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ABSTRACT We present a saliency-guided algorithm for detecting the locations of repetitive structures on
building facades. First, the global and local saliencies of each point are determined by measuring the global
rarity and the local distinctness. The saliency map is utilized to adaptively extract the salient points. Second,
the salient points are vertically sliced. A curve can be derived by counting the total number of points in
each slice. Then, the curve is converted into a square wave to locate the vertical splitting position. Next,
each segment is horizontally sliced, similar to the vertical splitting. The salient points are partitioned into
repetitive candidates after the vertical and horizontal splitting. Finally, the repetitive candidates are refined
according to the similarity of the neighborhood and the regularity of the arrangement. The experimental
results demonstrate that our method can quickly and effectively extract repetitions from facade point clouds.

INDEX TERMS Saliency detection, facade point clouds, repetitive structure detection, vertical/horizontal
splitting, refinement.

I. INTRODUCTION
Windows are important elements of a building facade.
Accurate detection of 3D facade elements has become highly
important for urban building modeling because the recon-
structed models have been widely used for many important
applications, such as virtual tourism, urban planning, and
entertainment. There is an extensive literature on repetitive
structure detection methods, which range from image-based
methods [1]–[3] to 3D point-based methods [4]–[6]. Due to
the loss of three-dimensional information in two-dimensional
imaging and the inevitable influences of illumination, reflec-
tions and occlusions, detecting repetitive structures from
images remains difficult. Recent advances in terrestrial
laser scanning (TLS) provide a convenient approach for
quickly collecting 3D point clouds of a building facade.
Three-dimensional point clouds with high density and high
accuracy can express the geometric details of objects.
Several point cloud-basedmethods, such as slice-basedmeth-
ods [5], [6] and boundary-based methods [7], [8], were pro-
posed for extracting the repetitions from facade point clouds.
A data gap appears where the laser beam does not return
a signal due to window glass or other openings. In order
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to detect the opening areas across the facade, slice-based
methods must segment the point cloud of each planar facade
using Random sample consensus (RANSAC) or a region
growing method in advance. For the boundary-based meth-
ods, incorrect boundary points are always detected due to
occlusion and poor scan quality, which greatly increase the
difficulty of window detection.

To address the difficulty of window detection from facade
point clouds, we propose a novel approach to detect win-
dows based on saliency maps. Saliency is closely related
to selective processing in the human visual system, which
is used a measure of regional importance for 3D models.
Saliency has been extensively studied in recent years. Due to
the disorderliness and the absence of topological information
regarding the point connectivity, the existing mesh saliency
methods [9]–[11] cannot be directly applied to unorganized
point sets. Shtrom et al. [12] proposed a saliency detection
method for 3D point sets that is based on identifying the dis-
tinct points using a multi-level approach. The distinctiveness
of each point is computed by comparing the point’s local
descriptor to all other descriptors that are sufficiently close
in the descriptor space. Ponjou et al. [13] proposed a cluster-
based approach for computing the saliency of the point set.
Both used Fast Point Feature Histogram (FPFH) as the local
shape descriptor. Guo et al. [14] presented a point cloud
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saliency detection method that employs principal component
analysis (PCA) in a sigma-set feature space. Saliency detec-
tion in point clouds has been used in viewpoint selection,
producing themost informative tour, 3Dmodel simplification
and key point detection. Although saliency maps have been
used in many applications in recent years, very little work
has utilized saliency maps to detect repetitions on building
facades.

In this paper, we concentrate on extracting repetitive struc-
tures from facade point clouds based on point saliency.
We propose a robust method for the selection of a very small
fraction of the facade point clouds, namely, for extracting the
point clouds that represent the window frames on the facade.
Toward this objective, a 3D saliency measure is defined for
extracting the salient points from facade point clouds. The
main contributions of the paper are summarized as follows:

1) Instead of detecting inner boundaries or the openings to
locate the repetitions, a saliency-guided method is proposed
to detect the locations of repetitions. The salient points that
correspond to the repetitive structures are extracted based on
the saliency maps. Regardless of the diversity of window type
and quality of scanned data, the extracted salient points have
strong uniqueness and invariance that capture the regions of
repetitive structures effectively.

2) Windows and doors are important elements that often
correspond to repeatable structures on building facades.
A novel slicing-based method is proposed for segmenting
the salient points into repetitive candidates effectively. Unlike
finding the local minima as the splitting locations, a curve,
which is derived from the number of points of each slice,
is converted into a binary form for splitting repetitions accu-
rately. The slices with point number less than a certain
threshold are removed that reduces the influence of noise
effectively. In addition, a refinement that is based on the
similarity of structure and neighborhood is proposed for guar-
anteeing the detection accuracy.

The remainder of the paper is organized as follows.
Section II presents a brief review of repetition detection.
Section III presents the process of extracting repetitions from
building point clouds based on point saliency. The detailed
steps of repetition extraction are proposed in Section IV.
Experimental results are presented in Section V. The limi-
tations of our method and proposals for future research are
discussed in the last section.

II. RELATED WORKS
The extraction of repetitions from facades has been studied in
recent years. Many methods for repetitive structure detection
have been introduced recently, which fall into two main cate-
gories: image-basedmethods and point cloud-basedmethods.

A. IMAGE-BASED METHODS
Due to the convenience of acquisition and the rich informa-
tion, image-based methods play an important role in repe-
tition detection. Müller et al. [15] segmented a facade into
tiles and recursively split each tile based on an edge map to

extract windows. Shape grammar rules are used to identify
repetitive windows from a single, high-quality photograph
of a facade. Wu et al. [16] exploited boundary selection for
dense repetition detection. They maximized local symmetries
and separated repetition groups via the evaluation of the
local repetition quality conditionally for repetition intervals.
Mathias et al. [17] proposed a three-layered system for
semantic segmentation of building facades, in which three
levels of abstraction are represented in facade images:
segments, objects and architectural elements. Lian et al. [18]
employed the color clustering method to automatically derive
candidate templates. Then, an adaptive region descriptor and
a Bayesian network were used for repetition detection and
occlusion inference. Xiao et al. [19] extracted horizontal
and vertical fiducial lines to detect repetitions in rectified
facade images based on the observation that repetitions of
a building facade are typically horizontally and vertically
aligned. Cohen et al. [20] presented a greedy dynamic
programming-based algorithm that imposes very few but
common constraints on the parsing, while also respecting
detected symmetries and repetitions, along with image edges.
Symmetry information is used to efficiently address large
occluded areas and to recover plausible facade images with
minimal occlusions. In these methods, facade images should
be rectified in advance. With the development of airborne
oblique photogrammetry, many methods were proposed for
detecting windows from aerial images. Yang et al. [21]
extracted facade regions using straight line segments based
on a multi-level feature extraction procedure. The method
is severely affected by the detection accuracy of the line
segments.

The acquisition of facade images always suffers from
occlusions, reflections and illumination changes. In addition,
the image to be detected should be in a fronto-parallel view.
Due to these variances and corruption, detecting windows
from a facade image remains challenging.

B. POINT CLOUD-BASED METHODS
Since windows have a low laser reflection rate, there are
typically no or few laser points that represent windows
in 3D point clouds. Based on this observation, Zolanvari and
Laefer [5] and Zolanvari et al. [6] introduced a slicing method
to detect windows from building facades. After extracting the
building facades using the RANSAC algorithm, each facade
is horizontally and vertically sliced. Gaps are detected by
identifying the points that have distances that exceed twice
the median distance of points along that line. The number of
slices influences the detection accuracy.

Pu and Vosselman [7] classified the boundary points of a
building facade into outer boundaries and inner boundaries.
The inner boundaries were used to extract the windows.
Similar to Pu and Vosselman [7], Peethambaran and Wang
[8] split the building facade into horizontal and vertical tiles
using a weighted point count function that is defined over
the window or door boundaries. Incorrect boundary points
are always detected due to occlusions and poor scan quality,
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which substantially increases the difficulty of window extrac-
tion. Friedman and Stamos [22] extracted the repeated archi-
tectural features through Fourier analysis after identifying
the major plane of building. They assumed that the distances
between the repetitions are consistent. After segmenting the
urban point clouds using a region growing method, Mesolon-
gitis and Stamos [23] adapted a local lattice fitting and lattice
voting scheme for lattice detection. The method assumes
regular window patterns on the facade and projects the 3D
points onto a 2D binary orthographic point occupancy map.
Aijazi et al. [24] also projected the point clouds of a facade
onto a 2D plane that was parallel to the building facade. After
point inversion within a watertight boundary, windows were
segmented out based on the geometrical information. The 2D
projection prior to the window extraction will inevitably lead
to a loss of precision. Li et al. [25] introduced a hierarchical
approach that uses the semantic and underlying structures of
urban facades for modeling 3D building facades from TLS
point cloud data. The facade points are segmented into multi-
ple 2.5D depth planes, among which the facade elements are
accurately detected by collectively using semantic segmen-
tation, arrangement priors of facade elements, and machine
learning recognition. Hao et al. [26] extracted the window
frames and selected the incomplete windows first. Then, a
template-matching method that relies on the similarity and
repetitiveness of the windows is proposed to recover the
details on building facades.

Most point cloud-based methods must segment the build-
ings in advance or based on the extraction of interior bound-
aries. However, this process is sensitive to the quality of the
raw point cloud data. Saliency detection for 3D point clouds
can be regarded as the identification of perceptually important
regions that are unique with respect to their surrounding
regions. Regardless of the density distribution of the scanned
data, a salient area has strong uniqueness and invariance.
Due to the advantages of saliency, we present a saliency-
guided method to detect repetitive structures from facade
point clouds. The frames of repetitive structures that consist
of salient points are extracted based on the saliency maps.
A novel slicing method is designed to partition the salient
points into repetitive candidates. A refinement that is based on
the neighborhood similarity and the arrangement regularity is
also proposed to guarantee the correctness of detection. The
proposed saliency-guided algorithm can generate satisfactory
results for imperfect point clouds by avoiding facade segmen-
tation and boundary extraction.

III. ALGORITHM OVERVIEW
The process of the repetitive structure detection approach is
described using a flowchart in Fig. 1.

1) Saliency map construction. We define a 3D saliency
measure for extracting salient points from facade point
clouds. Considering the human visual perceptionmechanism,
the global-distinct feature is defined as the dissimilarity of
the normals between each point and the building facade. The
local-distinct feature is defined as the local dissimilarity of

FIGURE 1. Overview of the proposed method.

geometric information by using the point descriptor FPFH.
After constructing the global/local saliency map of the facade
point clouds, the salient points that belong to the frames of the
repetitions are extracted.

2) Repetitive candidate detection. The high saliency points
represent the frames of the repetitive structures on the facade.
The salient points are vertically sliced. The number of points
in each slice is recorded and a curve is derived from the
number of points of each slice. To detect the splitting position
accurately, the curve that is derived from the number of points
is converted into binary form. The ‘1-0’ transactions are
employed as the splitting locations. A similar operation is
performed along the horizontal direction. After the vertical
and horizontal splitting, the salient points are segmented into
repetitive candidates.

3) Repetition detection. Due to the occlusion and noise, the
repetitive elements may be over segmented into several parts.
An optimization process that is based on the similarity and
regularity is conducted to improve the accuracy of repetition
detection. Each repetition is localized after the refinement.

IV. SALIENCY GUIDED WINDOW REPETITION DETECTION
A. SALIENCY MAP CONSTRUCTION AND SALIENT POINT
EXTRACTION
According to the attention mechanism of human beings,
the salient regions are often the regions in which drastic
changes in local features occur and that have a relative
scarcity of point cloud data.

Wang et al. [27] constructed a saliency map on 3D point
clouds by computing the dominant normal vector of the point
cloud via K-means clustering, and projecting the distance
between each normal vector and the dominant normal vec-
tor into a hyperbolic tangent function space. In this paper,
we extend Wang’s method to construct a saliency map on
3D point clouds directly. Compared with Wang’s saliency
map construction method, our method not only considers the
global rarity (the relative scarcity of normals), but also the
local distinctness (the variation of local geometric features).

1) GLOBAL SALIENCY
The global saliency measures the global rarity of a point.
The global rarity is used to detect entire unique regions.
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For a vertex in a facade point cloud, the less similar the other
vertices are, the stronger its global saliency. In this paper,
the global saliency is used to highlight the dissimilarity of
normals between each point and the building facade. The
point normal and the dominant normal of a building facade
can be computed via PCA. The dominant normal of each
building facade is determined by using the matrix of the
points in the facade. The matrix for a facade point cloud is
constructed as follows:

M =
1
N

N∑
i=1

(pi − p̄)(pi − p̄)T (1)

where p̄ denotes the center of the facade point cloud and N
denotes the total number of points in the facade point cloud.
Through eigenvalue decomposition of M , three eigenvalues
λ0, λ1, λ2(λ0 ≥ λ1 ≥ λ2) and the associated eigenvectors
e0, e1, e2 are obtained.
The dominant normal vector of the facade point cloud

is e2, which is the eigenvector associated with the smallest
eigenvalue of M .

Similar toWang’s method, the global saliency Sglobal(pi) of
point pi is measured by projecting the distance of each point’s
normal vector into a hyperbolic tangent function space. The
salient points are extracted by using:

Pi =

{
1, Sglobal(pi) > α

0, Sglobal(pi) < α
(2)

If the global saliency Sglobal(pi) of point pi is larger than the
threshold α, point pi is a salient point; otherwise, pi is a non-
salient point.

Fig. 2(a) shows facade point cloud 1 and Fig. 2(b) shows
the saliency map of facade point cloud 1. The salient points,
which belong to the frames of repetitive structures, are col-
ored in red. As shown in Fig. 2(c), the salient points are
extracted based on the global saliency.

2) LOCAL SALIENCY
A point is distinct if it differs from its local surroundings.
To calculate the local distinctness of each point, a descrip-
tor is needed to characterize the local geometric features.
FPFH [28] has satisfactory expressive power of the local
shape geometry, which is robust to noise and to sampling
density. FPFH captures the relative angular directions of the
normals with respect to one another. FPFH can be used to
compute the similarity between a point and its neighbor-
hoods. FPFH is used to compute the local saliency of facade
point clouds.

Given two points pi and pj, the χ2 dissimilarity measure
between them is defined as:

Dχ2 (pi, pj) =
N∑
n=0

(FPFHn(pi)− FPFHn(pj))2

FPFHn(pi)+ FPFHn(pj)
(3)

where N is the number of bins in the FPFH and FPFHn(pi)
denotes the n-th bin of the histogram of pi. The local

FIGURE 2. Illustration of global salient map construction and salient
point extraction. (a) Facade point cloud 1. (b) The constructed global
saliency map. (c) The salient points that were extracted based on the
global saliency.

dissimilarity measure between pi and pj is defined as:

dH (pi, pj) = Dχ2 (pi, pj) ·
∥∥pi − pj∥∥ (4)

where
∥∥pi − pj∥∥ denotes the distance between point pi and

pj. The local saliency is computed on a small neighbor-
hood. Suppose pi is a point in the facade point cloud and
{p1, p2, · · · pk} are the k-nearest neighboring points of pi. The
local distinctness of point pi is defined as the weighted sum
of the dissimilarities with its surrounding points:

Slocal(pi) = 1− exp

−1
k

k∑
j=0

dH (pi, pj)

 (5)

where k is set to 30 in our experiments.
The salient points are extracted by using:

Pi =

{
1, Slocal(pi) > β

0, Slocal(pi) < β
(6)

If the local saliency Slocal(pi) of point pi is larger than the
threshold β, point pi is a salient point; otherwise, pi is a non-
salient point.

Fig. 3(a) shows the local saliency map of facade point
cloud 1 and Fig. 3(b) shows the salient points that are
extracted according to the local saliency. Fig. 3(c) shows the
salient points that are merged based on the global and local
saliency.
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FIGURE 3. Illustration of local saliency map construction and salient
point extraction. (a) The constructed local saliency map. (b) The salient
points that are extracted based on the local saliency. (c) The merged
salient points.

B. INITIAL SPLITTING OF REPETITIVE STRUCTURES
The salient points that were extracted in the previous step
represent the frames of the repetitive structures. The highest
and lowest salient points are removed because these points
typically correspond towall eaves or the points where thewall
connects to the ground.

Observing that repetitions are typically horizontally and
vertically aligned and thus can be localized by the horizontal
and vertical lines along the repetition frames, we propose
a slicing-based method for dividing the salient points into
different parts.

The salient points are first cut into a sequence of slices
s = {s1, s2, s3 · · · sN } vertically by dividing by the slice
numberN . Let xmax, ymax, xmin, and ymin denote themaximum
and minimum x and y values of the salient points that are
extracted from the facade. If (xmax- xmin) < (ymax- ymin),
the facade is sliced along the y-axis. Otherwise, the facade
is sliced along the x-axis. The width of each slice is defined
as 1y = ymax−ymin

N . The number of points in each slice is
recorded. For a point pj, we define:

fy(pj) =

{
1, ypj ∈ [ymin+i ∗1y, ymin+(i+1) ∗1y]

0, otherwise
(7)

where i is the index of slice si. The number of points T (si)
within a slice si is accumulated as:

T (si) =
n∑
j=0

fy(pj) (8)

FIGURE 4. Diagram of vertical splitting. (a)The curve that was derived
from the number of points of each slice. (b) The binary form. (c) The
vertical splitting lines that were inserted at the ‘1-0’ transition. (d) The
vertical splitting result.

where n is the total number of salient points. A repetitive
characteristic curve can be obtained by using (8). The curve
of salient points in facade 1 is plotted in Fig. 4(a). The
horizontal axis in Fig. 4(a) corresponds to the slice number
and the vertical axis to the number of points of each slice.
In frequency space, periodic functions have salient minima
at the frequencies of the period of the signal. The curve
is converted into a square wave to determine the splitting
position. To fit a square wave, the number of points of each
slice is converted into a binary function by setting all values
above a threshold γ as 1 and all values below it as 0. The
binary splitting function is formulated as:

Fi =

{
1, C(si) > γ

0, C(si) < γ
(9)
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FIGURE 5. Horizontal splitting of facade point cloud 1. (a) The horizontal
repetition splitting for the last column. (b) The initial splitting result.

where γ denotes the threshold of number of points, which
depends on the facades to be split.

Fig. 4(b) shows the square wave fit from Fig. 4(a). In the
binary form, we use ‘1-0’ transition to determine the splitting
position. The red dotted lines in Fig. 4(c) represent the initial
splitting positions of vertical splitting. A slice is labelled with
0 if the number of points in the slice is smaller than γ . The
slices that are labelled with 0 are removed in the process of
vertical splitting. After splitting, the short and narrow slices
are removed. Fig. 4(d) shows the vertical splitting results after
removing the narrow slices. Different segments are marked
with different colors.

The similar operation is performed along the horizontal
direction. Each window column is re-sliced along the z-axis.
Considering the rightmost column window of facade point
cloud 1 as an example, the total number of points in each
slice is recorded and a repetitive curve is derived from the
numbers of points in the slices (the left curve in Fig. 5(a)).
Then, the curve is converted into binary form (the right curve
in Fig. 5(a)). The ‘1-0’ transitions are regarded as the splitting
locations. Fig. 5(b) shows the initial splitting result and dif-
ferent parts are marked with different colors. For the binary
function, the threshold γ is always set as 0 in the horizontal
splitting.

C. REFINEMENT
After the vertical/horizontal splitting, small clusters are
removed. A window may be split into several parts due to
improper splitting. According to the observation, the adjacent
windows have similarities. We further refine the splitting

FIGURE 6. Diagram of the splitting refinement. (a) W5 and W6 should be
merged into one part. (b) W8 and W9 should not be merged.

result due to the structure matching and the proximity rela-
tionship.

Four neighborhoods (the top, bottom, left, and right)
of each candidate are recorded. If a candidate encoun-
ters two or more neighbors on one side, the structures
(width or height) of the candidates should be compared. If the
candidate and its neighbors are of similar width or height,
we should judge whether the neighbors are contained in the
vertical/horizontal range of the candidate. If so, the neighbors
should be combined into a part; otherwise, the neighbors
should not be combined. If the candidate and its neighbors are
of dissimilar structure, the neighbors should not be combined.

As shown in Fig. 6(a), W2, W3, and W4 denote the left,
top, and bottom neighbors ofW1. W5 andW6 denote the right
neighbors of W1. As we can see, W5 and W6 are of similar
width to W1. In addition, W5 andW6 are in the vertical range
ofW1. Therefore,W5 andW6 should be combined into a part.
W8 and W9 in Fig. 6(b) are also the right neighbors of W7.
However, they differ substantially in terms of structure and
they are not in the vertical range of W7. Therefore, W8 and
W9 should not be merged into a part.
As illustrated in Fig. 7(a), a window in the red dotted frame

is split into two parts. Due to the similarity of the adjacent
windows, they are combined into a single part (red frames
in Fig. 7(b)). The incorrect detections in the red dotted frames
can be eliminated in the rectification step. The detected rep-
etitions are represented by red nodes in Fig. 7(c).

V. EXPERIMENTAL RESULTS
A. RESULTS ON DATA SETS
The proposed algorithms were programmed with PCL [29].
All the experiments in this paper were carried out on a PC
with an Intel Core i7-4790, CPU 3.6 GHz, 16G memory.

Facades 1-3 are the facade point clouds that were extracted
from dataset Paris-rue-Cassette [30], which was acquired
using the STEREOPOLIS II MLS system. Facade point
cloud 4 represents the library wall in Xi’an University of
Technology, which was acquired using a Topcon GLS-1500
scanner.

In our experiments, the width of each slice is set as
0.1 for all experiments. The proposed saliency computation

VOLUME 7, 2019 150077



W. Hao et al.: Saliency-Guided Repetition Detection From Facade Point Clouds

FIGURE 7. Repetition detection on facade point cloud 1 after refinement.
(a)The initial splitting result. (b) The refinement result. (c) The detected
windows.

TABLE 1. Parameters and thresholds.

algorithm depends on two parameters: the thresholds of
global saliency α and local saliency β. The parameter settings
of the four datasets are listed in Table 1. The experimental
results demonstrate that more extracted salient points do not
yield superior results. According to the experiments, the value
of the threshold α should be set according to the point density
of facade point cloud. For facade point clouds 1-3, the thresh-
old of global saliency α is set as 0.6 since the points of
windows on these facades have high point density. For facade
point cloud 4, the threshold of global saliency α is set as
0.5 since the facade point clouds are relatively sparse. The
threshold of local saliency β is set to 0.9 for all experiments.
The threshold number of points γ depends on the building
facade.

According to Fig. 8, the facades that contain multiple
groups of repetitive structures are successfully extracted
using our method. Fig. 8(a) shows facade point cloud 3.
Fig. 8(b) shows the salient points that are based on the
saliency map construction. Fig. 8(c) shows the initial vertical
partition result of the salient points. A similar operation is

FIGURE 8. Repetition extraction from facade point cloud 2. (a) Facade
point cloud 2. (b) The salient points. (c) The vertical splitting. (d) The
horizontal splitting. (e) The extracted repetitive structures. (f) The
detected windows.

FIGURE 9. Repetition extraction from facade point cloud 3. (a) Facade
point cloud 3. (b) The salient points. (c) The vertical splitting. (d) The
horizontal splitting. (e) The extracted repetitive structures. (f) The
detected windows.

conducted along the horizontal direction. The initial segmen-
tation result is shown in Fig. 8(d). After removing the small
clusters, the repetitive candidates are marked with different
colors (Fig. 8(e)). Each detected repetition is represented by
its center (red points in Fig. 8(f)).

Fig. 9(a) shows facade point cloud 3 and Fig. 9(b) shows
the salient points that are based on the global and local
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FIGURE 10. Window extraction from facade point cloud 4. (a) Facade
point cloud 4. (b) The extracted salient points. (c) The vertical splitting.
(d) The horizontal splitting. (e) The extracted repetitive structures. (f) The
detected windows.

saliency. Fig. 9(c) and (d) show the vertical and horizontal
splitting of the salient points, respectively. Fig. 9(e) shows the
final window extraction result and each window is presented
by a red node in Fig. 9(f). Given the input noise point clouds
of a facade, our repetition splitting and extraction method
automatically extracts the facade elements accurately.

Fig. 10(a) shows a library wall in Xi’an University of
Technology. Thewindows on the facade are regularly aligned.
Fig. 10(b) shows the salient points. Fig. 10(c) and (d) shows
the vertical and horizontal splitting of the salient points.
Fig. 10(e) shows the final repetition extraction result. The
three characters on the facade aremistaken for windows. Each
window is represented by a red node in Fig. 10(f).

B. COMPARISON
We qualitatively compare the splitting procedure employed
in our method with Peethambaran and Wang [8]. The

FIGURE 11. Qualitative comparison. (a) The boundary points of facade
point cloud 2. (b) Removing the boundary points that are close to the
convex hull of facade point cloud 2. (c) The splitting result that is
obtained using the method of Peethambaran and Wang [8]. (d) The
boundary points of facade 3. (e) Removing the boundary points that are
close to the convex hull of facade 3. (f) The splitting result that is
obtained using the method of Peethambaran and Wang [8].

comparison result is presented in Fig. 11. The first row shows
the boundary points of facade point clouds 2 and 3 that were
extracted using alpha shape method. The second row shows
the interior boundary points after removing the boundary
points close to the convex hull of the facade. The splitting
results that were obtained using the method of Peethambaran
and Wang [8] are shown in the third row. The blue lines
in Fig. 11(e) and (f) represent the splitting positions. For
facade point cloud 2, the boundaries of the window are not
extracted accurately using alpha shape method because the
windows in the first row are not readily identifiable. The first
row is split into three parts by mistake. In addition, the third
and fourth rows are not separated because there is a door
across the wall that spans two rows.

For facade point cloud 3, there are many noise points
around the windows. Incorrect boundaries are extracted from
facade point cloud 3, which lead to the improper splitting of
windows. The rows of windows are not split and the last three
columns are also not split.

Table 2 presents a quantitative evaluation of the window
detection results for facade point clouds 2 and 3 using the
method of Peethambaran and Wang [8] and our method.
The columns show the number of actual counted repetitions,
the number of detected repetitions, and the number of false
negatives.

In extracting windows from diversified and noisy facades,
our method substantially outperforms the method of
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TABLE 2. Quantitative evaluation of the detection results on two
datasets.

FIGURE 12. A challenging example. (a) A building facade. (b) The
extracted salient points. (c) The vertical splitting result that was obtained
using the proposed method.

Peethambaran andWang [8], which extracts windows that are
regularly aligned with the respective 2D axes. The saliency
map construction provides an effective approach for extract-
ing meaningful salient points from facade point clouds.

C. LIMITATIONS
Our method is not applicable to facades in which the win-
dows are connected along the wall edge. Figure 12 (a)
shows a facade with vertical wall eaves throughout the wall.
In our current implementation, the extracted salient points
include the vertical wall eaves that are beside window eaves.
As shown in Figure 12 (b), a side edge of a window is
coincident with a wall eave. Each column of windows can be
segmented using the vertical splitting method(Figure 12 (c)).
However, for each vertical eave, the horizontal splitting can-
not generate satisfactory results due to the connection of the
vertical wall eaves.

In addition, the characters on the facade that are simi-
lar in size to the window may be mistaken for windows
(Figure 10(f)).

VI. CONCLUSION AND FUTURE WORK
In this paper, we construct a saliency map on 3D point
clouds directly for detecting repeated structures on a facade.

Our proposed algorithm was successfully applied to several
facade point clouds to extract repetitive structures. Even for
noisy facades, our method generates a reasonable splitting,
in which each window is extracted accurately. The method
avoids partitioning the facade in advance and does not require
the 3D data to be projected into a 2D plane. In our algorithm,
the salient points that are extracted based on the global/local
saliency represent the regions of repetitions. The salient
points are vertically split and, subsequently, horizontally
split. A refinement is proposed for improving the repetition
detection results. For some facades, the repetitions cannot be
split correctly if they are connected to each other. In future
work, additional geometric features should be considered to
improve the detection accuracy of the proposed method.
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