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ABSTRACT Unmanned aerial vehicles (UAVs) can be used as low-altitude flight base stations to satisfy the
coverage requirements of wireless users in various scenarios. In practical applications, since the transmitted
power and energy resources of the UAVs are limited and the propagation environments are complicated
and time-variant, it is challenging to control a group of UAVs to ensure coverage performance while
preserving the connectivity and safety of the UAV networks. To this end, a two-step environment-learning-
based method is proposed for the intelligent deployment of the UAVs. First, a machine learning algorithm
is used to establish an accurate prediction model of the link qualities from the UAVs to the users under a
specific scenario for the next step. Then, a modified deep deterministic policy gradient (DDPG) algorithm is
employed to control the movements of the UAVs according to the predicted link qualities and to maximize
the proportion of covered users. The prioritized experience replay mechanism is introduced to the standard
DDPG algorithm to accelerate the deployment procedure. The coverage performance is analyzed in both
the interference-free situation and the situation with co-channel interference. Simulation results have shown
that the proposed method has a higher convergence speed than the standard DDPG method. Additionally,
the proposed deployment method can achieve higher coverage performance and better adaptability to the
dynamic environment than three commonly used methods, the random method, the K-means-based method,
and the statistical-channel-model-based method.

INDEX TERMS Coverage performance, environment-learning-based method, link quality, optimal
deployment, unmanned aerial vehicle networks.

I. INTRODUCTION
In recent years, unmanned aerial vehicles (UAVs) have
attracted great attention due to small size, low price, and
high flexibility. The UAVs with variable positions can estab-
lish line-of-sight (LoS) communication links to the users.
Therefore, the UAVs are suitable to be used as low-altitude
flight base stations (BSs) to reduce the signal attenuation
and improve the coverage performance [1], [2]. For example,
in the case of a terrestrial BS failure, the UAV-BSs can
be rapidly deployed to satisfy temporary coverage demands
for wireless services [3]–[5]. The cellular networks can
also be assisted by the UAV-BSs in the temporary hotspot
area [6]–[9]. The deployment problem of the UAVs is more
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complicated than that of the terrestrial BSs. First, in practical
application scenarios, due to the limited transmitted power
and energy resources, multiple UAVs are often required to be
deployed together to ensure the large coverage. Second, since
the propagation environment is complex and changeable,
the UAVs are expected to have certain adaptability to the
environment to rapidly satisfy the coverage requirements of
the users. In addition, multiple UAVs should be set with a
certain distance limitation to maintain both the connectivity
to ensure the robustness of the network and the security to
prevent collisions caused by unexpected situations. There-
fore, how to effectively deploy the positions of the UAVs to
improve the coverage performance is a challenging problem.

Many research works have extensively finished for the
deployment of the UAVs in wireless networks. The optimal
deployment was mainly designed to realize the maximum
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throughput of the users [10]–[12], the minimum transmit-
ted power [13], [14], the trajectory optimization [15]–[17],
and the optimal coverage performance of the UAV
networks [18]–[26]. For the coverage problem, the authors
in [18] considered the influence of distance and LoS probabil-
ity and obtained the optimal height with maximum coverage
radius for a single UAV via theoretical derivations. In [19],
an equivalent quadratically-constrained mixed-integer non-
linear optimization method was proposed for maximizing
the revenue of the network. The authors in [20] decoupled
the UAV deployment problem in vertical and horizontal
dimensions and modeled the UAV deployment problem as
a placement problem with the smallest enclosing circles.
The aforementioned works only considered a single UAV.
However, the deployment of multiple UAVs is often required
to complete the coverage task in a large area.

In [21], the authors investigated the influence of flying
altitude on the combined transmitted power and coverage
range of two UAVs in both the presence of interference and
interference-free scenarios. The work of [22] provided the
optimal separation distance between UAVs for mitigating
co-channel interference and maximizing overall coverage
performance in both suburban and urban environments.
In [23], the authors formulated the UAV deployment problem
as a continuous control task and proposed a deep reinforce-
ment learning method for maximizing the energy efficiency
of the UAV network with the joint consideration of coverage,
fairness, energy consumption, and connectivity. Neverthe-
less, the distribution and movement of ground users were
neglected in their works. In [24], a centralized deployment
algorithm and a distributed motion control algorithm were
proposed to realize the on-demand coverage of the UAVs. The
authors in [25] offered an improved multi-population genetic
algorithm to maximize the number of users with different
quality of service requirements. A method of deploying mul-
tiple UAV-BSs was proposed in [26] to achieve a maximum
number of covered users and avoid inter-cell interference.

However, these worksmentioned above [24]–[26] assumed
that the qualities of the communication links between the
UAVs and the ground users could be estimated by means
of statistical results, which were used to determine whether
the users can be covered. In the practical propagation envi-
ronments, due to the random distribution of the users and
scatterers, the statistical results often have poor prediction
accuracy on the link quality. Therefore, statistical results can
hardly reflect the specific environmental details. Moreover,
the random movements of the users will cause continuous
changes of the propagation conditions, which requires the
UAV network to have sufficient adaptability to the uncertain
environment.

To this end, we propose a two-step environment-learning-
based method to realize the optimal deployment of the
UAV network for maximizing the coverage performance
in both the interference-free situation and the situation
with co-channel interference. The concept of environ-
ment learning in this paper is proposed for obtaining the

mapping relationship between dynamic environments and the
UAV deployment decisions. The UAV network can be
deployed online in the actual application environment after
sufficient learning.

A two-step learning method is proposed to perform the
learning procedure. A typical machine learning algorithm,
random forest, is first employed to learn the underlying
relationship between the propagation environment and the
link qualities from the UAVs to the users. Then, an accurate
prediction model of the link qualities is established to pro-
vide accurate environment information for the next learning
step. A modified deep deterministic policy gradient (DDPG)
algorithm is second employed to learn the impact of the
user distribution on the coverage performance according to
the prediction model. In this process, due to the dynamic
changes of the user locations, the UAV network is required to
efficiently adapt to the time-variant environment. Therefore,
the prioritized experience replay mechanism is introduced
to the DDPG algorithm for the purpose of accelerating the
deployment procedure. After learning, the deployment deci-
sions of the UAV network are obtained for maximizing the
proportion of covered users under the premise of ensuring
connectivity and security.

In summary, the main contributions of this paper are listed
as follows.
• A two-step environment-learning-based method is pro-
posed to achieve the optimal deployment of the
UAV network for maximizing the coverage perfor-
mance. The method integrates the mechanisms of
machine learning and reinforcement learning to obtain
a mapping of the dynamic application environment to
deployment decisions.

• The machine learning algorithm is used to predict the
link qualities from theUAVs to the users, which provides
accurate environmental status information for deploy-
ment decisions.

• A modified DDPG algorithm is employed to
autonomously find the optimal deployment of the UAVs
through continuous learning from the environment. The
prioritized experience replay mechanism is introduced
to improve the adaptability of the UAV network to the
time-variant environment and accelerate the learning
process.

• The coverage performance of the proposed two-
step environment-learning-based method in both the
interference-free and the situation with co-channel inter-
ference is evaluated in the simulations. The standard
DDPG method, the random method, the K-means-
based method, and the statistical-channel-model-based
deployment method are employed for comparison. The
results show that the proposed method can achieve high
coverage performance and fast deployment speed.

The remainder of this paper is organized as follows.
Section II presents the system model. The proposed two-step
environment-learning-basedmethod for the UAVdeployment
problem is described in Section III. Section IV shows the
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FIGURE 1. The scenario of the UAVs serving as the base stations.

simulation results and analysis. Finally, Section V concludes
the paper.

II. SYSTEM MODEL
As illustrated in Fig. 1, we consider a low-altitude network
with N UAVs in an urban area R to provide temporary com-
munication services for the ground users. The motions of
the UAVs are activated by one controller, which can get the
global environment information and transmit control com-
mands to all the UAVs. The proposed method is executed
by the central controller instead of being configured on the
UAV platforms, which ensures the light load of the UAVs to
save energy resources and extend the flight time. For the sake
of simplicity, we assume that the UAVs have the same fixed
flight altitude h and are all equipped with omnidirectional
antennas with the gain G = 1. There are dense buildings on
both sides of the streets, andK users are distributed randomly
along each street with a height of z. The user equipments in
the systems are equipped with location-aware devices like
global positioning system (GPS) chips, and the locations of
the users are reported to the central controller via the UAVs.
The downlink quality is analyzed as an example.

The coverage performance of the UAV network is investi-
gated in both the interference-free situation and the situation
with co-channel interference. The proportion of covered users
is used to evaluate the coverage performance.

In the interference-free situation, the multiple UAVs work
at different frequency points, so there is no interference
between signals from different UAVs. For the ground user k ,
if the received signal-to-noise ratio (SNR) from the UAV i
exceeds a threshold Nth, the user k is covered and its com-
munication requirements can be supported by the UAV i. The
noise in the channel is additive white Gaussion noise. The
SNR of the user k is given as

SNRi,k (dB) = 10 log10 (
pr i,k
pn

), (1)

where pn is the noise power in mW. pr i,k is the received power
of user k from UAV i in mW and can be expressed by

pr i,k = 10
Pt−PLi,k

10 , (2)

where Pt is the transmitted power in dBm, and PLi,k in
dB indicates the path loss between the UAV i and the user k .
In order to ensure the connectivity of the UAV network,

the distance between two connected UAVs must not exceed
the maximum sensed radius Rs, which is determined by the

sensors equipped on each UAV [24]. We assume that each
UAV needs to connected with at least two others to ensure
the robustness of the network. At the same time, the dis-
tance of any two UAVs must be no less than the minimum
distance Rmin to prevent possible collisions. In this system,
the user receives the signals of multiple UAVs and chooses to
access the UAV with the best link quality. The ultimate goal
is to find the optimal deployment of the multiple UAVs for
maximizing the proportion of covered users on the premise
of ensuring the connectivity and safety of the UAV network.
The problem can be expressed by

max
(xi,yi)∈R
i∈[1,N ]

1
K
card(k|k ∈ [1,K ] , max

i
(SNRi,k ) ≥ Nth)

s.t. Rmin ≤ di,j ≤ Rs, (3)

where card(·) represents the number of elements in the aggre-
gation, (xi, yi) represents the location of the UAV i ,and di,j is
the distance between the UAV i and UAV j.

Besides the interference-free situation, the situation where
the UAVs interfere with each other during transmission
should also be taken into considerations. Due to the scarcity
of spectrum resources, sometimes multiple UAVs might need
to reuse frequency band and transmit over the same channel,
which will cause the co-channel interference in the UAV
network [21]. It is assumed that the user can receive signals
from multiple UAVs, which work at the same frequency.
Therefore, when the user accesses the UAV with the best link
quality, the signals from other UAVswill bring the co-channel
interference. In this case, the user k can be covered by UAV i
if the received signal-to-interference-plus-noise ratio (SINR)
exceeds a threshold Ith. According to [27], the SINR of user k
can be expressed as

SINRi,k (dB) = 10 log10 (
pr i,k∑

j6=k pr j,k + pn
). (4)

The optimization problem in the situation with co-channel
interference can be expressed by

max
(xi,yi)∈R
i∈[1,N ]

1
K
card(k|k ∈ [1,K ] , max

i
(SINRi,k ) ≥ Ith)

s.t. Rmin ≤ di,j ≤ Rs. (5)

In (1) and (4), if the power values of the transmitted signals
and noise are constant, the SNR or SINR is only determined
by the path loss. In general, the path loss is defined as a
function of the probabilities of LoS and non-line-of-sight
(NLoS) links and can be expressed as [18]

PL(f , d) = P(LoS)× PLLoS + P(NLoS)× PLNLoS, (6)

where the P(LoS) and P (NLoS) = 1− P(LoS) represent the
probabilities of LoS and NLoS connections, which depend on
the environment and the elevation angle between the link and
the horizontal plane. PLLoS and PLNLoS represent the path
loss values of LoS and NLoS links based on the statistical
experience, respectively.
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FIGURE 2. The scenario where user1 and user2 have the same distance
and elevation angle but have different path loss. The notations in the
figure are used as the input features for the random forest.

However, the aforementioned statistical model cannot
accurately reflect the practical propagation characteristics.
For example, in the scenario shown in Fig. 2, although the
user1 and user2 have the same distances and elevation angles
to the UAV, due to the obstruction of the building, the path
loss of the user1 is larger than that of the user2 who has an
LoS connectionwith theUAV. Therefore, the statistical model
cannot accurately describe the link qualities of users and thus
may affect the decisions of the UAV locations. Moreover,
because of the randomness of the user locations and move-
ments, the deployed locations of the UAVs need to be con-
stantly adjusted, i.e., the UAV network needs to be adaptive
to the time-variant environment. These are the motivations of
proposing our environment-learning-based method.

III. TWO-STEP ENVIRONMENT-LEARNING-BASED UAV
DEPLOYMENT METHOD
In this section, we propose a two-step environment-learning-
based method to solve the optimization problems. The prob-
lems can be separated into two parts which are solved
sequentially. The procedure of the proposed method is shown
in Fig. 3. A machine learning algorithm is first employed
to learn the propagation characteristics of the air-to-ground
(A2G) channel and to provide an accurate prediction model
of the link qualities under the specific scenario. Second,
a modified DDPG algorithm is proposed to learn the mapping
relationship between the dynamic propagation environment
and the UAV deployment. The model trained in the first step
is used here to predict the accurate link qualities based on
practical user positions and further to generate the coverage
ratio. The central controller continuously updates the posi-
tions of the UAVs according to the coverage performance
until it finally obtains the optimal deployment decision.

A. PREDICTION MODEL OF A2G LINK QUALITY BASED
ON THE RANDOM FOREST ALGORITHM
The first learning step is to learn the propagation character-
istics of the A2G channel in a specific environment and to
build an accurate prediction model for link qualities. The link
quality can reflect the practical coverage performance and
further guide the UAV deployment decisions. In this study,
the path loss is chosen to evaluate the link quality. As men-
tioned above, the statistical model is difficult to accurately

FIGURE 3. The procedure of the two-step environment-learning-based
method.

describe the path loss and therefore the link quality of users
in a complicated environment.

In order to improve the prediction accuracy of the link
qualities, machine learning algorithms can be employed in
the first step. In this paper, the random forest algorithm
is selected because of its good performance in generaliza-
tion and training speed. Random forest is a highly flexible
machine learning algorithm and is optimized from the deci-
sion tree model [28]. It takes advantage of integrated learn-
ing and integrates multiple decision trees to form a forest.
The forest randomly selects the training samples of each
decision tree via the bootstrapping method. The features of
each decision tree are also selected randomly from the initial
feature set. These random processes ensure the irrelevance
of the decision trees and further improve the stability of the
random forest model. For regression or prediction problems,
the output of the random forest is the average of the outputs
of all the decision trees. We have demonstrated in previous
works [29]–[31] that the random forest has high accuracy in
the estimation of channel qualities.

To deploy the UAVs efficiently and precisely, the predic-
tion model should have the capability to accurately predict
the quality of any link. Therefore, it is necessary to acquire
enough position samples of both the UAV and the user as the
training data. Offline measurement campaigns can be carried
out to collect these training samples at different positions of
the UAV and user. The label of the sample is the actual path
loss value, and the inputs are environmental features, which
are listed as follows.
• The horizontal position of the UAV (xv, yv), where
v ∈ {1, 2, ...,V } represents the vth position of the UAV.

• The horizontal position of the user (xu, yu), where
u ∈ {1, 2, ...,U} represents the uth position of the user.
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• The plane angle between the line of the projection of the
transmission path and the x-axis direction σvu.

• The propagation distance from the UAV to the user dvu.
• The elevation angle between the line of the transmission
path and the horizontal plane ωvu.

Then, the prediction model of A2G link quality can be
expressed as

PLvu = f (xv, yv, xu, yu, σvu, dvu, ωvu) (7)

where f (·) represents the mapping from the channel char-
acteristics to the link qualities. Totally UV samples can be
collected for the training purpose. Then, the random forest
algorithm is used to train the prediction model offline.

B. DEPLOYMENT OF THE UAV NETWORK BASED
ON A MODIFIED DDPG ALGORITHM
The second learning step is to realize the optimal deployment
of the UAV network through a modified deep reinforcement
learning (DRL) algorithm for maximizing the coverage ratio
of the users. To handle the problems in high dimensional
space, the DRL uses the deep neural networks (DNNs) to
replace the state-action value function Q(·). In this study,
the central controller of the UAV network is modeled as a
DRL learning agent to explore the environment. The agent
can acquire the practical positions of the UAVs and the users
via UAVs. Then, the link qualities can be computed by the
prediction model which has been learned in the first step.
Based on the predicted link qualities, the agent can derive
the coverage performance as the current state and accordingly
takes actions to control the movements of the UAVs. Then,
the agent acquires the corresponding reward and computes
the next state. It constantly interacts with the environment in
this kind of trial-and-error manner. The final purpose is to
learn a policy π (s) that maps any of a state to an action to
maximize the discounted cumulative reward [32]

Rt =
T∑
t=1

γ r (st , at), (8)

where st and at represent the state and action of the agent at
epoch t , respectively. T is the total number of epochs. r(·) is
the reward function and γ ∈ [0, 1] is the discount factor. The
state-action value function

Q (st , at) = Eπ [Rt |st , at ] (9)

indicates the expected value from the state st when taking the
action at following the strategy π (st ).

In our proposed method, the state, action, and reward of the
agent are defined as follows.

1) State st = (xt , yt , ct , et , ot , zt , qt ):
• xt = {x1, x2, . . . , xN } and yt = {y1, y2, . . . , yN } indicate
the positions of the N UAVs in the Cartesian coordinate,
and the values are normalized in order to be used as the
input features of the DNNs.

• ct ∈ [0, 1] indicates the proportion of covered users in
the target area.

• et = {e1, e2, . . . , eL} is the proportion of covered users
in L divided cells. The target area is evenly divided into
L cells in order to avoid the lack of local state changes.
el ∈ [0, 1] indicates the proportion of covered users in
cell l, where l = {1, 2, ...,L}.

• ot = {0, 1} is 0 if the UAV flies out of range and
otherwise is 1.

• zt = {0, 1} is 0 if the UAV network is disconnected or a
collision occurs between the UAVs and otherwise is 1.

• qt = {0, 1} is 1 if all the users are covered by the UAV
network and otherwise is 0.

It is assumed that the positions of the ground users are
distributed randomly. For the initial state, the positions of N
UAVs can be specified randomly or by the K-means method.
The random initialization method is to randomly specify the
positions of the UAVs. The K-means initialization method is
to divide users into different clusters and to initialize each
UAV at the center of each cluster. The path loss of each link
can be calculated by the prediction model in (7) and then the
received SNR or SINR can be computed. The user is con-
sidered to successfully access the UAV if the SNR or SINR
is larger than the minimum reception threshold. The state
is continuously updated according to the movements of
the UAVs. It should be noted that ot and zt are set as 1 in
the initial state.

2) Action at = {m1,m2, . . . ,mN }, where mi ∈ [0, 2π ]
indicates the flight angle of UAV i. The values are also nor-
malized for the usage in the DNNs. In the algorithm, the flight
decisions of the UAVs are updated with a fixed distance of dm.
According to the angles selected by the algorithm, the new
positions of the UAVs at time t + 1 can be calculated as

(xt+1, yt+1) = (xt + dm cos (at), yt + dm sin (at)) . (10)

3) Reward rt is defined as

rt=


p1 if out of range,
p2 if distance is not satisfied,
p3 if all users are covered,
ct + (ct − ct−1)× 5 otherwise,

(11)

where p1 represents the penalty value of the UAVs moving
out of range, p2 is the penalty value of unsatisfied UAV
distance, and p3 is the reward value of the UAV network
achieving full coverage. First, the reward function considers
whether the action leads to violations of boundaries or dis-
tance constraints. If the flight decision results in an out-of-
bounds, the network is given a penalty of rt = p1 and the
movement of the corresponding UAV is canceled. Similarly,
if an action causes disconnection or possible collisions of
the UAVs, the penalty of the network is rt = p2. Second,
if the UAV network has already been connected, the reward
is given as rt = ct+ (ct−ct−1)×5, which represents the sum
of the current coverage and the change of coverage caused
by the current action. Especially, if the users are all covered,
the network is given rt = p3 as a reward for completing the
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coverage task, and then the UAVs keep hovering at the fixed
positions to provide full coverage to the users.

The action space of the UAVs is designed as a continuous
space to ensure the accuracy of the deployment. For control
in the continuous space, DDPG is a commonly used DRL
method. This method uses the DNNs with parameters θµ and
θQ to represent the deterministic strategy a = π (s|θµ) and the
Q function Q(s, a|θQ) based on the actor-critic framework.
In addition, target networks which have the same structure
as the main networks are employed to solve the instability
problem. The actor is a policy network, whose objective
function is defined as the total rewards with a discount [32]

J (θµ) = E[r1 + γ r2 + γ 2r3 + · · · ]. (12)

The actor network is updated along the increasing direction
of the Q value

∂J (θµ)
∂θµ

= E[
∂Q(s, a|θQ)

∂a
∂π (s|θµ)
∂θµ

]. (13)

The critic is a value network that approximates the value func-
tion of the state-action pair and provides gradient informa-
tion. It is updated by minimizing the following loss function

L
(
θQ
)
= E

[
(Yt − Q(st , at |θQ)

]
, (14)

where Yt is the target value and can be estimated by

Yt = rt + γQ′(st+1, π(st+1|θµ
′)|θQ

′
), (15)

where rt is the reward at epoch t . θµ′ and θQ′ represent the
parameters of the target policy network and the target value
network, respectively.

The DDPG algorithm uses a replay buffer to store experi-
ences of {st , at , rt , st+1} and randomly selects a minibatch
of them to update the neural networks at each learning
epoch. The replay buffer may result in a few selecting oppor-
tunities for many experiences with large rewards and suc-
cessful attempts, which will affect the convergence speed
of the algorithm. However, in the practical environment,
the distribution of user positions is dynamically changing,
which requires the UAV network to realize rapid deploy-
ment for adapting to the time-variant environment. There-
fore, instead of replaying all experiences uniformly, we intro-
duce the prioritized experience replay mechanism [33] to
improve the priorities of more valuable samples. The priority
of the sample n is decided by the temporal difference error
(TD-error) δn, which is defined as

δn = Yt − Q(st , at |θQ). (16)

The samples with large TD-errors have higher priorities in
the replay buffer. The priority of sample n is defined as
ρn = 1/rank(n), where rank(·) is the rank of the sample n
decided by δn. Then, the sampled probability of n is given as

P (n) =
ρ
ϕ
n∑
C ρ

ϕ
C
, (17)

where ϕ determines the weight of converting TD-error to
priority and C is the data size of minibatch. The prioritized

replay mechanism may cause bias because it changes the
state visitation frequency, and further changes the decisions.
To handle the problem, importance-sampling weights are
calculated as

Wn =
1

MβP(n)β
, (18)

where M is the size of the replay buffer and the parameter
β determines the extent of correction. With the prioritized
replay mechanism, the modified DDPG is more efficient than
the standard DDPG algorithm.

C. SUMMARY OF THE PROPOSED METHOD
The specific steps of the proposed environment-learning-

based method are presented in Algorithm 1. It is a detailed
description of the procedure in Fig. 3. First, the random forest
algorithm is used to establish the prediction model of link
qualities (Line 1–3). Second, the DNNs are initialized. The
movements of UAVs are controlled according to the outputs
of the neural network and then the corresponding reward
and the next state are obtained. Particularly, random noise is
added to the actions for exploration, which follows a normal
distribution with a mean of zero and a variance of ε. Here,
ε decays with a rate of 0.9995 over each learning epoch until
the minimum variance εm is reached, and then the algorithm
can exploit the learning results and choose the optimal strat-
egy (Line 4–22). The algorithm uses the prioritized experi-
ence replay mechanism for updating the networks. The critic
network is trained by minimizing the loss function and the
actor network is trained by computing the gradient function.
(Line 23–29).

In practical environments, there may be several deploy-
ment decisions that can achieve full coverage of users. In this
case, the average SNR or SINR can be added to the outputs of
the well-trained model and further considered in the method.
When the full coverage can be obtained by more than one
deployment decisions, the one with the highest value of the
average SNR or SINR can be selected as the optimal solution.

IV. RESULTS AND ANALYSIS
In this section, simulations are conducted to evaluate the per-
formance of the proposed UAV deployment method. We first
describe the environment settings and then analyze the simu-
lation results.

A. ENVIRONMENT SETTINGS
Wireless Insite software [34] is used in this paper to gen-
erate accurate downlink channel data via the ray-tracing
method. The ray-tracing method calculates the amplitude,
phase, delay, and polarization of each possible ray path in a
multipath channel based on the theory of wave propagation
and obtains a coherent synthesis of all rays at the receiving
point [35]. It has already been proved that the software can
accurately and reliably calculate the wave propagation char-
acteristics [34]. A dense urban scenario in Helsinki, Finland,
is selected as the target region with a size of 900 m × 450 m
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Algorithm 1 Two-Step Environment-Learning-Based
Method for Optimal UAV Deployment
1: Collect historical channel data or perform link qualitiy

measurements in advance;
2: Extract channel characteristics data as the traning data

set;
3: Establish the prediction model of link qualities based on

the random forest algorithm;
4: Initialize the main and target DNNs with replay memory
M and weights θ , θ ′;

5: for episode = 1 do
6: Initialize the positions of the UAVs and the users;
7: Calculate the initial state st through the prediction

model;
8: for epoch t = 1 do
9: Select an action at with random noise;
10: Extract current channel characteristics;
11: Calculate the link qualities by (7) and obtain the

current coverage performance;
12: if UAV i flies beyond the border then
13: rt = p1 and cancel the corresponding action
14: end if
15: if the distance of UAV network is not satisfied then
16: rt = p2
17: end if
18: if the users are are all covered then
19: rt = p3 and theUAVs hover at the fixed positions;

20: break
21: end if
22: Calculate the next state st+1 and the corresponding

reward rt based on the current performance;
23: Store transition sample (st , at , rt , st+1) intoM with

maximal priority ρt = max(f<t) ρf ;
24: Select random minibatch of C samples

(sn, an, rn, sn+1) from M with probability P(n);
25: Calculate importance-sampling weightWn and TD-

error δn;
26: Update transition priority according to δn;
27: Set Yn by (15);
28: Update the main networks θQ and θπ by (13) and

(14)
29: Every S steps update the target networks θQ′, θπ ′ to

the main networks.
30: end for
31: end for

and is shown in Fig. 4. There are 43 buildings with a height
of 50 m unevenly distributed on both sides of the streets. The
UAVs and the users are all equipped with omnidirectional
antennas. The carrier frequency is 2.4 GHz and the bandwidth
is 10MHz.We consider 4UAVs and 350 users in the scenario,
where the users are randomly distributed on 12 streets. The
streets and the possible locations for the UAVs are also shown

FIGURE 4. Simulation environment.

TABLE 1. Parameters of the simulation environment.

in Fig. 4. For the clarity of the figure, only a small number
of possible user locations are marked. The parameters of the
simulation environment are illustrated in Table 1.

B. PERFORMANCE OF THE MACHINE-LEARNING-BASED
LINK QUALITY PREDICTION MODEL
In the first learning step, enough sample points are required
to generate a reliable link quality prediction model. In this
simulation, in order to mimic the actual urban environment,
the samples of user positions are evenly collected on the
12 streets with 1.5 m height, and there are 451 samples of user
positions in total. Taking the time consumption and data size
into account, a UAV is set to move along the 10 horizontal
routes with 90 m height, and the positions of the UAV are
sampled every 40 m. Each route has 19 samples of UAV
positions, and there is a total of 190 position samples which
are shown in Fig. 4. The propagation characteristics in (7) are
obtained from the ray-tracingmethod and the data sample can
be expressed as {xv, yv, xu, yu, σvu, dvu, ωvu,PLvu}. The num-
ber of propagation paths includes a maximum of 10 reflection
paths, 1 direct path, and 1 scatter path. The number of samples
is 85,690 and these samples are divided into the training
data set (80 percent) and the test data set (20 percent). The
random forest algorithm is employed to predict the A2G link
qualities of the users. 200 decision trees with a maximum
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depth of 22 are selected and the rest parameters are set as
default values. Three statistical metrics, includingmean abso-
lute error (MAE), standard deviation (STD), and root mean
square error (RMSE) [36] are used as indicators to measure
the accuracy of the prediction results. These indicators can be
calculated by comparing the actual values of the test data set
with the predicted values and can be defined as

MAE =
1
B

B∑
b=1

∣∣PLb − PL′b
∣∣

STD =

√√√√ 1
B

B∑
b=1

(
∣∣PLb − PL′b

∣∣−MAE)2

RMSE =

√√√√ 1
B

B∑
b=1

(PLb − PL′b)
2 (19)

where B is the total number of samples in the test data set,
PLb is the actual value of the bth sample, and PL′b is the
predicted value.

The typical A2G urban statistical model in (6) is used here
for comparison. The probability of LoS linkP(LoS) is defined
as

P (LoS) =
1

1+ Aexp(−D[ω − A])
, (20)

where A and D are constants depended on the environment,
ω is the elevation angle between the link and the horizontal
plane. The path loss models of LoS and NLoS links are
respectively given as

PLLoS = 20log10d + 20log10f + 20log10(4π/c)+ ηLoS
PLNLoS= 20log10d+20log10f +20log10(4π/c)+ηNLoS (21)

where f is the carrier frequency inMHz, c is the speed of light,
and d is the propagation distance in km. ηLoS and ηNLoS are
the additional losses for LoS and NLoS links, respectively.
The environment parameters of the model are set as A = 9.6,
D = 0.28, ηLoS = 1, ηNLoS = 20 according to [18].
Table 2 lists the prediction accuracy of the two models on

the test data set. The RMSE and STD of the statistical model
are about 15 dB higher than those of the random forest, and
its MAE value is about 13 dB higher. The results show that
the random forest model has smaller errors and fits better
with the actual urban environment than the statistical model.
It is because the traditional statistical A2G model loses the
details of the environment and thus may bring large errors to
the prediction results of the link qualities. As we mentioned
above, such predictions cannot reflect the practical cover-
age of users and severely affect the optimal deployment of
the UAVs.

C. CONVERGENCE PERFORMANCE OF THE MODIFIED
DDPG DEPLOYMENT METHOD
IN THE TRAINING PROCESS
In the second step, according to the link quality prediction
model, the modified DDPG method is trained in the dynamic

TABLE 2. Comparison of the random forest model and the statistical
model in prediction accuracy.

TABLE 3. Configurations of the parameters in the proposed deployment
method.

environment for rapidly and adaptively obtaining the opti-
mal deployment. The actor network of the modified DDPG
is a two-layer fully-connected feedforward neural network,
which includes 500 and 400 neurons in the two layers and
utilizes the tanh(·) function for activation. The critic network
is also fully-connected with two layers, the neuron numbers
of the two layers are 700 and 20.

The proposed method is trained for 1800 episodes, each
of which has 150 epochs. The positions of the UAVs and
the users are initialized at the beginning of each episode.
In the proposed method, the initialization process of the UAV
positions can be carried out in two ways, i.e., random initial-
ization and K-means initialization. In each epoch, the UAVs
are controlled to move according to the current state and get
a corresponding reward and the next state. The parameters of
the proposed deployment method are shown in Table 3.

TheUAVnetwork obtains the optimal deployment decision
by maximizing the environmental cumulative reward. The
accumulated reward of each episode in the training process
is used to evaluate the convergence of the proposed method.
Fig. 5 shows the accumulated reward values, which are aver-
aged in every three episodes for the clarity of the figure.
Especially, if the UAV network achieves full coverage during
one episode, the reward of each remaining epoch in this
episode, rt , defaults to 2. The highest value of 300 indicates a
special case when the UAV network can achieve full coverage
at the initial state. In the beginning, the UAV controller is
in a stage of randomly exploring the unknown environment.
It begins to learn after about 400 episodes, and then the
accumulated reward starts to increase.

The accumulated reward of the proposed method with ran-
dom initialization gradually converges to a stable result after
about 800 episodes, which means that the UAV network has
already learned a good strategy. Due to the randomness of the
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FIGURE 5. The average of the accumulated reward of the proposed
method with random initialization, the proposed method with K-means
initialization, and the standard DDPG method in the training process.

initial state, the accumulated reward of each episode is not a
fixed value. With the K-means initialization, the accumulated
reward of the proposed modified DDPG method converges
to a stable value after about 750 episodes and gradually
converges to the value close to 300. The results show that
the converge rate of the proposed method with K-means
initialization can be improved compared to that with random
initialization. This is because the clustered positions obtained
by the K-means method are close to the optimal deploy-
ment positions. In this case, the controller may quickly find
the optimal locations and learn a corresponding deployment
decision. At the same time, the K-means initialization will
introduce additional clustering calculations.

The standard DDPG is used here for comparison. The
accumulated reward of standard DDPG has a small drop at
about 800th episode, which means the valuable strategies
have not been well learned and utilized. The standard DDPG
gets a similar stable result as the proposed method with
random initialization after about 1600 episodes. The results
indicate that the proposed methods with random initializa-
tion and K-means initialization both show faster convergence
speed than the standard DDPG method.

In order to adapt to the real-time nature of the commu-
nication scenario, the complexity of the deployment method
needs to be discussed. Within the proposed method, the chan-
nel characteristics are learned offline in the first step. Then,
the prediction model of link qualities is built through the
machine learning method before deployment. In the process
of real-time deployment, the model can be used directly to
predict the link qualities according to the user positions.
Therefore, the complexity of the proposed method mainly
depends on that of reinforcement learning in the second step,
which mainly lies in the need to fully explore the dynamic
environment during the training process. The training process
can be done first based on offline learning, and then the
training results can be updated according to a small amount
of online learning to improve accuracy. Therefore, based on

FIGURE 6. The coverage performance of the proposed method in the
interference-free situation when compared with three methods, including
the random method, the K-means-based method, and the
statistical-channel-model-based method in the test process.

the well-trained model, the best deployment decisions can be
obtained under different distributions of the user positions in
real-time.

D. COVERAGE PERFORMANCE OF THE MODIFIED DDPG
DEPLOYMENT METHOD IN THE INTERFERENCE-FREE
SITUATION
In this subsection, we verify the coverage performance of
the proposed method in the interference-free situation. After
training, the users and the UAVs are randomly initialized in
each episode to test the coverage performance of the proposed
method. The proposed method with random initialization is
used here as an example. The UAV network first needs to
ensure its connectivity and security when providing com-
munication services to the users. However, due to the time-
varying characteristics of the environment, the UAVs need to
constantly move to ensure coverage, which may cause a cer-
tain probability of connection failure. The failure probability
is tested in 1000 episodes by using the well-trained method
and the result is 2.5 percent.

Under the premise of ensuring connectivity and safety,
the coverage performance of the proposed method in 120 test
episodes is shown in Fig. 6. The random deployment method,
the K-means-based deployment method, and the statistical-
channel-model-based deployment method are employed for
comparison. The random deployment method [23] selects
the actions randomly for the UAVs at each epoch. Its deci-
sions are irrelevant to the current state of the environment.
If the UAVs fly beyond the area or do not meet the distance
requirements, the actions are abandoned and the UAVs make
no movements. The K-means-based deployment method
is to deploy the UAVs directly above the clusters of the
users [37]. The statistical-channel-model-based deployment
method decides the UAV locations via the modified DDPG
algorithm and updates the state information based on the
statistical A2G channel model in [18].

We average the coverage ratio results of the 120 episodes.
The average coverage ratio of our proposed method can
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FIGURE 7. The change of the coverage performance under each epoch in
one episode of the proposed method in the interference-free situation
when compared with the random method and the
statistical-channel-model-based method.

reach 95.59 percent. Moreover, 53 percent of the episodes
can achieve full coverage of users. There are three possible
reasons for not reaching full coverage. First, the initial state
of the environment is too poor, and the UAVs cannot move to
the optimal positions within the limit of 150 epochs. Second,
the state and action space of the environment are both contin-
uous. The UAV network has the possibility of moving to an
unexplored state during the movements and needs to learn the
state. Third, the predicted link quality still has a certain error,
which leads to the deviation of the deployment result, so that
the users with poor link qualities may not be covered.

The average coverage ratio of the random deployment
method is 85.55 percent, and the full coverage can be obtained
in only 9 percent of the episodes. The reason is that the
optimal deployment is realized only by simple random traver-
sal, which is difficult to find the optimal deployment for
multiple UAVs. The average coverage ratio of the K-means-
based method is 90.22 percent, which is higher than that of
the random deployment method. This is because the K-means
algorithm ensures the users of each cluster can be located
within the coverage radius of the corresponding UAV. How-
ever, the UAVs at these deployment positions cannot cover all
the users due to the obstruction of the buildings. The average
coverage ratio of the statistical-channel-model-based method
is 86.79 percent, and the full coverage also cannot be realized.
That is due to the fact that the statistical channel model has
poor accuracy in estimating the link qualities. This model
misleads the central controller to believe that the selected
locations of the UAVs can achieve the optimal deployment.
However, the coverage requirements are not satisfied because
of the inaccurate estimations of link qualities. The results
show that our proposed method outperforms the three other
methods in terms of coverage performance.

Moreover, Fig. 7 shows the change of coverage ratio under
each epoch in a randomly selected episode. Since the user
positions are fixed during one episode, the K-means-based
method is not considered here. The coverage ratio of our

FIGURE 8. The impact of the number of UAVs on the coverage
performance in the interference-free situation.

FIGURE 9. The coverage performance of the proposed method in the
situation with co-channel interference when compared with three
methods, including the random method, the K-means-based method, and
the statistical-channel-model-based method in the test process.

proposed method begins to increase after 5 epochs. After
about 60 epochs, the proposed method achieves the full cov-
erage. The coverage ratio of the random deployment method
indicates that the method has no convergence and requires
more explorations to find the optimal solution. The coverage
of the statistical-channel-model-based deployment method is
finally stable at about 0.89 due to the prediction error of link
qualities.

Fig. 8 shows the impact of the number of UAVs on the cov-
erage performance. The results of the average coverage ratio
and the proportion of full coverage are tested in 120 episodes.
The average coverage ratios for different numbers of the
UAVs are all higher than 0.9. The proportion of full coverage
is only 0.025 for 3 UAVs and increases to 0.98 when the
number of UAVs is 7.

E. COVERAGE PERFORMANCE OF THE MODIFIED DDPG
DEPLOYMENT METHOD IN THE SITUATION WITH
CO-CHANNEL INTERFERENCE
In the situation with co-channel interference, the proposed
method is employed to learn the optimal deployment decision
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FIGURE 10. The change of the coverage performance under each epoch in
one episode of the proposed method in the situation with co-channel
interference when compared with the random method and the
statistical-channel-model-based method.

FIGURE 11. The impact of the number of UAVs on the coverage
performance in the situation with co-channel interference.

to solve the problem in (5). After training, similar to the
interference-free situation, the test results of the coverage
performance are shown in Fig. 9, Fig. 10, and Fig. 11.
Fig. 9 shows the proportion of covered users in 120 test
episodes. The average coverage ratio of the proposed method
is 98.69 percent, and 63 percent of the episodes can achieve
full coverage of users. Fig. 10 illustrates the change of cover-
age ratio under each epoch in one randomly selected episode.
The decrease of the coverage ratio at about 25th epoch may
due to the action noise or the lack of learning at the current
positions. The controller agent quickly corrects its wrong
actions and achieves the full coverage after about 45 epochs.
The results indicate that our proposed method still shows bet-
ter performance in the situation with co-channel interference
than the other methods.

Fig. 11 shows the impact of the number of UAVs on the
coverage performance. The results are different from those
in the interference-free situation. The two indicators of the
coverage performance are both improved when the number
of UAVs increases from 3 to 4. However, when the number
of UAVs is larger than 4, the coverage performance becomes

worse as the number of UAVs increases in the considered
environment. This is because when the number of UAVs
increases, the interference signal received by the user also
increases. The SINR of the user is deteriorated as the inter-
ference power becomes strong, so the coverage performance
is degraded.

V. CONCLUSION
The UAV networks can be used as low-altitude BSs to flex-
ibly and efficiently satisfy the communication demands of
users. In this paper, we have proposed an efficient two-
step environment-learning-based method for optimal UAV
deployment. The method has maximized the coverage per-
formance under the premise of ensuring the connectivity and
safety of the network. In the first learning step, the A2G
channel characteristics have been learned to generate an accu-
rate prediction model of the link qualities from the UAVs to
the users. The well-trained prediction model has provided a
reliable coverage ratio. In the second learning step, according
to the predicted link qualities, the deployment decisions of
the UAV network have been learned for maximizing the
proportion of covered users. The machine learning algorithm
and the DRL algorithm have been applied respectively in
the two learning steps. To improve the efficiency of deploy-
ment, a prioritized experience replay mechanism has been
introduced to the second learning step. We have conducted
simulations for evaluating the performance of the proposed
method in both the presence of interference and interference-
free scenarios. It has shown that the proposed method has a
higher convergence speed than the standard DDPG deploy-
ment method. Three commonly used methods, the random
deploymentmethod, theK-means-based deploymentmethod,
and the statistical-channel-model-based method, have also
been considered for comparison. The simulation results have
shown that the proposed deployment method has better adapt-
ability to the environmental changes and has higher coverage
performance.
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