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ABSTRACT To realize the Internet of Things, one of the essential elements is wireless sensor networks
which can sense the physical conditions of the environment. The ubiquitous sensing is achieved by a large
number of spatially dispersed sensors and distributed estimation technology. However, the low-cost sensors
are insufficient to support conventional distributed estimation schemes. Since most conventional schemes
include channel training process, the resource consumption of which is enormous. Thus, one key challenge in
designing a feasible distributed estimation scheme is to reduce resource consumption from channel training.
We tackle the challenge by proposing a distributed blind estimation scheme. The proposed scheme consists
of two components: random transmission and statistical inference. Specifically, assuming sensors contain
only two states that are active and inactive. The random transmission strategy turns the sensing value into
a parameter to govern the sensor states. At the fusion center, statistical inference method is used to recover
the sensing value. The specific design of the inference method involves the distribution approximation and
clustering, which are accomplished by Gaussian mixture model and expectation-maximization principle.
By the proposed scheme, the channel information is no longer needed in distributed estimation. Therefore,
it is more energy-efficient and more applicable to the complicated wireless environment compared with
conventional schemes. Besides, we investigate the impacts of the number of sensors and quantization on
the estimation performance. Finally, simulation results demonstrate the effectiveness of the proposed blind
estimation scheme.

INDEX TERMS Distributed estimation, expectation maximum, Gaussian mixture model, random transmis-
sion, statistical inference, wireless sensor network.

I. INTRODUCTION
Ubiquitous sensing enabled by wireless sensor networks
(WSN) has attracted increasing attention because of its vari-
ous application areas including environment monitoring [1],
health management [2], traffic monitoring [3] and industrial
control [4], etc. The WSN develops rapidly since it contains
the following advantages: the distributed processing of a large
amount of collected information can improve the accuracy of
monitoring and reduce the accuracy requirements for a single
sensor; the redundant sensors make the system robust; a large
number of sensors can increase the coverage of the monitored
area. In the various applications, distributed estimation is
one of the critical technologies since it can provide accurate
estimates of the parameters of the phenomenon [5].
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A. RELATED WORKS
In large WSNs, one factor which affects the dis-
tributed estimation performance is the form of the sensor
measurements (digital and analog). For the analog approach,
the measurements are transmitted directly or via analog
modulation to the fusion center (FC). For the digital approach,
the sensors quantize the measurements first and then trans-
mit the quantized measurements to the FC. Compared to
the digital form, the analog form provides better estima-
tion performance since it retains more information of the
phenomenon [6]. However, the analog form is not practical
since theWSNs are generally bandwidth-constrained. Several
researchers have studied the quantization scheme in WSN
[7]–[9]. For a heterogeneous WSN, a suboptimal bit alloca-
tion scheme was proposed in [7] aiming to minimizes MSE
while satisfying a network bandwidth constraint. Utilizing
identical one-bit quantizers that minimize Cramér-Rao lower
bound (CRLB) was introduced in [8]. Another quantizer
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proposed in [9] was designed to maximize Bayesian Fisher
information.

Another vital issue for distributed estimation is Multiple
Access Channel (MAC). Three types of MAC commonly
used for distributed estimation are coherent MAC, orthogo-
nal MAC, and hybrid MAC. For the orthogonal MAC used
in [10], the sensors transmit their measurements to the FC
via orthogonal channels, which can be realized with the
orthogonal frequency-division multiplexing or the orthog-
onal time-division multiplexing. For the coherent MAC,
the measurements are coherently transmitted to the FC [11].
More recently, the hybrid MAC is proposed in [12], where
all the sensors are divided into groups, and the coher-
ent MAC is used within one group, whereas the orthog-
onal MAC is used across different groups. Compared to
the coherent MAC, orthogonal MAC is more favorable for
implementation since it requires no synchronization among
sensors [13].

Many classics distributed estimation schemes have been
proposed to improve the distributed estimation performance.
Cui et al. [14] utilized Best Linear Unbiased Estima-
tor (BLUE) to estimate the sensing value and discussed
the power scheduling problem. Liner Minimum Mean
Square Error (LMMSE) scheme was utilized in [11], [12],
[15], [16]. Xiao et al. [11] considered the joint estima-
tion of a source vector by linear source-channel coding.
Liu and Chung [12] investigated the hybrid MAC for dis-
tributed estimation. Considering the unknown fading chan-
nels, Senol and Tepedelenlioglu [15] studied the impact of
imperfect channel estimation and presented the optimum
number of sensors given the total power and noise statis-
tics. Also, Alam et al. [16] considered that the receiv-
ing signals were jointly corrupted by impulsive noise and
channel fading, then LMMSE was used to recover the
Gaussian source signal. Furthermore, distributed estimation
schemes based on Maximum Likelihood Estimation (MLE)
were proposed in [17]–[20]. Xiao et al. [17] considered
the unreliable communication links from the sensors to
the FC and proposed an MLE based on distributed aver-
age consensus method to make the system more robust.
Wang and Yang [18] proposed optimal and suboptimal MLE
to combat both the measured noise and communication
errors led by channel fading. To further address the com-
plexity and implementation issues of the optimal MLE,
Aysal and Barner [19] proposed two, fast, practical and
straightforward suboptimal solutions. Wang and Yang [20]
proposed a robust distributed MLE which improves the
estimation performance with imperfect channel estima-
tion. They also found the optimal length of the training
sequence.

More recently, several new challenges and latest advances
have emerged in the problem of distributed estimation. The
first challenge is that when sensors defect, the sensing value
will be severely distorted. The distorted value causes a
sever decline in estimation performance. Joint distributed
detection-estimation schemes have been proposed to solve

the challenge [21], [22]. Specifically, they assumed that
when sensors defect, these sensors only generate pure-noise
measurements, which implies that the desired signal is not
observable at these sensors. Zhou et al. [21] proposed
a learning-based distributed procedure, called the mixed
detection-estimation (MDE) algorithm, based on iterative
closed-loop interactions between validity learning (detec-
tion) and target estimation. The detection step reassesses
the validity of the local measurements at each sensor node,
and the target estimation step reconstructs the desired signal.
Zhu and Sun [22] proposed a joint detection and estimation
fusion scheme with correlated sensor quantized data. Het-
erogenous bandwidth constraint is another challenge inWSN
where each sensor node has different or adaptive quantization
rate. Sani and Vosoughi [23] proposed a linear distributed
estimation scheme to address two critical problems pertain-
ing to bandwidth-constrained distributed estimation in a het-
erogenous sensor network: (1) given a network bandwidth
constraint, they investigated the quantization rate allocation
schemes tominimizeMean Square Error (MSE) at the FC; (2)
given a target MSE at the FC, they explored the quantization
rate allocation schemes to minimize the required network
bandwidth. Unlabeled sensing is a novel scheme for parame-
ter estimation where each sensor acquires a noisy version of
the signal and the data at the FC are unlabeled [24]–[26]. It is
a practical scheme to reduce communication cost and latency.
A permutation matrix is utilized to accomplish parameter
estimation.

Traditional distributed estimation schemes essentially rely
on known and tractable mathematical models. However,
the blind estimation scheme makes the ready-made mathe-
matical models out-of-operation. Data-driven machine learn-
ing is a powerful tool which provides an alternative technique
of adaptive modeling and parameter estimation relying
on learning from data [27]. Generally, machine learning
algorithms are classified into three categories, i.e. super-
vised learning, unsupervised learning and reinforcement
learning. The existing research most relevant to the cur-
rent work is the applications of the unsupervised learning
algorithm. Recently, K-means as an effective unsupervised
clustering technique is widely applied to achieve blind
detector [28]–[30]. In [28], a coding-aided K-means clus-
tering (CKMC) blind detector for space shift keying (SSK)
multiple-input multiple-output (MIMO) systems is pro-
posed where the training of CSI is not required. Improved
K-means blind detectors are proposed in [29], [30] to
avoid the error floor effects caused by bad initial cluster
centers. Density-based spatial clustering applications with
noise (DBSCAN) algorithm is utilized to address the problem
of anomaly detection [31]. GMM-EM [32] is another power-
ful unsupervised learning algorithm that has been used for
density estimation and data clustering. In [33], the measure-
ments of the sensor are statistically modeled by a Gaussian
mixture model, and a distributed expectation maximization
algorithm is proposed to estimate the model parameters clus-
tering the measurements.

150356 VOLUME 7, 2019



W. Zhang et al.: Statistical Inference-Based Distributed BE in WSNs

B. MOTIVATION
Among previous works on distributed estimation, one part
of them did not consider the impact of the fading channel
(known as error-free transmission) and the others assumed
that either universal channel models or instantaneous channel
coefficients are given. In other words, the Channel State
Information (CSI) or the complete Channel Density Informa-
tion (CDI) are known in these works. However, transmitting
training sequences to obtain the CSI or giving the CDI has the
following significant shortcomings: 1) it increases communi-
cation cost and power consumption; 2) the training sequences
are needed to be sent frequently when the channels are fast
time-varying; 3) the deviation between the channel model and
the real channel seriously affects the estimation performance.
Therefore, a blind estimation without channel information is
somehow indispensable and more preferable in practice.

Data-driven unsupervised learning algorithms provide
potential approach for distributed blind estimation. These
unsupervised clustering algorithms have their own property.
The performance of K-means algorithm tends to be affected
by skewed data distributions, i.e., imbalanced data [34]. How-
ever, imbalanced data will appear in distributed estimation.
DBCAN is sensitive to the training parameter, however, if the
data and scale are not well understood, choosing meaningful
parameters can be difficult. Besides, a significant limitation
of K-means and DBSCAN is that the data point is determin-
istically assigned to one and only one cluster, however, there
is an overlap between the true data clusters in reality. The
classification ambiguity will occur in the overlapping region.
GMM-EM clustering algorithm is capable of addressing the
above classification ambiguity problem by soft assigning the
data to different clusters. Through the GMM-EM cluster-
ing, the data point is no longer deterministically assigned
to one cluster; in contrast, the data is assigned to more
than one cluster according to a series of probability values.
Also, GMM-EM clustering is capable of processing imbal-
anced data. Hence, GMM-EM algorithm is the most suitable
method for the distributed blind estimation.

C. CONTRIBUTIONS AND ORGANIZATION
In this paper, inspired by joint detection-estimation and unla-
beled sensing, we propose a blind estimation scheme based
on statistical inference to recover the sensing value without
any channel information. In the proposed scheme, quanti-
zation is utilized since the bandwidth of the transmission
channel is assumed to be strictly constrained. The design of
quantization is in accordance with probability quantizer [35],
[36], where for a given input, there are only two candidate
symbols. The quantized symbol indicates the sensor state
(active or inactive). In our design, the sensing value turns into
a parameter to govern the sensor states (the quantized sym-
bols). Orthogonal MAC is adopted since the blind distributed
estimation is more feasible without interference. Corrupted
by fading channels and additive noise, the received signals are
regarded as unlabeled data. The GMM-EM algorithm is used

to detect the sensor state by clustering the received signals.
Finally, we obtain the estimated value according to the results
of the clustering. The proposed estimation scheme has the
advantages of low complexity and energy-efficient. The main
contributions of the work are summarized as follows
• Random transmission strategy: Under the condition of
without any channel information, we design a random
transmission strategy to turn the sensing value into a
parameter to govern the sensors states. Mathematically,
the states are distributed as Bernoulli random variables
(r.v.). We prove that when the number of sensors is
large enough, the proportion of the active sensors can
approximate the normalized measurements. Therefore,
the original estimation problem for the sensing value
is equivalent to estimate the number of active sensors
for a given sensor amount. Then we investigate the rela-
tion between the number of sensors and the estimation
performance. Moreover, the impact of quantization on
estimation performance is studied.

• Statistical inference principle: After the random trans-
mission, the FC is designed to estimate the sensing
value (equivalent to estimate the proportion of the active
sensors). To this end, statistical inference method based
on GMM-EM [37] is utilized to approximate the distri-
bution of the received signals and clustering the signals.

The remainder of the paper is organized as follows.
Section II introduces the system model and problem for-
mulation. The random transmission strategy and the statis-
tical inference principle are presented in Section III and
Section IV, respectively. Section V gives a summary of the
proposed distributed blind estimation scheme. Section VI
provides the simulation results, followed by concluding
remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
The system model we consider comprises an FC and N
sensors, as shown in Fig. 1. All the sensors and the FC

FIGURE 1. System model. s denotes the sensing value, n denotes the
measure noise, x denotes the measurement, b denotes the quantized
symbol, h denotes the transmission channel, w denotes the received
noise at the fusion center, y denotes the received signal, and ŝ denotes
the estimated value.
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are equipped with single-antenna. The N sensors measure a
common scalar sensing value s. Generally, the environment
varies more slowly than communication channels. Hence it is
reasonable to assume s is determinate. The N measurements
corrupted by noise are denoted as

xi = s+ ni, i = 1, . . . ,N , (1)

where {ni, i = 1, . . . ,N } are additive white Gaussian noises
(AWGNs) following i.i.d. N

(
0, σ 2

n
)
distribution. Thereby

the measurements {xi, i = 1, . . . ,N } follow i.i.d. N
(
s, σ 2

n
)

distribution and they are assumed to be limited within (0,W )
since the sensors generally have an inherent measuring range.

Due to the inherent bandwidth and energy limitations,
the measurements {xi, i = 1, . . . ,N } are quantized. The
quantized symbols are denoted as {bi, i = 1, . . . ,N } which
indicate the sensor states (active or inactive). Therefore, for
a given input, the quantized output is one of two candidate
symbols.

We assume that the N sensors transmit the quantized
symbols to the FC via N orthogonal multiple access fading
channels. Channel coefficients are assumed to be i.i.d, but
the distribution is unknown. Let hi represents the channel
coefficient from sensor i to the FC. We assume pair-wise
synchronization between each sensor and the FC. However,
synchronization among all the sensors is not required. The
received signal at the FC from the sensor i, denoted as yi,
is given by

yi = hibi + wi, i = 1, . . . ,N , (2)

where the received noises {wi, i = 1, . . . ,N } are AWGNs
following i.i.d. N

(
0, σ 2

w
)
.

B. PROBLEM FORMULATION
First of all, we review one of the conventional estimation
schemes MLE. The fundamental process and elements of
MLE are illustrated in Fig. 2, where p ( ·| ·) denotes the
conditional probability distribution function. Utilizing the
MLE, the likelihood function (i.e., the conditional probability
function p (y| s)) is necessary, since the correlation between
the sensing value s and the received signals y is expressed
by p (y| s). We obtain the estimated value ŝ by maximizing
p (y| s). Notice that CSI (h) or CDI (h) is essential to calcu-
late the conditional probability function p (y| s). Assume that
there is no quantization at the sensors, and the FC has the
knowledge of CSI. Then the FC can simply perform the ML
estimate of s by

ŝMLE_CSI

= argmax
s

N∑
i=1

log p (yi| s)

= argmax
s

log
1(

2πσ 2
w
)N/2 exp

−
N∑
i=1
(yi − his)2

2σ 2
w

 . (3)

Another case is that the FC has complete CDI. To simplify
the problem, we assume that the Probability Distribution
Function (PDF) of the channel isN (0, 1), then the estimated
value ŝ is given by

ŝMLE_CDI

= argmax
s

N∑
i=1

log p (yi| s)

= argmax log
1[

2π
(
s2 + σ 2

w
)]N /2 exp

−
N∑
i=1

y2i

2
(
s2+σ 2

w
)
 . (4)

As far as we know, most of the conventional schemes
for distributed estimation assume that the CSI is perfectly
obtained or the complete CDI is given. To avoid the depen-
dence on the channel information, a blind estimation scheme
that requires no channel information (CSI or CDI) is indis-
pensable.

The blind estimation scheme faces the following two chal-
lenges. First, as shown in Fig.2, the value of the received
signal is jointly determined by the sensing value s and the
channel h. The conditional probability function p (y| s) gives
the correlation between s and y. However, p (y| s) is unac-
quirable without CSI or CDI. Therefore, the sensing value
can not be estimated from the received signals alone. Hence
the first challenge is to break the conventional transmission
model such that the sensing value can be estimated from the
received signals alone. Second, the blind estimation algo-
rithm aims to estimate the sensing value swithout any channel
information. It requires that the blind estimation algorithm
ought to be feasible under any channel condition. Therefore,
the second challenge is to provide a unified framework to
estimate the sensing value. The two challenges to realize the
blind estimation design are summarized as:

FIGURE 2. Maximum likelihood estimation scheme without quantization,
where the received signal y is the product of the sensing value s and the
channel h, and p

(
y
∣∣ s

)
denotes likelihood function.
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1) Propose a novel transmission strategy to avoid the
dependence on the channel information;

2) Establish a unified estimation framework to guarantee
the estimation is valid under any channel condition.

III. RANDOM TRANSMISSION STRATEGY
A potential consideration of the novel transmission is
illustrated in Fig. 3, where p ( ·| ·) denotes the conditional
probability distribution function and stat (·) denotes statisti-
cal characteristics, like sample mean and sample size. The
objective of the novel transmission strategy is to turn the
sensing value s into a parameter and pass the parameter to
the FC. Specifically, let all the quantized symbols be denoted
by a vector b = [b1, b2, . . . , bN ]T . We consider randomizing
b such that distribution function p (b) is parameterized by s.
Then the sensors transmit the random vector b to the FC
instead of s. Therefore, it is called random transmission.
Statistical characteristics of the received signals stat (y|b)
imply the correlation between the received signals y and the
random vector b.

FIGURE 3. Blind estimation scheme where p ( ·| ·) denotes the conditional
probability distribution function and stat (·) denotes statistical
characteristics.

In the following, we first present the one-bit random trans-
mission strategy in details and reveal the correlation between
the sensing value s and the received signals y applying the
random transmission. In addition, we investigate the relation
between the estimation error and the number of sensors.
To further study the effect of quantization on the estima-
tion performance, we extend the random transmission from
one-bit quantization to multiple-bit quantization situation.

A. ONE-BIT RANDOM TRANSMISSION
The one-bit random transmission scheme consists of three
steps: Range normalization, Generate random threshold and
Quantization. In the following, we give the three steps in
details.

• Step 1 (Range normalization): All the measurements
{xi, i = 1, . . . ,N } are divided by the max boundary
value W . The normalized measurements are denoted as
{θi, i = 1, . . . ,N };

• Step 2 (Random threshold generating): During one
transmission, a sensor generates a random quantiza-
tion threshold denoted as ρi. The random threshold
uniformly distributes in the range of (0,1) and all the
N thresholds are independently generated among the
sensors.

• Step 3 (Quantization): At arbitrary sensor i, the nor-
malized measurement value θi is compared with the
random quantization threshold ρi. The sensor state is
in accordance with the following rules: if θi > ρi,
the sensor i is active, otherwise inactive. Then the sensor
sate determines the quantized symbol: if the sensor i is
active, bi = a and if the sensor i is inactive, bi = 0.

One-bit random transmission turns the sensing value s into
the distribution parameter of the random vector b. Let m
be the number of active sensors. The relation between the
estimated value ŝ and the number of the active sensors is given
in Proposition 1.
Proposition 1: By one-bit random transmission, the esti-

mated value ŝ is given by

ŝ =
m ·W
N

. (5)

where lim
N→∞

m
N → θ and θ is the normalized measurement

without the measure noise.
Proof: See Appendix A. �

Remark 1: Proposition 1 reveals that the estimated value
is determined by the number of active sensors for a given
sensor amount. Therefore, the random transmission scheme
changes the original estimation problem for the sensing value
s to estimate the number of the active sensors m.

The relation between the sensing value s and the received
signal y is further analyzed. Fortunately, under the one-bit
quantization and the assumption of i.i.d channel, the received
signals present two distinct distributions theoretically. Specif-
ically, if the sensor i is active, the received signal can be
written as yi = a·hi+wi. If the sensor i is inactive, the received
signal can be written as yi = 0 · hi + wi = wi, namely the
received signal only consists of the noise wi. Therefore all the
received signals can be divided into two clusters. One cluster
represents the collection of the active sensors, and the other
one represents the collection of the inactive sensors. The size
of the clusters reflects the relation between s and y.

According to Proposition 1, we obtain the estimated
value ŝ. An explicit relation between the estimation error
|s− ŝ| and the number of sensorsN is shown in Proposition 2.
Proposition 2: Given a target value σ of the average esti-

mation error, to guarantee the probability P(|s − ŝ| < σ )
greater than a threshold probability C, the number of sensors
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N should satisfy the following condition

N >

(
W β̃∗

)2
θ (1− θ )

σ 2 (6)

where, W is the max boundary value of x, β̃∗ is the root
of < (x) − < (−x) = C and < (x) is the standard normal
distribution.

Proof: See Appendix B. �
Remark 2: According to proposition 2, we find that to

guarantee a certain system performance, the required number
of sensors is determined by the threshold probability C and
the target estimation error σ . High estimation accuracy or
high estimation probability require more sensors.

B. MULTIPLE-BIT RANDOM TRANSMISSION
To further investigate the effect of quantization on the estima-
tion performance, we extend the random transmission from
one-bit to multiple-bit situation.We consider a uniform quan-
tizer. Let

{
1 = 1/

(
2M − 1

)
,M = 2, 3, . . .

}
be the quantiza-

tion resolutions and define the quantization lattice in R by

3 =
{
j1 : j = 0, 1, . . . , 2M−1

}
. (7)

It is assumed that all the normalized measurements are
within the same interval (t1, (t + 1)1), where t ∈{
0, 1, . . . , 2M − 2

}
. The quantizer is a function that maps

the normalized measurements to some point in 3. In the
following, we give the abridged steps of multiple-bit random
transmission, which is similar to the one-bit situation.
• Step 1 (Range normalization): Same as one-bit random
transmission and the normalized measurements denoted
as {θi, i = 1, . . . ,N };

• Step 2 (Random threshold generating): All the sensors
independently generate a random threshold ρi which
uniformly distributes in the range of (t1, (t + 1)1).

• Step 3 (Quantization): The normalized measurement
value θi is compared with the random threshold ρi. Then
the comparison result determines the quantized symbol:
if θi > ρi, bi = a(t + 1)1, otherwise bi = at1.

Similar to the one-bit situation, we divide the sensors into
active ones and inactive ones. The quantized symbol bi =
a (t + 1)1 corresponds to the active sensor while bi = at1
corresponds to the inactive sensor. Let m be the number
of active sensors. The relation between ŝ and m is given
in Proposition 3. Then Proposition 4 studies the effect of
quantization on the estimation performance.
Proposition 3: By multiple-bit random transmission,

the estimated value ŝ is given by

ŝ =
m/N + t
2M − 1

·W , (8)

where t ∈
{
0, 1, . . . , 2M − 2

}
is the index of the quantization

interval. Notice that when M = 1, there is t = 0 and the
formula of (8) is identical with (5).

Proof: See Appendix A. �

Proposition 4: Applying the multiple-bit random trans-
mission strategy with a given threshold probability C,
the probability distribution of the estimation error

∣∣s− ŝ∣∣
satisfies

P

{∣∣ŝ− s∣∣ < W β̃∗
√
φ (1− φ)

(2M − 1)
√
N

}
= C, (9)

where β̃∗ is the root of <
(
β̃
)
− <

(
−β̃

)
= C, < (x)

is the standard normal distribution, φ =
(
2M − 1

)
θ −⌊(

2M − 1
)
θ
⌋
, b·c is the round down operator, and θ = s/W.

Proof: See Appendix C. �

Remark 3: Let � = W β̃∗
√
φ(1−φ)

(2M−1)
√
N

be the estimation error
bound. The smaller � indicates better estimation perfor-
mance. It is worth noting that the sensing value s affects
�. For the same M, different s results in different �. As M
increases, the impact will be negligible.

Given W , N , C and M , the estimation error bound � is
determined by the term O(φ) =

√
φ(1− φ) with constraint

0 < φ < 1. It is easy to see that O(φ) is symmetric and
convex. When φ = 0.5, O(φ) achieves a global maximum,
and when φ is close to 0 or 1, O(φ) approaches a global
minimum. As shown in Fig. 4, the position of θ in the quan-
tization interval (t1, (t + 1)1) determines the value of φ.
When θ is near the quantization interval boundary, φ is close
to 0 or 1, and when θ is in the middle of the quantization
interval,φ is equal to 0.5. Therefore the sensing value s affects
the estimation error bound �. However, since φ is in the
range of (0,1), the difference of� brought byO(φ) is limited.
As M increases, the value of � is mainly determined by the
denominator. Hence the impact of different sensing value will
be negligible.

FIGURE 4. Multiple-bit uniform quantizer.

IV. STATISTICAL INFERENCE PRINCIPLE
By random transmission, the N sensors send a random vector
b whose elements are binary. Therefore the corresponding
received signals y can be regarded as labeled data. The ele-
ments of b are the labels of the received signals. However,
the labels are invisible to the FC. Therefore, the objective
is to obtain the labels and cluster the received signals. The
cluster size can represent the number of sensors in different
states. Then we obtain the estimated value ŝ according to
Proposition 1.

We propose a unified estimation frame based on statis-
tical inference involving GMM and EM algorithm. GMM
as a well-known clustering algorithm perfectly matches
our design objective. GMM can approximate an arbitrary
distribution with sufficient Gaussian components which
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guarantees the algorithm valid under any channel conditions.
Utilizing GMM to model the distribution of the received sig-
nals, the mixing weights of Gaussian components represent
the sizes of the data clusters. Hence, the weights of Gaussian
components are used to estimate the sensing value s. The
EM algorithm which used to estimate the parameters of the
GMMwill be introduced next. Finally, The GMM-EM based
estimation algorithm is given.

A. GAUSSIAN MIXTURE MODEL
Gaussian mixture models are used for approximating multi-
modal distributions. The PDF of a GMMwith K components
can be expressed as

p (x) =
K∑
k=1

πkN
(
x|µk , σ 2

k

)
, (10)

where {πi, i = 1, . . . ,K } are the mixing weights with
constraints 0 ≤ πi ≤ 1 and

∑K
i=1 πi = 1,{

N
(
µi, σ

2
i

)
, i = 1, . . . ,K

}
are the gaussian components,

µi and σ 2
i are the mean and the variance of the Gaussian

component, respectively.

B. EM ALGORITHM FRAME
Assume that we have a probabilistic model consisting of
observed variables v, hidden variables h and unknown param-
eters8. Generally, the unknown parameters are estimated by
solving themaximum log likelihood (ML) problemwhich can
be expressed as

8̂ = argmax
8

log p (v|8) (11)

However, directly solving (11) is intractable because it is
costly to marginalize out the hidden variables h. Alterna-
tively, a lower bound of log p (v|8) is defined as

L (v, q (h)|8)=log p (v|8)−DKL (q (h)‖ p (h| v;8)) (12)

where q is an arbitrary probability distribution of h, Kullback-
Leibler (KL) divergence describes the ‘‘similarity’’ between
q (h) and p (h| v; θ). Because the KL divergence is always
nonnegative so that the lower bound has at most the same
value as the log-probability. The lower bound is equal to the
log-probability if and only if DKL (q (h)‖ p (h| v;8)) = 0,
by letting q (h) = p (h| v;8). Furthermore, the more canon-
ical definition of lower bound L (v, q (h)|8) is derived as

L (v, q (h)|8) = Eh∼q
[
log p (v,h|8)

]
+ H (q (h)) (13)

where Eh∼q
[
log p (v,h|8)

]
is defined as Q function. Then

the ML problem of (12) can be solved by maximizing the
lower bound L (v, q (h)|8).

The EM algorithm estimates the unknown parameters by
maximizing the lower bound L. The maximization of the
lower bound can be solved by repeating the follow two steps
until convergence, where the subscript (t) denotes the itera-
tion index:

Expectation-Step (E-Step):

q(t) (h) = p
(
h| v;8(t−1)

)
⇒ Q

(
8,8(t−1)

)
= Eh∼q(t)(h)

[
log p (v,h|8)

]
, (14)

Maximization-Step (M-Step):

8(t) = argmax
8

Q
(
8,8(t−1)

)
. (15)

C. GMM-EM BASED ESTIMATION
By a sufficient number of Gaussian functions, and adjust-
ing their means and covariances as well as the weights
in the linear combination, almost any continuous density
can be approximated to arbitrary accuracy [38]. There-
fore, we consider utilizing a GMM with K (K ≥ 2) com-
ponents to approximate the distribution of the received
signals as

p (y) =
K∑
k=1

πkN
(
y|µk , σ 2

k

)
, (16)

where {πi, i = 1, . . . ,K } are the mixing weights with
constraints 0 ≤ πi ≤ 1 and

∑K
i=1 πi = 1,{

N
(
µi, σ

2
i

)
, i = 1, . . . ,K

}
are the gaussian components,

µi and σ 2
i are the mean and the variance of the Gaussian

component respectively. Let the first Gaussian component
denote the distribution of the signals from the inactive sen-
sors, and the superposition of the other Gaussian components
approximates the distribution of the signals from the active
sensors. We can rewrite (16) as

p (y) = π1N
(
y| 0, σ 2

1

)
+

K∑
k=2

πkN
(
y|µk , σ 2

k

)
. (17)

The unknown parameter set of the GMM is denoted as
8 =

{
π1, . . . , πK , µ2, . . . , µK , σ

2
1 , . . . , σ

2
K

}
. Generally,

the unknown parameters can be found by solving the follow-
ing ML problem:

8̂ = argmax
8

p (y1, y2, . . . , yN |8) (18)

However, the lack of information concerning the labels
of received signals makes the typical MLE of (18)
intractable. The missing labels, so-called hidden variables,
indicate the received signals assigning to which Gaussian
components.

The EM algorithm is commonly used to find the ML
solutions for the probabilistic models with hidden variables.
The followings are the derivation of E-step and M-step in
details.
(a) E-step: Firstly, we introduce N missing labels denoted

as {zi = [zi1, zi2, . . . , ziK ] , i = 1, . . . ,N }. The labels are
K -dimensional binary random vectors, having the ‘‘one-hot’’
form that only one particular element is equal to one and
the others are equal to zero. The particular element indicates
the received signal belongs to which Gaussian component.
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Thus the likelihood function of the complete-data {yi, zi} is
derived as

p (y1, z1, . . . , yN , zN |8)

=

N∏
i=1

(
π1 ·N

(
yi| 0, σ 2

1

))zi1 K∏
k=2

(
πk ·N

(
yi| 0, σ 2

1

))zik
(19)

Then the log-likelihood function of (19) is given by

log p (y1, z1, · · · , yN , zN |8)

=

N∑
i=1

K∑
k=1

zik logπk +
N∑
i=1

zi1 logN
(
yi| 0, σ 2

1

)
+

N∑
i=1

K∑
k=2

zik
[
logN

(
yi|µk , σ 2

k

)]
(20)

The expectation of hidden variables is derived as

E [zik ] = γ (zik) = p
(
zij
∣∣ yi;8)

=
p (zik = 1, yi;8)

p (yi;8)

=
p (yi| zik = 1,8) p (zik = 1)
K∑
k=1

p (yi| zik = 1,8) p (zik = 1)

,

i = 1, . . . ,N ; k = 1, . . . ,K . (21)

Thus the Q function is derived as

Q
(
8,8g)
= E

[
log p (y1, z1, · · · , yN , zN |8)| y1, . . . , yN ,8g]

=

N∑
i=1

K∑
k=1

γ (zik) logπk +
N∑
i=1

γ (zi1) logN
(
yi| 0, σ 2

1

)
+

N∑
i=1

K∑
k=2

γ (zik)
[
logN

(
yi|µk , σ 2

k

)]
(22)

(b)M-step: TheGMMparameters are optimized separately
by maximizing the Q function as following

8n
= argmax

8
Q
(
8,8g) , (23)

where 8n denotes the updated parameters set and 8g is the
old parameters set.
Proposition 5: The optimal values of the parameters by

maximizing the Q function are given as follows:

π∗k =

N∑
i=1
γ (zik)

N
, k = 1, . . . ,K , (24)

µ∗k =

N∑
i=1
γ (zik) · yi

N∑
i=1
γ (zik)

, k = 2, . . . ,K , (25)

(
σ 2
1

)∗
=

N∑
i=1
γ (zi1) y2i

N∑
i=1
γ (zi1)

(26)

(
σ 2
k

)∗
=

N∑
i=1
γ (zik) (yi − µk)2

N∑
i=1
γ (zik)

, k = 2, . . . ,K . (27)

Proof: See Appendix D. �
Remark 4 (Special Case - Gaussian Channel): There is a

special case that the channels follow i.i.d N
(
µh, σ

2
h

)
.

The distributions of noises from the FC are assumed i.i.d
N
(
0, σ 2

w
)
. Thus, the received signals from the active sen-

sors follow N
(
aµh + µw, a2σ 2

h + σ
2
w
)
, the received signals

from the inactive sensors follow N
(
0, σ 2

w
)
. The distribu-

tion of all the received signals can be simply modeled as a
two-component GMM.

Once the GMM-EM has run to completion, the proportion
of the active sensors m

N is approximated by
m
N
' 1− π∗1 . (28)

Utilizing the GMM-EM algorithm, we obtain a series of
probability values (21) corresponding to the different clusters.
For a specific received signal, if the probability value of the
first term is close to 0.5, we can not exactly infer the state
of the sensor from this received signal, in other words, this
received signal will cause classification ambiguity which will
degrade the estimate accuracy. The probability values of these
specific received signals are reassigned when we estimate the
proportion of the active sensors. Specifically, when the GMM
converges, we distinguish the ambiguous data in accordance
with the following rules: if |γ (zi1) − 0.5| < τ , the data
yi is judged as an ambiguous data where τ is the judgment
threshold. The ambiguous data set denotes as D, and the size
ofD is LD. Then we calculate auxiliary probability values by

pk =

∑
i⊂{yi,i=1,...,N }\D

γ (zik)

N − LD
, k = 1, . . . ,K , (29)

which are reassigned to the ambiguous data. Thus a more
accurate approximation to the proportion of the active sensors
m
M is given by

m
N
' 1−

∑
i⊂{yi,i=1,...,N }\D

γ (zi1)+ LDp1

N
(30)

V. SUMMARY OF THE BLIND ESTIMATION SCHEME
The implementation of the blind estimation scheme is shown
in Fig. 5. The scheme consists of two main modules Ran-
dom Transmission and Statistical Inference. At the sensors,
the sensing value s turns into a parameter to govern the sensor
states which is indicated by the random symbol vector b. The
specific procedure of the Random Transmission is give in
Algorithm 1. Then the random symbol vector b is transmitted
to the FC via fading channels hi, i = 1, . . . ,N . The received
signals yi, i = 1, . . . ,N are divided into two clusters based on
GMM-EM estimation. Finally, the sensing value is estimated
based on the size of the clusters. Algorithm 2 summarizes
the resultant procedure of the Statistical Inference principle
at the FC.
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FIGURE 5. System design of the distributed blind estimation scheme.

Algorithm 1 Random Transmission at Sensors
Input: Measurements xi, i = 1, . . . ,N and max
boundary value W .
Output: Random symbol vector b.
Calculate normalized measurements θi according to
formula (32);
Generate random threshold ρi, i = 1, . . . ,N within the
range of (t1, (t + 1)1);
for i = 1 to N do

if θi > ρi then
bi = a(t + 1)1;

else
bi = at1;

end
end
Return: Random symbol vector b.

Algorithm 2 Statistical Inference at FC
Input: Received signals yi, i = 1, . . . ,N , the number of
Gaussian components K and max boundary value W .
Output: Estimated value ŝ.
Initialization: Initialize GMM parameter set 80;
EM Iteration:
while Not Convergence do

E-step: Calculate the expectation of hidden variables
according to (21) and Q function according to (22);
M-step: Update the mixing weight πk , the mean µk
and variance σ 2

k according to (24), (25), (26)
and (27), respectively;

end
Approximate the proportion of active sensors:
Approximate m

N according to (28) or (30)
Return: Estimated value ŝ = (mN )approximationW .

VI. SIMULATION RESULTS
Simulation results are presented in this section. The
simulation parameters are set as Table I. The proposed blind
estimation (BE) scheme performs in the two cases that are the

TABLE 1. Simulation parameters settings.

special case and the general case. In the special case, the chan-
nels from the sensors to the FC are Gaussian channels (GC)
whose the mean and the variance are random in every estima-
tion. In the general case, the channels are unknown channels
(UC). To simplify the simulation, we sample channel coeffi-
cients from a uniform distribution in the general case.

First, we give the GMM approximate performance in the
special and the general case, respectively. Then we evaluate
the relation between the number of sensors and the estimation
performance. Next, we illustrate the impact of quantization
on the estimation performance. Finally, we evaluate the per-
formance of the BE scheme with varying values of received
SNR. The results are compared to the MLE with perfect CSI
in (3) and k-means clustering algorithm. The MLE operates
directly on the analog measurements and over a Gaussian
channel whose the mean and the variance are random in every
estimation. The cluster number of K-means is set to 2.

A. GMM APPROXIMATE PERFORMANCE
Consider a scenario with following specific parameters value:
N = 700, received SNR = 10 dB, and the values of other
parameters are given in Table I. In the special case, we apply
a two-component GMM to approximate the distribution of
the received signals. Fig. 6(a) brings out the normalized
histogram of the received signals and the curve of the trained
two-component GMM. Note that the curve closely approx-
imates the normalized histogram. Then the simulation is
extended to the general case. A three-component GMM
is trained to approximate the distribution of the received
signals. The simulation results of Fig. 6(b) reveal that the
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FIGURE 6. GMM approximation v.s. Normalized histogram of received
signals.

three-component GMM can approximate the distribution of
received signals when the channel model is unknown, where
the means of three Gaussian components are around 0, 25 and
50, respectively.

B. EFFECT OF THE NUMBER OF SENSORS
The relation between the number of sensorsN and the system
performance is evaluated in this subsection. Given a target
value of the estimation error σ and a threshold probability
C , we get the condition that N should satisfy according to
Proposition 2. In the simulation, σ is set to 0.05 and 0.1, andC
is set to 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and the sensing value s
is set to 1.6, and the received SNR is set to 15dB. The required
minimum values of N are given in Fig. 7 whose legend is
‘‘Theory in (6)’’. Based on theoretical minimum N , we run
the blind estimation process 5000 times to obtain a series
of simulation probability, where true m

M and approximate m
M

((28) and (30)) are used, respectively. From the figure, we see
when utilizing the true m

M , the curve of simulation is close to

FIGURE 7. Relation between the number of sensor and system
performance.

the theoretical curve, whereas there is a gap when utilizing
the approximate m

M . The gap indicates that more sensors
are required to achieve the theoretical performance. When
σ = 0.1, it requires about 30 additional sensors to approach
the theoretical performance, and when σ = 0.05, it requires
about 100 additional sensors. Moreover, we can see that the
approximate m

M (30) outperforms the approximate m
M (28).

C. IMPACT OF QUANTIZATION
As mentioned in Remark 3, the smaller estimation bound �
indicates better estimation performance. In this subsection,
we give some numerical results shown in Fig. 8 to evaluate
the impact of quantization, where β̃∗ is set to 1, N is set to
200, and θ is set to 0.1, 0.5, 0.85. From the figure, we see that
� declines rapidly as M increases. Besides, when M < 6,
the values of � are significantly different for the same M ,
and when M ≥ 6, the difference becomes negligible.

FIGURE 8. Estimation error bound � v.s. quantization bit M.

D. EFFECT OF RECEIVED SNR
The effect of received SNR is studied in this subsection.
First, the performance metric is the average estimation error
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denoted as

Avg
[∣∣s− ŝ∣∣] =

n∑
i=1

∣∣si − ŝi∣∣
n

, (31)

where n is the total time of estimations. Fig. 9 presents the
curves of the average estimation error versus the received
SNR with different N and algorithms. The results show that
at the low SNR region, as the SNR increases the average
estimation error decreases obviously utilizing BE schemes.
When the SNR increases (exceeds about 15dB in the special
case and 20dB in the general case), the performance of BE
can not be improved by increasing the received SNR.We infer
that when the received SNR is large enough, the performance
bottleneck of the BE scheme is no longer the noise but the
number of sensors. Besides, we notice that when the SNR is
low (below about 3dB), the performance of BE (GMM-EM)
under the unknown channel is better than that under the Gaus-
sian channel since at the low SNR region, a K -component
(K > 2) GMM outperforms a two-component GMM when
approximating the distribution of received signals. With per-
fect CSI and analog transmission, the MLE outperform the
BE, and the average estimation error of the MLE obviously
degrades as the received SNR increase. Moreover, we see
that the blind estimation utilizing GMM-EM outperforms
that utilizing K-means since the soft assignment clustering
is more applicable to the distributed estimation problem and
GMM-EM algorithm has the ability to cluster unbalanced
data set.

FIGURE 9. Average estimation error v.s. received SNR.

VII. CONCLUSION AND FUTURE WORK
The work has presented a novel distributed blind estimation
scheme based on statistical inference method. The blind esti-
mation scheme which consists of the random transmission
and the statistical inference has made it possible to estimate
a sensing value without any channel information. By the ran-
dom transmission strategy, we have turned the sensing value
into a statistical parameter to govern the sensor states which

are indicated by the quantized symbols. A unified estimation
frame has been proposed based on the GMM-EM statistical
inferencemethod to recover the sensing value. To evaluate the
proposed blind estimation performance, we investigate the
impact of the number of sensors and the quantization. Sim-
ulation results have demonstrated the estimation accuracy of
the proposed blind estimation method grows as the increasing
numbers of sensors and received SNR. The blind estimation
scheme has significantly reduced operational complexity and
energy consumption for an individual sensor. Future work
has the following directions: (1) employing non-uniform or
adaptive quantizer for random transmission; (2) extending
scalar estimation to vector estimation; (3) power control in
the blind estimation.

APPENDICES A
Here, we give the unified proof of Proposition 1 and
Proposition 3.

Consider a M -bits random transmission, where M =

1, 2, 3, . . .. The quantization resolution is 1 = 1/
(
2M − 1

)
.

By the step 1 of the random transmission, the normalized
measurements are expressed as

θi =
xi
W
=

s
W
+

ni
W
, i = 1, . . . ,N . (32)

Since the noise {ni, i = 1, . . . ,N } follow i.i.d. N
(
0, σ 2

n
)
,

the normalized measurements {θi, i = 1, . . . ,N } follow
N
(
s
W ,

σ 2n
W 2

)
.

By the step 3, the distribution of i-th quantized symbol
is parameterized by the normalized measurement value θi as
follows

bi =

{
a(t + 1)1, w.p φi
at1, w.p 1− φi

, i = 1, . . . ,N , (33)

where a is the quantization gain, φi =
(
2M − 1

)
θi −⌊(

2M − 1
)
θi
⌋
where φi ∈ (0, 1),∀i and b·c is the round down

operator. t is determined by the interval in which θi falls, that
is t1 ≤ θi ≤ (t + 1)1, t ∈

{
0, 1, . . . , 2M − 2

}
. For the

special case of M = 1, there are φi = θi and t = 0.
Let Xi = 1 represent bi = a(t + 1)1 and Xi = 0

represent bi = at1. Thus Xi is a Bernoulli trial with success
probability φi. Then the number of active sensors is m =
N∑
i
Xi. When there is no measure noise, the expectations of

{Xi, i = 1, . . . ,N } are given as

E [Xi] = φ=
(
2M − 1

)
θ−

⌊(
2M − 1

)
θ
⌋
, i = 1, . . . ,N ,

(34)

where θ is the normalized measurement when there is no
noise. Since {Xi, i = 1, . . . ,N } are independent, the expec-
tation of m is derived as

E [m] = E [X1]+ . . .+ E [XN ]

= N ·
{(

2M − 1
)
θ −

⌊(
2M − 1

)
θ
⌋}
. (35)
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According to Bernoulli’s Law of Large Numbers, for every
ε > 0 we have

lim
N→∞

P
{∣∣∣∣m− E [m]

N

∣∣∣∣ < ε

}
→ 1

⇒ lim
N→∞

P
{∣∣∣m
N
− φ

∣∣∣ < ε
}
→ 1 (36)

When the measure noise exists, the probabilities of acti-
vating the sensors are different. The expectations of
{Xi, i = 1, . . . ,N } are

E [Xi]=φi =
(
2M−1

)
θi−

⌊(
2M − 1

)
θi

⌋
, i = 1, . . . ,N .

(37)

Then the expectation of m is given by

E[m] =
N∑
i=

φi

= N · φ+
(
2M − 1

) N∑
i=1

ni

W
−

(2M−1)
N∑
i=1

ni

W

 (38)

Utilizing Bernoullis Law of Large Numbers again, for every
ε > 0 we have

lim
N→∞

P
{∣∣∣∣m− E [m]

N

∣∣∣∣ < ε

}
→ 1

⇒ lim
N→∞

P
{∣∣∣∣mN − φ − ζ

NW
−

⌊
ζ

NW

⌋∣∣∣∣ < ε

}
→ 1, (39)

where ζ =
(
2M − 1

) N∑
i=1

ni. When N → ∞, ζ
NW → 0.

Then (39) can be further derived as

lim
N→∞

P
{∣∣∣m
N
− φ

∣∣∣ < ε
}
→ 1 (40)

The results of (36) and (40) reveal that when N is large
enough, the proportion of the active sensors m

N is close to φ,
denoted as

lim
N→∞

m
N
→ φ. (41)

Then we have

φ̂=
m
N
⇒

(
2M − 1

)
θ̂ −

⌊(
2M − 1

)
θ̂
⌋
=
m
N

(42)

Since θ is within (t1, (t + 1)1), then we have

θ̂ =
(m
N
+ t
)
1 =

m
/
N + t

2M − 1
(43)

Then the estimated value is given by

ŝ = θ̂ ·W =
m
/
N + t

2M − 1
·W (44)

Notice that when M = 1, there is t = 0, then we have

ŝ =
m ·W
N

(45)

APPENDIX B
Given a target value σ of the average estimation error and the
threshold probability C , we have{∣∣ŝ− s∣∣ < σ

}
≥ C

⇒ P
{∣∣∣∣mWN − θW

∣∣∣∣ < σ

}
≥ C

⇒ P
(∣∣∣m
N
− θ

∣∣∣ < σ

W

}
≥ C (46)

According to Central Limit Theorem, for any given β and
when N →∞, we have

P
{

m− N · θ
√
N · θ (1− θ)

< β

}
→ < (β) , (47)

where, < (β) is the standard normal distribution defined by

< (β) =
1
√
2π

∫ β

−∞

e−
1
2 t

2
dt. (48)

Consider the absolute error, we have

P
{∣∣∣∣ m− N · θ
√
Nθ (1− θ)

∣∣∣∣ < β

}
→ < (β)−< (−β) . (49)

Normalized form of (46) denoted as

P

{∣∣∣∣ m− N · θ
√
Nθ (1− θ)

∣∣∣∣ < σ
√
N

W
√
θ (1− θ)

}
≥ C (50)

Let β̃ = σ
√
N

W
√
θ(1−θ)

, then we have

P
{∣∣∣∣ m− N · θ
√
Nθ (1− θ)

∣∣∣∣ < β̃

}
→ <

(
β̃
)
−<

(
−β̃

)
(51)

For the given threshold probability C , let β̃∗ be the root of
<

(
β̃
)
−<

(
−β̃

)
= C . In order to guarantee the probability

of (51) is greater than C , β̃ ≥ β̃∗ is required. It holds that

σ
√
N

W
√
θ (1− θ)

≥ β̃∗ (52)

Then we get

N >

(
W β̃∗

)2
θ (1− θ )

σ 2 (53)

APPENDIX C
According to (52) given in Appendix B and replacing θ
with φ, we have

σ
√
N

W
√
φ (1− φ)

≥ β̃∗, (54)

where φ =
(
2M − 1

)
θ −

⌊(
2M − 1

)
θ
⌋
. Then we get

σ ≥
W β̃∗
√
φ (1− φ)
√
N

(55)
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which satisfies (46) given in Appendix B. When the equality
in (55) holds, we have

P

{∣∣∣m
N
− φ

∣∣∣ < β̃∗
√
φ (1− φ)
√
N

}
= C

⇒ P

{∣∣∣(m
N
+ t
)
1−(φ+t)1

∣∣∣ < 1β̃∗
√
φ (1− φ)
√
N

}
= C

⇒ P

{∣∣∣θ̂ − θ ∣∣∣ < 1β̃∗
√
φ (1− φ)
√
N

}
= C . (56)

Then the estimation error for multiple-bit situation satisfies

P

{∣∣ŝ− s∣∣ < W β̃∗
√
φ (1− φ)

(2M − 1)
√
N

}
= C, (57)

where β̃∗ is the root of <
(
β̃
)
−<

(
−β̃

)
= C .

APPENDIX D
Firstly, we give the the updating formula of π by optimize the

following problem with the constraint
K∑
k=1

πk = 1,

π∗k = argmax
πk

L (π)

= argmax
πk

N∑
i=1

K∑
k=1

γ (zik) logπk − (
K∑
k=1

πk − 1),

k = 1, . . . ,K . (58)

The first partial derivative of L (πk) to πk can be expressed
as

∂L (πk)
∂πk

=

N∑
i=1

γ (zik)
πk
− N , k = 1, . . . ,K , (59)

Let the first partial derivative of L (πk) is equal to zero,
the optimal value of πk solving (58) is given by

π∗k =

N∑
i=1
γ (zik)

N
, k = 1, . . . ,K , (60)

Then, the updating formula of the µk , k = 2, . . . ,K is
derived by considering those terms in (22) which are related
to the µk only, the corresponding optimization problem is
shown as

µ∗k = argmax
µk

L (µk)

= argmax
µk

N∑
i=1

γ (zik) ·

[
−

1

2σ 2
k

(yi − µk)2
]
,

k = 2, . . . ,K (61)

The first partial derivative of L (µk) to µk can be expressed
as

∂L (µk)
∂µk

=

N∑
i=1

−γ (zik) ·

[
(yi − µk)

2σ 2
k

]
(62)

Let the first partial derivative of L (µk) is equal to zero, then
the optimal value of µk solving (61)) is given by

µ∗k =

N∑
i=1
γ (zik) · yi

N∑
i=1
γ (zik)

, k = 2, . . . ,K , (63)

Next, we derive the the updating formulas of σ 2
k ,

k = 1, . . . ,K by solving the optimization problems given
as follows:(
σ 2
k

)∗
= argmax

σ 2k

L
(
σ 2
k

)
= argmax

σ 2k

N∑
i=1

γ (zik) ·

[
−
1
2
log σ 2

k −
1

2σ 2
k

(yi−µk)2
]

k = 1, . . . ,K (64)

The first partial derivative of L
(
σ 2
k

)
to σ 2

k can be expressed
as

∂L
(
σ 2
k

)
∂σ 2

k

=

N∑
i=1

γ (zik) ·

[
−

1

2σ 2
k

+
(yi − µk)2

2
(
σ 2
k

)2
]
,

k = 1, . . . ,K (65)

Let the first partial derivative of L
(
σ 2
k

)
is equal to zero, then

the optimal value of σ 2
k solving (64) is given by

(
σ 2
k

)∗
=

N∑
i=1
γ (zik) (yi − µk)2

N∑
i=1
γ (zik)

, k = 1, . . . ,K . (66)

where µ1 = 0, thus

(
σ 2
1

)∗
=

N∑
i=1
γ (zi1) y2i

N∑
i=1
γ (zi1)

(67)
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