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ABSTRACT Repetitive control is an effective method to eliminate the effects of a periodic disturbance
on a control system. In some applications the period is not known with sufficient accuracy, or the period
may fluctuate sufficiently to seriously compromise performance. Second order repetitive control has been
developed in response to this issue. Existing methods of analyzing stability for such systems are either very
difficult to use, or excessively conservative sufficient conditions. A novel second order repetitive control is
proposed here which achieves the behavior of second order but uses data from only one period in the past.
This better meets the requirements for real time storage, but more importantly, it allows us to develop a
stability criterion that is much less conservative. The experimental results demonstrate that the suppression
effect can achieve a high level under frequency fluctuation with the proposed control method.

INDEX TERMS Frequency fluctuation, harmonic suppression, magnetically suspended rotor, second order
repetitive control, periodic disturbance cancellation.

I. INTRODUCTION
A novel form of second order repetitive control (RC) is pro-
posed in this paper, which can greatly facilitate the stability
analysis. The motivation of the study originates from the
urgent requirements of micro-vibration spacecraft. Space-
craft often suffer from vibrations produced by the rotat-
ing wheels used as attitude control actuators, i.e., reaction
wheels or control moment gyros [1]. This degrades the perfor-
mance of fine pointing equipment on board. Passive vibration
isolation methods have limited performance, hence active
vibration cancellation strategies are considered [2]. Laser
communications between spacecrafts or with ground offer a
different option of canceling the influence of spacecraft jitter
by control methods applied to pan and tilt of the outgoing
mirror [3] that cancels vibrations in the beam. The hardware
demonstration of the proposed second order repetitive control
approach, considers magnetically suspended rotor (MSR)
performance, which can have disturbances of rotor mass
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imbalance and sensor runout. The objective is to reduce the
vibrations at their source in the spacecraft, instead of at
the sensor location of fine pointing equipment by vibration
isolation.

The mass imbalance of the rotor and the sensor runout
are two kinds of vibration sources. Mass imbalance of
the rotor will result in synchronous current stiffness force
and synchronous displacement stiffness force. Sensor runout
will result in synchronous and multi-frequency (collectively
called harmonic) current stiffness force. Then, the vibration
force includes the harmonic current stiffness force and syn-
chronous displacement stiffness force. This paper aims to
reduce the vibrations by suppressing the harmonic current
stiffness force, and the corresponding approach is to suppress
the periodic components in harmonic current.

Sliding-mode control has been used to suppress periodic
uncertainties [4], [5] for good transient response and robust-
ness, but the chattering phenomenon brought by actuator lim-
itations or time discretization will reduce the control accuracy
and the system performance. A resonant control strategy with
phase compensation [6] can suppress the periodic disturbance
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components, with effective experimental results achieved in
a magnetic bearing system. A nonlinear adaptive control
using Fourier series approximation [7] provides an inge-
nious transformation from periodic disturbance to a series of
trigonometric functions with unknown constant gains, and a
successful verification has been provided for hydraulic servo
systems. Zheng et al. [8] apply the phase-shift notch filters
to harmonic disturbance elimination, and the stability can be
ensured by the phase shift angle. However, these methods
containing trigonometric functions or Fourier seriesmay raise
the computation burden.

Repetitive control is one main approach among sev-
eral controllers that can be used for harmonic suppres-
sion [3], [9], [10]. RC assumes that the disturbance period is
known, which is reasonable because the speed of the rotor is
under control. Algorithms initially can aim to correct the fre-
quencies of the given period, fundamental, and all harmonics
up to Nyquist frequency. Using the equivalent of a discrete
time integral control at each frequency eliminates periodic
disturbance effects at these frequencies. At each time step,
the current command to a control system is adjusted based
on the error seen in the previous period. A difficulty is that
performance of conventional RC (CRC) can be very sensitive
to accurate knowledge of the period, and to any fluctuation
of that period with time [11]. In CRC one can only adjust the
overall gain to influence the sensitivity. Trying to converge
fast is somewhat beneficial, but this decreases the robustness
to this period error.

Various approaches have been developed to better address
the sensitivity to the uncertainty. These include higher order
RC (HORC) [12]–[20], alternative of using ILC designed
for multiple unrelated periods in the disturbance, and mak-
ing two periods be the same [21]. Minor but non-negligible
clock error drift, jitter, measurement noise and other factors
produce period variations, and [15], [17] suggest a need for
accuracy of±0.1%, and while running experiments in [3] the
accuracy limitation of Hall sensors was insufficient to be used
for CRC. The MSR system studied here requires the method
to reduce sensitivity.

Repetitive control systems require a compensator to cancel
much of the phase change going through the plant in order to
be stable. Due to excessive uncertainties and varying distur-
bances, an accurate model is not available. Phase errors in the
plant compensation add to the phase errors resulting from an
inaccurate disturbance period, making this insensitivity still
more important.

At each time step CRC looks at the error and command one
period back (adjusted for the time delay through the system),
and modifies the current input, aiming to converge to zero
error. HORC looks back more than one period. One might
consider doing this with positive weights for each period, and
then one is making a weighted average. This could be bene-
ficial by reducing the effects of measurement noise, but the
same effect can be gained much more simply by reducing the
repetitive control gain so that less importance is placed on
the latest measurement. In order to address the insensitivity

objective, one must use some negative weights on errors more
than one period back. References [13] and [14] show the
range of possible behaviors viewed from root locus anal-
ysis and from frequency response analysis. Reference [20]
presents a straightforward design procedure to optimize per-
formance (see also [18]). Others pick weights based on
an optimization criterion [12], [15], [16]. Underlying these
methods are just three principles. (1) In CRC, the sensitivity
transfer function from output disturbance to error has a cusp
going to zero at the addressed frequency. If the poles on the
unit circle of the CRC are repeated once, making second order
RC (SORC), then the cusp is replaced by a valley with a zero
derivative at the bottom. Then the walls of the cusp as fre-
quency deviates from nominal, become the walls of the valley
with more separation, decreasing the sensitivity to frequency
or period errors. Third order RC makes the poles for each
frequency on the unit circle appear three times. (2) Since one
is putting more poles on the unit circle, one can decide to
separate them a small amount, making the sensitivity transfer
function become zero at two or three values at the bottom
of the valley. Reference [20] presents a design approach for
making these adjustments. (3) One can also move the new
roots introduced slightly inside the unit circle.

SORC is chosen here. Higher order RC is conditionally
stable as one turns up the gain, being unstable until a specific
gain is reached when the locus comes into the unit circle
after having departed with an outward component. This paper
presents a novel form of SORC. In place of the usual SORC
that uses two periodic signal generators in series, a method
is developed here using two periodic signal generators in
parallel. This allows one to implement SORC using only data
from one period back, and yet have the same performance
as standard SORC that takes data from two periods back.
There are of course, benefits of reducing command and error
storage requirements, but the main benefit is that it allows us
to create a sufficient stability criterion that is vastly simpler
and much less conservative than the existing methods of
analyzing HORC.

The rest of this paper is organized as follows. The problem
statement is given in Section II. Section III presents the
new second order repetitive control. Experimental results are
given in Section IV. Section V concludes this paper. The nota-
tion used in this paper is standard. For notational simplicity,
the frequency response function of a discrete-time H (z) is
denoted by H (ω) instead of H (ejωTs ).

II. PROBLEM STATEMENT
A. THE BLOCK DIAGRAM OF THE ‘‘STANDARD’’ SORC
The ‘‘standard’’ SORC as in [12]–[20] is depicted in Fig.1.

The transfer function from i(z) to irc(z) is given as follows:

Gsrc(z) = krc
W (z)

1−W (z)
(1)

where krc is the control gain; i(z) in application considered
here is the harmonic current of the rotor which the SORC is to
suppress; irc(z) is the output of i(z) after the target controller;
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FIGURE 1. Schematic of the ‘‘standard’’ SORC.

N is the number of time steps of length Ts in one disturbance
period T0 = NTs (N is an integer, otherwise interpolation
is used); W (z) = w1z−N + w2z−2N , w1 and w2 are the
proper signal weights to obtain period variation robustness
and improve the performance.

For CRC, w2 = 0 which results in W (z) = z−N , and just
retrieves error one period back. And the denominator 1−W (z)
of Gsrc(z) evaluated at frequencies by setting z = ejωTs is
zero at the fundamental, and all harmonics. For ‘‘standard’’
SORC, W (z) = w1z−N + w2z−2N retrieving error from one
period and two periods back. The denominator being zero at
the frequencies of period T0 ensures convergence to zero at
targeted frequencies, provided w1 + w2 = 1 [15]. Because
of the use of multiple delay lines, the control signal of the
‘‘standard’’ SORC can be computed as a weighted sum of the
signals of one, and two periods back.

From [13], |w2| < 1 ensures poles of the Gsrc(z) are inside
the unit circle, with the exception of the original N poles
on the unit circle. Thus, the range of possible choices of the
parameter w2 is restricted to: −1 < w2 < 0, or 0 < w2 < 1.
The case of w2 = 0 is eliminated since it reduces SORC to
CRC.

B. PLUG-IN MODIFIED SORC OF THE MSR SYSTEM
Fig. 1 portrays the ‘‘standard’’ SORC, but high-frequency
components and system uncertainty may lead the system
to instability due to the poles on the unit circle generated
by Gsrc(z) up to Nyquist frequency. Therefore, in order to
provide high-enough robustness margins, low-pass filters are
usually introduced to improve the robustness of the whole
systems in real applications by not aiming to cancel high
frequency periodic errors where the model uncertainty is
large.

Fig. 2 depicts the block diagram of the modified SORC
within the dashed block, and the transfer function is:

Gmsrc(z) = krc
W (z)Q(z)

1−W (z)Q(z)
L(z)C(z) (2)

wherein Q(z) is the zero-phase low-pass filter used for sta-
bility robustness to high frequency model error; C(z)L(z) is
a compensator, ideally equal to the inverse of the system
frequency response. C(z)is a phase compensator to reduce
the large phase change of the MSR plant whose model is
uncertain; L(z) = zL is chosen here to be a linear phase lead
compensator with L being the lead-step of L(z) [22]–[24] and
it is realized in the feedback branch.

Fig. 3 shows the overall structure of the MSR system
studied in [11]. Gc(z) is a pre-stabilizing feedback con-
troller, which implies a pre-stable baseline feedback loop and

FIGURE 2. The block diagram of the modified SORC.

FIGURE 3. Block diagram of SORC for the MSR system.

responds to the reference displacement r(z). The stable rota-
tion of rotor is the precondition for suppressing the harmonic
current. SORC is used to suppress the harmonic components
in current i(z). Gw(z) and Gp(z) are transfer functions of the
power amplifier and the rotor, respectively. ks is the sensor
gain. The periodic disturbance D(z) is the equivalent periodic
disturbance of the sensor runout and the mass imbalance of
the rotor.

The transfer function of the plant as seen by the SORC is

F(z) =
Gw(z)

1+ ksGp(z)Gc(z)Gw(z)
(3)

The transfer function from D(z) to i(z) is

G(z) = G0(z)
1−W (z)Q(z)

1−W (z)Q(z)X (z)
(4)

with G0(z) = −ksGc(z)F(z) giving the transfer function of
Fig. 3 from D(z) to i(z) without the SORC, and X (z) =
1 + krcC(z)L(z)F(z). For future use, write the frequency
transfer functions C(z), F(z) and L(z) represented in terms
of magnitude and phase as C(ω) = Ac(ω)ejθc(ω), F(ω) =
Af (ω)ejθf (ω), and L(ω) = ejωLTs , respectively. Then define the
magnitude and phase of the product C(z)L(z)F(z) asM (ω) =
Ac(ω)Af (ω) and θ (ω) = θc(ω)+ θf (ω)+ ωLTs.

C. PERSPECTIVE ON STABILITY CONDITIONS
This section aims for a general understanding of possible
RC stability conditions. Given that G0(z) is asymptotically
stable, and for simplicity consider that Q(z) = 1, then the
characteristic equation of interest in (4) is 1−W (z)X (z) = 0.
Consider CRC: For CRC, W (z) = z−N . Directly find-

ing the roots with a root finding algorithm is impractical
because N can be very large, e.g., sampling at 500Hz with
a 2s desired period makes N = 1000. Direct application of
Nyquist stability criterion is also impractical because there
are N roots on the unit circle, i.e., the discrete time Nyquist
contour should go around each. Reformulation eliminates this
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problem [25], [26]. The result is a condition (i) asking that
z−NX (z) does not encircle +1 as ω goes around the unit
circle. This is difficult to plot because as ω goes from zero
to Nyquist, the phase of z goes from zero to π , and the phase
of z−N goes to −Nπ , spinning many times; (ii) asking that∣∣z−NX (z)∣∣ < 1 for all ω, creating a sufficient condition,
which can be simplified producing the following condition;
(iii) asking that |X (z)| < 1. Because X (z) does not depend
on N , condition (iii) is a particularly simple criterion to use.
Although this is only a sufficient condition, [26] and [27]
show that failing to satisfy it and still having stability can only
happen for very small N because of the spin.
Consider SORC: For SORC, W (z) = w1z−N +

w2z−2N . Condition (i) applies to W (z)X (z) as a sufficient
condition [17]. The condition (ii) becomes |(w1z−N +
w2z−2N )X (z)| < 1. Again it simplifies to (iii) giving
|(w1 + w2z−N )X (z)| < 1. Further, a novel still more restric-
tive sufficient condition (iv) can be generated, requiring
|X (z)| < 1/max

∣∣(w1 + w2z−N )
∣∣, or equivalently |X (z)| <

1/max
ω
|W (z)| for all ω.

D. STABILITY CONDITION PROOFS FOR THE
MODIFIED SORC
Theorem 1:The closed-loop system in Fig. 3 withmodified

SORC of Fig. 2 is asymptotically stable for Q(z) = 1 if:

1. The original closed loop transfer function G0(z),
is asymptotically stable,

2.a. And either ‖W (z)X (z)‖∞ < 1, for all z = ejωTs , 0 ≤
ω < ωm, where ωm is Nyquist frequency, ‖‖∞ denotes
the H∞-norm of a stable transfer function.

2.b. Or |X (z)| < 1
/
‖W (z)‖∞ for all z = ejωTs , 0 ≤ ω <

ωm. In this case: ‖W (z)‖∞ = 1 if 0 < w2 < 1; and
‖W (z)‖∞ = 1− 2w2 if −1 < w2 < 0.

Proof: Item (2.b) of Theorem 1 is the sufficient condition
(iv) above. It remains to show the bounds on W (z):

|W (z)|z=ejωTs =
∣∣∣w1e−jωT0 + w2e−j2ωT0

∣∣∣
= |w1(cosωT0 − j sinωT0)

+w2(cos 2ωT0 − j sin 2ωT0)|

=

√∣∣w2
1 + w

2
2 + 2w1w2 cosωT0

∣∣ (5)

When both w1 and w2 are between 0 and 1, this is less
than or equal to

√∣∣w2
1 + w

2
2 + 2w1w2

∣∣ = |w1 + w2| = 1, and
when ω equals zero it is equal to 1. Therefore ‖W (z)‖∞ = 1.
When 1 < w1 ≤ 2 and −1 < w2 < 0, it is less than or equal

to
√∣∣w2

1 + w
2
2 − 2w1w2

∣∣ = |w1 − w2| = 1 − 2w2, and the
equality holds when ω is π . Therefore ‖W (z)‖∞ = 1− 2w2.
The proof is complete.
Based on Theorem 1, the following theorem explicitly

provides the bounds of krc and θ (ω) which can make the
whole system stable:
Theorem 2: If the following conditions on krc and θ (ω) are

satisfied, then Item (2.b) of Theorem 1 is satisfied:

1. For 0 < w2 < 1

0 < krc < 2min |cos θ (ω)| /max [M (ω)] ;

θ (ω) ∈ (90◦, 270◦) (6)

2. For −1 < w2 < 0

krc ≥ max

∣∣∣∣√(1− 2w2)−2 − sin2 θ (ω)+ cos θ (ω)

∣∣∣∣
/min [M (ω)]

krc ≤ min

∣∣∣∣√(1− 2w2)−2 − sin2 θ (ω)− cos θ (ω)

∣∣∣∣
/max [M (ω)]

θ (ω) ∈ (180◦ − arcsin[(1− 2w2)−1],
180◦ + arcsin[(1− 2w2)−1]) (7)

Proof:
1. For0 < w2 < 1, and using Q(z) = 1 and ω ∈ (0, ωm),
|X (z)| ≤ 1 can be written as

|1+ krcC(ω)L(ω)F(ω)| =
∣∣∣1+ krcM (ω)ejθ (ω)

∣∣∣ ≤ 1

(8)

and

|1+ krcM (ω) (cos θ (ω)+ j sin θ (ω))| ≤ 1 (9)

Squaring and cancelling the positive terms krc and
M (ω) gives

krcM (ω) ≤ −2 cos θ (ω) (10)

krc ≤ −2min(cos θ (ω))/max [M (ω)] (11)

Since krc > 0, angle θ (ω) ∈ (90◦, 270◦).
2. Following an analogous sequence of steps for −1 <

w2 < 0, |X (z)| ≤ (1− 2w2)−1 can be written as

|1+ krcC(ω)L(ω)F(ω)| =
∣∣∣1+ krcM (ω)ejθ (ω)

∣∣∣
≤ (1− 2w2)−1 (12)

Squaring the magnitude for each side produces

[krcM (ω)]2 + 2krcM (ω) cos θ (ω)+ 1
≤ (1− 2w2)−2 (13)

[krcM (ω)+ cos θ (ω)]2

≤ (1− 2w2)−2 − sin2 θ (ω) (14)

krc ≥ −
[√

(1− 2w2)−2 − sin2 θ (ω)+ cos θ (ω)
]

/min [M (ω)] (15)

krc ≤
[√

(1− 2w2)−2 − sin2 θ (ω)− cos θ (ω)
]

/max [M (ω)] (16)

for krc > 0. And from the above two inequalities,
we have

cos θ (ω) < 0, −1 < w2 < 0 (17)

θ (ω) ∈ (180◦ − arcsin[(1− 2w2)−1],

180◦ + arcsin[(1− 2w2)−1]) (18)

The proof is complete.
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FIGURE 4. The relationship between w2 and θ(ω).

As for the robustness against to frequency fluctuations,
as suggested in [12]–[19], one needs w2 < 0 for the purpose
of increasing robustness.

Fig. 4 depicts the relationship between θ (ω) and w2. The
blue checkered region and red diagonal region, respectively,
display the range of θ (ω) with positive and negative w2.
It demonstrates that for positivew2, the θ (ω) has a wide range
of phase stability, while for negative w2 the tolerance on θ (ω)
becomes very restricted if stability needs to be guaranteed by
using the condition of Theorem 1. For example, ifw2 = −0.5,
then θ (ω) ∈ (150◦, 210◦) is needed to guarantee stability.
In the MSR application an accurate model is unavailable, and
the phase error of the model after compensation can easily go
beyond these limits, preventing one from designing a guar-
anteed stable system using the stability conditions discussed
above. Of course, inaccurate knowledge of the period is also
a phase error at the frequencies of interest.

Note that in the above discussion of the possible sufficient
conditions, much difficulty is caused by the fact that in SORC
there is a z−N to deal with. In the next section, a novel SORC
is developed, giving the same functionality, but with data only
one period back. This novel control law allows us to develop a
stability condition that bypasses these difficulties and is much
more useful because it is not so conservative.

III. THE NOVEL SECOND ORDER REPETITIVE CONTROL
DESIGN
A. BLOCK DIAGRAM OF A NOVEL SECOND ORDER
REPETITIVE CONTROL
Fig. 5 depicts the block diagram of the novel second order RC
schematic.

FIGURE 5. Schematic of the novel second order RC.

The transfer function from i(z) to irc(z) is

Gdrc(z)=krc

[
λ1

z−NQ(z)
1−z−NQ(z)

−λ2
w2z−NQ(z)

1+w2z−NQ(z)

]
L(z)C(z)

(19)

where λ1 = 1/(1+w2), λ2 = w2/(1+w2), wherein |w2| < 1,
andw2 6= 0. The transfer functionGdrc(z) can be rewritten as:

Gdrc(z) =
krc

1+ w2
[G1(z)+ G2(z)]Kb(z)Kf (z) (20a)

G1(z) =
z−NQ(z)

1− z−NQ(z)
,

G2(z) =
−w2

2z
−NQ(z)

1+ w2z−NQ(z)
(20b)

So, the internal model of (20) withQ(z) = 1, denoted as
Ĝdrc(z), matches that of SORC in (1):

Ĝdrc(z) = krc

[
(1− w2)z−N + w2z−2N

(1− z−N )(1+ w2z−N )

]
= Gsrc(z) (21)

B. STABILITY CONDITION PROOFS FOR THE NOVEL SORC
The following theorem provides a sufficient stability criterion
of the novel SORC in Fig. 5.
Theorem 3: The closed-loopMSR system in Fig. 3 with the

novel SORC in Fig. 5 is asymptotically stable for all −1 <
w2 < 1, w2 6= 0, if:

1. The closed loop transfer function without SORC,
G0(z), is asymptotically stable,

2. And

0 < krc <
2(1+ w2)2min |cos θ (ω)|

(1+ w2 + 2w2
2) max [M (ω)]

(22)

θ (ω) ∈ (90◦, 270◦) (23)

Proof:
The transfer function from D(z) to i(z) in (3) can be rewrit-

ten as

G∗(z) =
ksGc(z)F(z)

1− krcC(z)L(z)F(z)G∗drc(z)
(24)

G∗drc(z) = [G1(z)+ G2(z)] /(1+ w2) (25)

Write z = |z| ejωTs with |z| = a. Then

Re [G1(z)] = Re
[
Q(z)z−N /(1− Q(z)z−N )

]
= Re

[
aN ej(NωTs−θq(ω))/Aq(ω)− 1

]−1
(26)

Let b1 = aN /Aq(ω) and θ1 = LωTs − θq(ω). With |z| = a ≥
1, we have b1 ≥ a ≥ 1 due to Aq(ω) ≤ 1, then

Re [G1(z)] = Re(b1ejθ1 − 1)−1

=
b1 cos θ1 − 1

b21 + 1− 2b1 cos θ1
(27)

Examine the numerator, if it is non-negative, then

Re [G1(z)] =
b1 cos θ1 − 1

b21 + 1− 2b1 cos θ1
≥ 0 (28)
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and if it is negative

b21 + 1− 2b1 cos θ1
b1 cos θ1 − 1

=
b21 − 1

b1 cos θ1 − 1
− 2

≤
a2 − 1

b1 cos θ1 − 1
− 2 ≤ −2 (29)

As a consequence

Re [G1(z)] ≥ −(1/2); ∀ |z| = a ≥ 1 (30)

Now perform the analogous computations for G2(z) with
b2 = aN /Aq(ω) and θ2 = LωTs − θq(ω). If |z| = a ≥ 1,
we have b2 ≥ a ≥ 1.

Re [G2(z)] = Re
[
−w2

2
(b2 cos θ2 + w2)− j(b2 sin θ2)
(b2 cos θ2 + w2)2 + (b2 sin θ2)2

]
=

−w2
2(b2 cos θ2 + w2)

(b2 cos θ2 + w2)2 + (b2 sin θ2)2
(31)

If − (b2 cos θ2 + w2) ≥ 0 one obtains

Re [G2(z)] =
−w2

2(b2 cos θ2 + w2)

(b2 cos θ2 + w2)2 + (b2 sin θ2)2
≥ 0 (32)

and if − (b2 cos θ2 + w2) < 0, for |w2| < 1, ∀ |z| = a ≥ 1
one obtains

(b2 cos θ2 + w2)2 + (b2 sin θ2)2

−w2
2(b2 cos θ2 + w2)

=
b22 + w

2
2 + 2b2w2 cos θ2

−w2
2(b2 cos θ2 + w2)

≤
b22 − w

2
2

−w2
2 (b2 + w2)

−
2
w2
≤
a− w2

−w2
2

−
2
w2

≤ −
1+ w2

w2
2

(33)

As a consequence

Re [G2(z)] ≥ −w2
2/(1+ w2); ∀ |z| = a ≥ 1 (34)

Therefore, ∀ |w2| < 1, w2 6= 0

min
|z|≥1

Re
[
krcG∗drc(z)

]
≥ min
|z|≥1

(
krc

1
1+ w2

(
−
1
2
−

w2
2

1+w2

))
(35)

Apply the conditions (22) and (23) to (35), then

min
|z|≥1

Re
[
krcG∗drc(z)

]
> −

1
2
·
−2 cos θ (ω)
max [M (ω)]

=
cos θ (ω)

max [M (ω)]
(36)

Set z = ejωTs , then

1− krcC(ω)L(ω)F(ω)G∗drc(z)
= 1−M (ω)ejθ (ω)

{
Re
[
krcG∗drc(z)

]
+ j Im

[
krcG∗drc(z)

]}
= 1−M (ω)

{
cos θ (ω)Re

[
krcG∗drc(z)

]
− sin θ (ω)Im

[
krcG∗drc(z)

]}
− jM (ω)

{
sin θ (ω)Re

[
krcG∗drc(z)

]
+ cos θ (ω)Im

[
krcG∗drc(z)

]}
(37)

For the imaginary part to be zero

Im
[
krcG∗drc(ω)

]
= −(sin θ (ω)/ cos θ (ω))Re

[
krcG∗drc(ω)

]
(38)

Due to cosθ (ω) < 0 and ∀ |z| ≥ 1, we obtain

1− krcC(z)L(z)F(z)G∗drc(z)

= 1−M (ω)
{
cos θ (ω)+ sin2 θ (ω)

/
cos θ (ω)

}
×Re

[
krcG∗drc(ω)

]
= 1−M (ω)Re

[
krcG∗drc(ω)

]/
cos θ (ω)

> 1−M (ω)/max [M (ω)] > 1− 1 = 0 (39)

Thus, all the poles pi (i = 0, 1, 2, · · ·) of the transfer func-
tion are inside the unit circle. Since krc and M (ω) are both
positive, the closed-loop digital system is asymptotically sta-
ble if krc and θ (ω) satisfy the inequalities given by Theorem 3.
The proof is complete.

The relationship of krc and w2 needs to be analyzed for
further choices of the two parameters. According to [11], it is
assumed that min |cos θ (ω)| = 1 and max [M (ω)] = 1 to
simplify the inequality (22). Then the approximate relation-
ship between the control gain krc and the weight w2, can be
obtained as shown in Fig. 6.

FIGURE 6. The approximately relationship between krc and w2.

From Fig. 6, it can be found that the value of krc is greatly
influenced by w2. Specifically, when w2 is chosen positive,
there is a relatively large value range of the control gain krc
to guarantee the system stability. On the contrary, when w2
is set to be negative, the stable range of krc seems to be more
restrictive with the decrease of w2.

C. ANALYSIS OF ROBUSTNESS TO FREQUENCY
FLUCTUATIONS
The frequency response of the internal model of CRC,
denoted as Gcrc(z), can be expressed as:

|Gcrc(ω)| =
krc∣∣ejωTsN − 1

∣∣ = 1
2

krc∣∣sin(ωTsN/2)∣∣ (40)
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And the frequency response of the internal model of the
novel SORC in (21) can be written as:∣∣∣Ĝdrc(ω)∣∣∣
=

krc
∣∣w1ejωTsN + w2

∣∣∣∣ej2ωTsN − w1ejωTsN − w2
∣∣

=
1
2

krc∣∣sin(ωTsN/2)∣∣
√√√√∣∣1− 4w2w1 sin2(ωTsN

/
2)
∣∣∣∣4w2 cos2(ωTsN

/
2)+ w2

1

∣∣ (41)

where w1 + w2 = 1.
The magnitude of the novel SORC near the target fre-

quency peak atω = ωn = kω0, wherein k ∈ N,ω0 = 2π
/
T0,

is larger than that of CRC if −1 < w2 < 0, and smaller than
CRC if−1 < w2 < 0. This relationship can be seen by taking
the magnitudes ofGcrc(z) and Ĝdrc(z) for frequencies nearωn,
i.e., for ω = ωn(1+ ε) where |ε| � 1. This yields:∣∣∣Ĝdrc(ω)∣∣∣
|Gcrc(ω)|

=

√√√√∣∣1− 4w2w1 sin2(ωn(1+ ε)TsN
/
2)
∣∣∣∣4w2 cos2(ωn(1+ ε)TsN

/
2)+ w2

1

∣∣
=

√√√√ ∣∣cos2(kπε)+ (2w2 − 1)2 sin2(kπε)
∣∣∣∣(1+ w2)2 cos2(kπε)+ (1− w2)2 sin2(kπε)

∣∣
=

√
J1(ε)
J2(ε)

(42)

When −1 < w2 < 0, thus:

J1(ε)− J2(ε) = −w2

[
2− w2 − 4w2 sin2(kπε)

]
(43)

Due to |ε| � 1, we have 0 < sin2(kπε) � 1, so if −1 <
w2 < 0, the following inequity can be obtained:

J1(ε)− J2(ε) > 0 (44)

Thus: ∣∣∣Ĝdrc(ω)∣∣∣
|Gcrc(ω)|

=

√
J1(ε)
J2(ε)

> 1 (45)

Conversely, if 0 < w2 < 1, we have:

J1(ε)− J2(ε) < 0 (46)

Thus if 0 < w2 < 1, we have∣∣∣Ĝdrc(ω)∣∣∣
|Gcrc(ω)|

=

√
J1(ε)
J2(ε)

< 1 (47)

This result indicates that in the vicinity of the resonant
peaks at ω = ωn, the novel SORC with −1 < w2 < 0
has higher gain which is helpful in offering greater robustness
to frequency fluctuations than CRC. On the contrary, if 0 <
w2 < 1, the proposed schematic has lower gain and worse
tolerance for system frequency deviation.

FIGURE 7. The amplitude-frequency response of Ĝdrc (z) for −1 < w2 < 0.

FIGURE 8. The amplitude-frequency response of Ĝdrc (z) for 0 < w2 < 1.

Fig. 7 shows the magnitude-frequency response diagram
of Ĝdrc(z) for negative w2 to examine the gain near the target
frequencies. It shows that the gain near the desired harmonics
becomes higher with decreasing w2, which improves the
robustness to fluctuating period. Fig. 8 shows the correspond-
ing plot for positive w2. As w2 increases, the gain becomes
lower than that of CRC, making the system more sensitive to
period errors.

So, in order to obtain the robustness of the novel SORC, the
weight w2 should be chosen as a negative value. Moreover,
Fig. 8 implies that the use of negative weight w2 in the
sensitivity transfer function can widen the notches around the
fundamental frequency and its harmonics, besides, the width
of notches increases as w2 decreases.
The relationship between gain krc and weight w2 is deter-

mined by the stability condition (22) and Fig. 6. The smaller
the negative w2 is, the better the robustness is, while the
bigger value of the krc, the better dynamic performance of
the system. So, the designer should make a tradeoff between
robustness to period errors, and dynamic performance when
tuning the set of design parameters.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
To demonstrate the effectiveness of the proposed method,
experiments are performed. Fig. 9 shows the experimental
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FIGURE 9. Experimental setup.

setup, with a power source, a communication interface,
and a magnetically suspended flywheel prototype. The
MSR system is controlled by Digital Signal Proces-
sor (DSP) TMS320C6701 and Field Programmable Gate
Array (FPGA). Control updates are made at 5 kHz. The
current signal and its frequency spectrum are displayed by an
oscilloscope (Agilent 54624A) to illustrate the effectiveness
of the current suppression.

B. THE DESIGNED PARAMETERS
The MSR system is modeled in [11] and is utilized here as
a numerical example to explain the methodology of the pro-
posed SORC design. Controllers Gc(z), Gp(z), and Gw(z) are
obtained by the Tustin transformation with a sample period
Ts to discrete s-domain transfer functions that originate from
attributes of the flywheel [11]:

Gc(s) =
0.01134s2 + 3.4s+ 4

0.0001s2 + s
,

Gw(s) =
1.4

0.04898s+ 23.1
,

Gp(s) =
119.26

4.2s2 − 372000
, ks = 36360 (48)

With these parameters, the phase range of F(z) defined
in (3) can be showed by the full line in Fig. 10, which is
(−90◦, 270◦).
According to (22) and (23) in Section III.B, the assurance

of stability needs that the phase range of F(z)C(z)L(z) should
satisfy the condition of (90◦, 270◦) and decrease the devia-
tion from 180◦ as far as possible to broaden the choices of
gain. Adopt the compensator design method in [11], and the

FIGURE 10. Phase-Frequency response diagram.

compensator design result is:

C(z) =
1− 0.9999z−1

1− z−1
0.084− 0.075z−1

1− 0.991z−1

×

(
6.556− 6.143z−1

1− 0.5873z−1

)4

(49)

L(z) = z4, and Q(z) = 0.25z+ 0.5+ 0.25z−1 (50)

and the corrected phase range is θ (ω) ∈ (145.8◦, 220.5◦) as
showed by the dotted line in Fig.10.

Based on the guidelines about the choices of w2 in Section
III.C, the different weights w2 (0.4 and −0.4) are chosen
respectively, and the robustness to the period errors of the
proposed controller is tested.

C. EXPERIMENTAL RESULTS AND COMPARISON
Fig. 11 shows the harmonic current in time domain and fre-
quency domain without any harmonic suppression method.
The rotation speed of the rotor is 2400 r/min, with 40Hz being
the fundamental frequency.

FIGURE 11. Experimental results using the closed-loop control system
without repetitive control (rotation speed 2400r/min).

The upper curves in Figs. 11 and 12 are the currents in time
domain. Every vertical grid represents 120 mA, and every
horizontal grid represents 152ms. The lower curves show the
peaks of harmonics. From Fig.11, it can be seen that there
mainly exist peaks at 1st (−16.41 dB), 3rd (−34.84 dB), 5th
(−38.86 dB) and 7th (−39.69 dB) orders.
In order to verify that the novel SORC has less sensitive

to a period error, a frequency deviation of 0.1% is considered
in Fig. 12. The results demonstrate that the novel SORC can
substantially improve the performance compared with CRC.
(1) Fig. 12(a) is for CRC and still shows improvement in

spite of the period deviation. The 1st peak decreases
by 74.97% (from −16.41 dB to −28.44 dB), and the
coil current is reduced by 80.53% (from 154.66 mA to
30.11 mA). The magnitudes of other harmonics change
little. The suppression performance of CRC can’t be
regarded as a satisfactory result.

(2) For completeness, Fig. 12(b) is for the proposed SORC
using a positive weight w2 = 0.4 which is not expected
to improve the robustness to period error. The 1st
order harmonic is only decreased by 67.82% (from
−16.41 dB to −26.26 dB), and the coil current is also
reduced less by 73.7% (from 154.66 mA to 40.67 mA).
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FIGURE 12. Experimental results with rotation frequency fluctuation of
0.1% (compared with 2400r/min), (a) CRC, (b) the proposed SORC with
w2 = 0.4, (c) the proposed SORC with w2 = −0.4.

The result is worse than that of CRC. The choice of
positive weight w2 indeed gives rise to a reduction in
the robustness to fluctuations, which is in consistent
with previous prove.

(3) Fig. 12(c) usesw2 = −0.4 and the expected substantial
improvement is observed. The magnitudes of harmon-
ics at the 1st, 3rd, 5th and 7th orders are decreased
by 86.38% (from −16.41 dB to −33.73 dB), 62.67%
(−34.84 dB to −43.4 dB), 60.96% (from −38.86 dB
to −47.03 dB), and 67.23% (from −39.69 dB to
−49.38 dB), respectively. The value of coil current is
reduced by 90.06% (from 154.66 mA to 15.37 mA).
The controller under errors still works well.

The comparison in Fig.12 shows that the SORC can intro-
duce a better capacity of resisting frequency fluctuations into
the MSR system, which is an urgent need in micro-vibration
spacecrafts.

V. CONCLUSION
Higher order repetitive control is developed as a method of
making repetitive control less sensitive to accurate knowledge

of the disturbance period, or less sensitive to fluctuations of
the period in hardware implementation. Stability conditions
for such systems are impractical to use, so that people develop
various sufficient conditions. However, the sufficient stabil-
ity conditions which are easy to use are very conservative,
making people have trouble in designing effective higher
order repetitive control and ensuring the stability. Motivated
by application of repetitive control to suppress vibrations
from magnetically suspended rotors in spacecraft attitude
control actuators, a novel second order repetitive control is
developed. In spite of the name second order, it does not
need data from two periods in the past. This allows us to
create a stability condition that is much less conservative and
much more useful in the design of second order repetitive
control. Hardware experiments demonstrate the effectiveness
of the novel stability criterion in the design of second order
repetitive control.
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