so we operated two simple algorithms

on our database just to prove the availability of the choledoch
database rather than investigate the algorithm profoundly. Yet
we will do some research on image processing algorithms,
especially three-dimensional AI algorithms, based on the
database we announce in this paper to detect, segment, or
recognize tumor areas more precisely next.

Up to now, the presented multidimensional choledoch
database is the first public choledoch pathology database
contains both microscopy hyperspectral and RGB color
images with annotations of choledoch sections. The public
availability of this database will enhance the development
and evaluation of new deep learning algorithms of pathologic
diagnosis of cholangiocarcinoma.
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