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ABSTRACT In this paper, the non-weighted L2-gain control problem is addressed for a class of asyn-
chronously switched linear systems, where the asynchronous phenomenon is caused by the mode-identifying
process. Unlike the literature concerned with asynchronously switched systems, we construct a new class
of clock-dependent Lyapunov function (CDLF), which can be permitted or prohibited to increase when the
modes of the controller and system are unmatched. Furthermore, a novel controller design strategy is intro-
duced. The asynchronous and synchronous controllers are designed separately, and are both clock-dependent.
By using the CDLF approach, a clock-dependent sufficient condition characterizing the non-weighted
L2-gain performance is obtained for the asynchronously switched systems. The controller gains can be
computed by solving a set of sum of square (SOS) program. At last, the advantages of the results are
illustrated within two examples.

INDEX TERMS Clock-dependent Lyapunov function, non-weighted L2-gain, asynchronous control,
switched systems, sum of square program.

I. INTRODUCTION
In recent decades, switched systems have gotten a lot of
attention in virtue of its practical and theoretical values.
This class of systems consists of several continuous-time or
discrete- subsystems with a switching signal driving them.
The feature of switching widely exists in real-world systems,
thereby many practical systems can be modeled by switched
systems, such as chemical system [1], traffic system [2] and
teleoperation robotic system [3].

In practice, a system possessing switching feature may
be not stabilized by using any common control inputs, but
can be stabilized by using switching control inputs. In other
words, one needs to apply different control inputs to dif-
ferent subsystems. Therefore, the switching control prob-
lem for switched systems has been researched deeply in
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some literature, e.g., [3]–[12]. Within most of the afore-
mentioned work, it’s assumed that the mode of the con-
troller is always consistent with the system’s. However,
the controller may not switch synchronously with the system
in real-world system. Since the mode-identifying process
requires some time to complete, the modes of the controller
and the system may be unmatched during this period of
time. The system which contains unmatched controller is
called asynchronously switched system. In the last decade,
abundant results have been obtained for asynchronously
switched systems with time-controlled switching signal,
e.g., [13]–[28]. The aforementioned literature falls into two
categories based on how to search the Lyapunov function:
in [13]–[21], [26], [28], the increment of the Lyapunov func-
tion is permitted when the modes of the controller and system
are inconsistent, while in [22]–[25], [27], this is prohibited.

Disturbance inputs are common and inevitable in real-word
system. The L2-gain can be used to characterize the
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disturbance rejection ability of the system. A lot of
work has been put in investigating the L2-gain perfor-
mance of switched systems, e.g., [3], [5], [15], [18],
[19], [22]–[24], [29]. Among those work, [15], [18],
[19], [22]–[24] are concerned with the L2-gain perfor-
mance of asynchronously switched systems. More expressly,
in [15], [19], a weighted L2-gain is derived, while in [18],
[22]–[24], a non-weighted one is obtained. From both points
of view of theory and application, the non-weighted one is
of more value than the weighted one. However, as far as we
know, only a few results on non-weighed L2-gain control
of asynchronously switched systems have been obtained at
present, and the research object and methods within these
work have some differences: in [18], asynchronously systems
with undetectable switching instants are investigated, and the
energy function is permitted to increase when the modes of
the controller and system are unmatched, while in [22]–[25],
the switching instants are assumed to be detected instanta-
neously online, and the increase of the Lyapunov function
is always prohibited. Obviously the results are not abundant
and need to be further improved. This motivates our research
interests.

Inspired by [4], [30]–[32] concerned with switched
systems within the framework of dwell time switching,
the CDLF approach is used in the paper to solve out the
non-weighted L2-gain control problem of a class of asyn-
chronously switched systems. The main contribution of this
paper is summarized into two points: (i) A novel class
of CDLF is proposed. Unlike [13]–[24], [27], the CDLF
can be permitted or prohibited to increase when the mode
of the controller is inconsistent with the system’s, which
makes the results more comprehensive. (ii) A novel con-
troller design strategy is proposed. The asynchronous and
synchronous controllers are designed separately, and are both
clock-dependent. Compared to [18], a better non-weighted
L2-gain performance can be guaranteed.
Outlines: The paper is organized as follows: The system

descriptions and preliminaries are presented in Section II.
The results on L2-gain analysis and controller design for
asynchronously switched systems are given in Section III.
Two numerical examples are given in Section IV, and the
conclusion is given in Section V.
Notations: ‘T ’: matrix transposition. ‘∗’: transposed ele-

ments in the symmetric positions. ‖·‖: Euclidean vector
norm. N (N+): the set of non-negative (positive) integers. Rn

(Rm×n): the set of n-dimensional vectors (m× n-dimensional
matrices) with real entries. I : identity matrix with appro-
priate dimension. L2[0,∞): space of square sum-able infi-
nite sequence. For ω(t) ∈ L2[0,∞), its norm is given by

‖ω(t)‖2 =
√∫
∞

0 ω(t)Tω(t)dt . A function α : [0,∞) 7−→
[0,∞), α(0) = 0, is of class K if it’s continuous, strictly
increasing, and a function β : [0,∞) × [0,∞) 7−→ [0,∞)
is of class KL if β(·, t) is of class K for fixed t ≥ 0 and
β(s, t) decreases to 0 as t →∞ for fixed s ≥ 0. P > 0 (P ≥
0) means that matrix P is positive (semi-positive) definite.

Some matrix or function expressions will be used in the rest
of the work: τ (t, s) = t− s, N (A,P, α) = ATPT +PA+αP,
M (A,P(t), α) = ATP(t)T + P(t)A+ Ṗ(t)+ αP(t).

II. SYSTEM DESCRIPTION AND PRELIMINARIES
Consider the following continuous-time switched linear
systems:{
ẋ(t) = Aσ (t)x(t)+ Bσ (t)u(t)+ Eσ (t)ω(t),
y(t) = Cσ (t)x(t)+ Dσ (t)u(t)+ Fσ (t)ω(t),

t ≥ t0, (1)

where t0 = 0, x(t) ∈ Rnx , u(t) ∈ Rnu , ω(t) ∈ Rnω ,
y(t) ∈ Rny represent the states, control inputs, disturbance
inputs and outputs, respectively; σ (t) represents a switching
signal taking value in the finite set I = {1, 2, · · · ,N }, where
N ∈ N+ indicates the number of subsystems. tk indicates the
kth switching instant, k ∈ N. Arbitrarily choosing a switching
sequence t0 < t1 < · · · < tk < tk+1 < · · · , σ (t) is
continuous from right everywhere.

Several definitions will be used in the rest of the paper:
Definition 1 (See [8]): A system is globally asymptotically

stable if there exists a function β(·) of class KL such that
‖x(t)‖ ≤ β(‖x(t)‖) holds ∀t ≥ 0 and ∀x(t0) ∈ Rnx .
Definition 2 (See [7]): Given γ > 0, system (1) has a

L2-gain no greater than γ , if under zero initial condition,
the inequality

∫
+∞

0 y(s)T y(s)ds <
∫
+∞

0 γ 2ω(s)Tω(s)ds holds
for all nonzero ω(t) ∈ L2[0,∞).
Definition 3 (See [27]): Given a positive scalar T , the set

of minimum dwell time switching signal satisfying that tk −
tk−1 ≥ T holds ∀k ∈ N+ is denoted by ST .

III. MAIN RESULTS
A. NON-WEIGHTED L2-GAIN ANALYSIS
In practice, the system mode can’t be identified instan-
taneously due to the limitation of devices and influ-
ences of environment. However, the detection of switching
instants is not complicated and can be done instanta-
neously. Hence it’s reasonable to make the following
assumption:
Assumption 1 (See [16], [22]–[24], [27]): The switching

instants t1, t2, · · · , tk , · · · can be detected instantaneously
online.

The assumption above can be of some use in the design
of controller. However, although the information of switch-
ing instants has been acquired, the real-time system mode
is still unknown. The mode estimator needs some time to
achieve the real-time mode of the system online. We call this
period of time the mode-identifying time. In [16], the mode-
identifying time is assumed to be a constant. However,
in practice, the mode-identifying time will be influenced by
some inner and outer actions. Hence, it’s more practical to
assume that the mode-identifying time is within a range.
We denote the mode-identifying time of the kth switching
is 1k , then, the following assumption is made:
Assumption 2: Given two positive scalars1min and1max

satisfying 0 ≤ 1min ≤ 1max, we let 1min and 1max
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FIGURE 1. Controller design strategy.

represent the minimum and maximum mode-identifying time,
respectively. Then, the mode-identifying time1k satisfies that
1min ≤ 1k ≤ 1max holds ∀k ≥ 0.

In general, it’s assumed that the ith subsystem is running
for t ∈ [tk , tk+1), and the jth subsystem is running in the
former interval [tk−1, tk ). We denote t1k = tk + 1k , tϑk =
tk + 1k + ϑ , k ≥ 0. The state-feedback control input is
constructed as follows:

u(t) =


K •j (τ (t, tk ))x(t), t ∈ [tk , t1k ),

Ki(τ (t, t1k ))x(t), t ∈ [t1k , t
ϑ
k ),

Ki(ϑ)x(t), t ∈ [tϑk , tk+1),

(2)

where τ (t, tk ) and τ (t, t1k ) are timer starting at tk and t1k ,
respectively, the matrix-valued functions K •i (τ ), Ki(τ ) are
controller gains to be determined. The control strategy is
shown in Fig. 1:
• In [tk , t1k ), the nearest switching instant has been
detected but the system mode is unknown, the clock-
dependent asynchronous controller K •j (τ ), τ ∈ [0,1k ],
is applied to the system.

• In [t1k , t
ϑ
k ), the nearest switching instant has been

detected, and the system mode has been identified by
the mode sensor, the clock-dependent synchronous con-
troller Ki(τ ), τ ∈ [0, ϑ], is applied to the system.

• In [tϑk , tk+1), the switching instant has been detected,
and the system mode has been known, the synchronous
controller Ki(ϑ) is applied to the system.

Remark 1: Under Assumption 1, an individual clock-
dependent controller K •j (τ ), τ ∈ [0,1k ] is introduced in
the unmatched interval [tk , t1k ). This is different from most
literatures concerned with asynchronously switched systems,
which continue to use the previous controller. The new con-
troller design strategy provides additional freedom and flexi-
bility to the design of controllers.

Substituting (2) into (1), the close-loop system is obtained
and given as follows:

{
ẋ(t) = A •ij (τ (t, tk ))x(t)+ Eiω(t),

y(t) = C •ij (τ (t, tk ))x(t)+ Fiω(t),
t ∈ [tk , t1k ),{

ẋ(t) = Ai(τ (t, t1k ))x(t)+ Eiω(t),
y(t) = Ci(τ (t, t1k ))x(t)+ Fiω(t),

t ∈ [t1k , t
ϑ
k ),{

ẋ(t) = Ai(ϑ)x(t)+ Eiω(t),
y(t) = Ci(ϑ)x(t)+ Fiω(t),

t ∈ [tϑk , tk+1),

(3)

where A •ij (τ (t, tk )) = Ai + BiK •j (τ (t, tk )), C •ij (τ (t, tk )) =
Ci + DiK •j (τ (t, tk )), Ai(τ (t, t1k ) = Ai + BiKi(τ (t, t1k ),
Ci(τ (t, t1k ) = Ci + DiKi(τ (t, t1k ).
The following theorem characterizes the non-weighted

L2-gain of the close-loop system (3):
Theorem 1: Consider system (3). Given non-negative

scalars α and β satisfying{
β > 0, if α > 0,
β = 0, otherwise,

(4)

if there exist two scalars γ > 0 and ϑ satisfyingϑ >
α1max

β
, if α > 0,

ϑ ≥ 0, otherwise,
(5)

and a set of matrix-valued functions P•i (τ ) : [0,1max] 7−→
Rnx×nx , P•i (τ ) > 0, Pi(τ ) : [0, ϑ] 7−→ Rnx×nx , Pi(τ ) > 0,
such that ∀(i × j) ∈ I × I, i 6= j, the following conditions
hold: M {A •ij (τ ),P

•
j (τ ),−α} Ei C •ij (τ )

T

∗ −γ 2 I FTi
∗ ∗ −I


< 0, τ ∈ [0,1max], (6)M {Ai(τ ),Pi(τ ), β} Ei Ci(τ )T

∗ −γ 2 I FTi
∗ ∗ −I


< 0, τ ∈ [0, ϑ], (7)N {Ai(ϑ),Pi(ϑ), β} Ei C T

i
∗ −γ 2 I FTi
∗ ∗ −I


< 0, (8)

Pi(0)− P•j (τ ) ≤ 0, τ ∈ [1min,1max], (9)

P•i (0)− Pi(ϑ) ≤ 0, (10)

then system (3) is global asymptotically stable with ω(t) = 0
and any switching signals σ (t) ∈ ST , where T = 1max + ϑ ,
and has a non-weighted L2-gain no larger than γ̄ =√

Tβe
(T−1max)2max

T

Tβ−2max
γ , where 2max = (α + β)1max.

Proof: The proof is partitioned into two parts based on
whether α > 0 or not:
Case 1 (α > 0): The stability of system (3) is proved first.

We choose the following clock-dependent Lyapunov function

V (t) =


xT (t)P•j (τ (t, tk ))x(t), t ∈ [tk , t1k ),

xT (t)Pi(τ (t, t1k ))x(t), t ∈ [t1k , t
ϑ
k ),

xT (t)Pi(ϑ)x(t), t ∈ [tϑk , tk+1),

(11)

By virtue of the fact that Pi(τ ) > 0 holds ∀τ ∈ [0,1max], and
P•i (t) > 0 holds ∀τ ∈ [0, ϑ], one gets that V (t) > 0 holds
∀x(t) ∈ Rnx (x(t) 6= 0). Since ω(t) = 0, y(t)T y(t) ≥ 0, from
(6)-(8) one has that

V̇ (t) <

{
αV (t), t ∈ [tk , t1k ),
−βV (t), t ∈ [t1k , tk+1),

(12)
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Meanwhile, from (9) and (10) one has that ∀k ≥ 0,

V (t1k ) ≤ V (t1k
−
), V (tk+1) ≤ V (t

−

k+1). (13)

(12) and (13) imply that V (tk+1) < eα1k−β(tk+1−t1k )V (tk ) ≤
eα1max−βϑV (tk ). Letting ε = eα1max−βϑ < 1, one has
that V (tk+1) < εV (tk ) < εk+1V (t0), which implies that
lim

k→+∞
V (tk ) = 0. Then, one can find that V (t) decreases to

zero as t →+∞. The asymptotic stability of system (3) with
ω(t) = 0 is proved.
Then, the L2-gain performance of system (3) is considered.

Let 0(t) = y(t)T y(t) − γ 2ω(t)Tω(t), T α(s, t) represent the
time from s to t during which the modes of controller and
system are unmatched, and T β (s, t) represent the time from
s to t during which the mode of system and controller are
matched. Similarly to the proof of the bounded real lemma,
from (6)–(8) one can obtain the following results

V̇ (t) <

{
αV (t)− 0(t), t ∈ [tk , t1k ),
−βV (t)− 0(t), t ∈ [t1k , tk+1),

(14)

which combined with (13) gives that

V (t) ≤ eαT
α(t0,t)−βT β (t0,t)V (t0)

+

∫ t

t0
eαT

α(s,t)−βT β (s,t)0(s)ds.

Since V (t0) = 0 and V (t) ≥ 0, we get∫ t

t0
eαT

α(s,t)−βT β (s,t)y(s)T y(s)ds

≤

∫ t

t0
eαT

α(s,t)−βT β (s,t)γ 2ω(s)Tω(s)ds,

where the left side satisfies
∫ t
t0
e−β(t−s)y(s)T y(s)ds ≤∫ t

t0
eαT

α(s,t)−βT β (s,t)y(s)T y(s)ds, and the right side

satisfies that
∫ t
t0
eαT

α(s,t)−βT β (s,t)γ 2ω(s)Tω(s)ds
≤
∫ t
t0
e(α+β)T

α(s,t)−β(t−s)γ 2ω(s)Tω(s)ds. Next, since T α(s, t)
satisfies that ∀n ∈ N+, T α(s, t) ≤ (1 + t−s−1max

T )1max,
we have that∫ t

t0
e2max(1+

t−s−1max
T )−β(t−s)γ 2ω(s)Tω(s)ds

≤

∫ t

t0
e2max(1−

1max
T )+2max−βT

T (t−s)γ 2ω(s)Tω(s)ds,

which implies that∫ t

t0
e−β(t−s)y(s)T y(s)ds

<

∫ t

t0
e2max(1−

1max
T )+2max−βT

T (t−s)γ 2ω(s)Tω(s)ds.

Integrating the inequality above from t0 = 0 to
+∞ and exchanging the order of integration arrives that∫
+∞

0 y(s)T y(s)ds <
∫
+∞

0
Tβe

(T−1max)2max
T

Tβ−2max
γ 2ω(s)Tω(s)ds.

Then one can conclude that system (3) has a L2-gain no larger

than γ =

√
Tβe

(T−1max)2max
T

Tβ−2max
γ .

Case 2 (α = 0): One has that

√
Tβe

(T−1max)2max
T

Tβ−2max
= 1

since α = β = 0. Hence one needs to prove that system
(3) has a L2-gain no larger than γ . The stability of system (1)
is established since V̇ (t) < 0 holds ∀t ≥ 0. Then, the L2-gain
performance of (1) is considered. From (6)-(8) one has that

V̇ (t) <

{
−0(t), t ∈ [tk , t1k ),
−βV (t)− 0(t) ≤ −0(t), t ∈ [t1k , tk+1),

which means that ∀t ∈ [tk , tk+1), V̇ (t)+0(t) < 0. Integrating
the inequality from t0 to t gives that

∫
+∞

0 0(t) < −V (t) < 0,
which implies that

∫
+∞

0 y(s)T y(s)ds <
∫
+∞

0 γ 2ω(s)Tω(s)ds
as t → +∞. Hence one can conclude that system (3) has a
L2-gain no larger than γ . The proof is completed. �
Remark 2: In Theorem 1, it can be seen that an individual

CDLF P•i (τ ) is introduced during the unmatched interval
[tk , t1k ), which is different to the CDLF for matched inter-
val, while in [18], the Lyapunov function for the unmatched
interval [tk , t1k ) and the formermatched interval [tϑk−1, tk ) are
the same, and in [22]–[24], [27], the Lyapunov function for
the unmatched interval [tk , t1k ) and the next matched interval
[t1k , t

ϑ
k ) are the same. This implies that under Assumption 1,

less conservative results are gotten by Theorem 1.
Remark 3: In [18], the increasing of the Lyapunov func-

tion is permitted during the asynchronous interval [tk , t1k ),
while in [22]–[24], [27], the increasing of the energy func-
tion is always prohibited. The two cases are unified in
this paper. In Theorem 1, α > 0 and α = 0 sepa-
rately imply that the CDLF is allowed and prohibited to
increase during the unmatched interval. Since α > 0 implies

that

√
Tβe

(T−1max)2max
T

Tβ−2max
> 1, while α = 0 implies that√

Tβe
(T−1max)2max

T

Tβ−2max
= 1, one can set α = 0 first to get a

smaller γ . If no feasible solutions can be found for α = 0,
one can set α > 0 to relax the limitation on the Lyapunov
function, and make the problem feasible.
Remark 4: This case that α < 0 and β > 0 must exist

because the system may be still stable even if the modes of
the controller and the subsystems are unmatched. But for this
case, we can let α = 0, β = 0 directly. Hence we do not
consider this case in our paper.

B. NON-WEIGHTED L2-GAIN CONTROLLER DESIGN
The following result checks the existence of controller
gains:
Theorem 2: Consider system (3). Given non-negative

scalarsα and β satisfying (4), if there exist two scalars γ > 0,
ϑ satisfying (5) and a set of matrix-valued functions Q•i (τ ) :
[0,1max] 7−→ Rnx×nx , Q•i (τ ) > 0, Qi(τ ) : [0, ϑ] 7−→
Rnx×nx , Qi(τ ) > 0, such that ∀(i × j) ∈ I × I, i 6= j,
the following conditions hold:8•ij(τ ) Ei 9•ij(τ )

∗ −γ 2 I FTi
∗ ∗ −I

 < 0, τ ∈ [0,1max], (15)
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8i(τ ) Ei 9i(τ )
∗ −γ 2 I FTi
∗ ∗ −I

 < 0, τ ∈ [0, ϑ], (16)

8∗i Ei 9∗i
∗ −γ 2 I FTi
∗ ∗ −I

 < 0, (17)

−Qi(0)+ Q•j (τ ) ≤ 0, τ ∈ [1min,1max],

(18)

−Q•i (0)+ Qi(ϑ) ≤ 0, (19)

where8•ij(τ ) = Q•j (τ )A
T
i +AiQ

•
j (τ )+U

•
j (τ )

TBTi +BiU
•
j (τ )−

Q̇•j (τ ) − αQ
•
j (τ ), 9

•
ij(τ ) = Q•j (τ )C

T
i + U

•
j (τ )

TDTi , 8i(τ ) =
Qi(τ )ATi +AiQi(τ )+Ui(τ )

TBTi +BiUi(τ )− Q̇i(τ )+βQi(τ ),
9i(τ ) = Qi(τ )CT

i +Ui(τ )
TDTi ,8

∗
i = Qi(ϑ)ATi +AiQi(ϑ)+

Ui(ϑ)TBTi +BiUi(ϑ)+βQi(ϑ),9
∗
i = Qi(ϑ)CT

i +Ui(ϑ)
TDTi .

Then, system (3) is global asymptotically stable with any
switching signals σ (t) ∈ ST , where T ≥ 1max + ϑ ,
and has a non-weighted L2-gain no larger than γ̄ =√

Tβe
(T−1max)2max

T

Tβ−2max
γ , where 2max = (α + β)1max.

Proof: LettingP•i (τ ) = Q•i (τ )
−1, multiplying both sides

of (15)-(17) implies that (6)-(8) hold. Meanwhile, (18) and
(19) imply that (9) and (10) hold. The proof is completed. �

C. SOS FORMULATION
The SOS program, which is an approximation of the condi-
tions in Theorem 2, is presented below:
Proposition 1: Consider the conditions in Theorem 2.

Given non-negative scalars α and β satisfying (4), and d ∈
N+, the conditions in Theorem 2 hold if there exists a set
of scalars ε > 0, γ > 0, ϑ satisfying (5), and a set of
SOS matrix polynomials Q•i (τ ) : [0,1max] 7−→ Rnx×nx ,
Q•i (τ ) : [0, ϑ] 7−→ Rnx×nx , 4•ij(τ ) : [0,1max] 7−→ Rnx×nx ,
4i(τ ) : [0, ϑ] 7−→ Rnx×nx and 6•ij(τ ) : [1min,1max] 7−→
Rnx×nx of degree 2d such that ∀(i × j) ∈ I × I, i 6= j,
the following conditions hold:

−

8•ij(τ ) Ei 9•ij(τ )
∗ −γ 2 I FTi
∗ ∗ −I


−τ (1max − τ )4•ij(τ )− εI is SOS,

−

8i(τ ) Ei 9i(τ )
∗ −γ 2 I FTi
∗ ∗ −I


−τ (ϑ − τ )4i(τ )− εI is SOS,8∗i Ei 9∗i
∗ −γ 2 I FTi
∗ ∗ −I

 < 0, −Q•i (0)+ Qi(ϑ) ≤ 0,

−Qi(0)+ Q•j (τ )− (τ −1min)(1max − τ )6•ij(τ ) is SOS.

Moreover, if a feasible solution can be found for the condi-
tions above, the asynchronous and synchronous controller
gains can be computed by K •i (τ ) = U•i (τ )Q

•
i (τ )
−1, τ ∈

[0,1max], Ki(τ ) = Ui(τ )Qi(τ )−1, τ ∈ [0, ϑ], respectively.

Proof: It’s similar to the proof of Proposition 8 H⇒
Theorem 5 in [33] and omitted. �
The optimized L2-gain can be computed by two steps:

firstly, one can get γmin by solving out the optimization
problem as follows:

γmin s.t. The conditions in Proposition 1 hold . (20)

Secondly, the optimized L2-gain is obtained by γ̄min =√
Tβe

(T−1max)2max
T

Tβ−2max
γmin. Meanwhile, the optimized L2-gain

controller can also be achieved.
Remark 5: The clock-dependent conditions in Theorem 2

can also be relaxed into computable ones by using the dis-
cretisation approach, see [3], [18], [34]–[36] for details. It’s
omitted here for brevity.

IV. SIMULATION
This section provides two examples to verify the validity of
the results. The SOS program is solved out with the help of
the package SOSTOOLs [37] and SDP solver SeDuMi [38].
Example 1 (A Case of α = 0): Consider the following

switched linear systems appearing in [18]:

A1 =
[
0.9 −5.8
2.75 0.9

]
, A2 =

[
−2 2
2.12 −1.3

]
, B1 =

[
1.5
2.2

]
,

B2 =
[
1.85
1.75

]
, C1 =

[
1
0

]
, C2 =

[
0.45
0

]
, E1 =

[
0.1
0.5

]
,

E2 =
[
0.2
0.6

]
, D1 = D2 = 1.5, F1 = F2 = 0.65. (21)

Similarly to Example 1 in [18], we choose 1min = 0,
1max = 2, ϑ = 3.6, ε = 0.001, and let α = β = 0. Through
solving the optimization problem (20), we get the optimized
L2-gain index, which is γmin = γmin = 0.66. Compared to
the optimized L2-gain γmin = 4.7865 obtained in [18], our
results are obviously less conservative.

Next, we choose the same initial condition, disturbance
input and switching signal as in [18]. In practice, before
the system is activated, there must exist sufficient time
for themode sensor to identify themodes of the controller and
the system. Hence we assume that we can get the modes of
the system and the controller at the initial time. The simulated
results are shown in Figure 2, from which it’s noted that
the trajectory of the states vanished to zero more rapidly
compared to Fig. 7 in [18]. This implies that the design con-
troller guarantees an better L2-gain performance compared
to [18]. The evolution of the energy function for the closed-
loop system with ω(t) = 0 is shown in Figure 2 (d), from
which we can note that the Lyapunov function decreases to
zero rapidly.
Remark 6: This example shows that through our approach,

a non-increasing Lyapunov function still may be found
even if asynchronous phenomenon exists. However, the non-
increasing Lyapunov function may be hardly found for asyn-
chronously switched linear systems with a large number of
modes. Then we need to relax the limitation on the Lyapunov
function. This will be shown in the next example.
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FIGURE 2. Simulated results for closed-loop system (21).

Example 2 (A Case of α > 0): Consider the following
switched linear systems with three modes:

A1 =
[
0.9 −5.8
2.75 0.9

]
, A2 =

[
−2 2
2.12 −1.3

]
,

A3 =
[
1.9 0.8
1.75 0.4

]
, B1 =

[
1.5
2.2

]
, B2 =

[
1.85
1.75

]
,

B3 =
[
1.0
1.2

]
, C1 =

[
1
0

]
,

C2 =

[
0.45
0

]
, C3 =

[
1
0

]
, E1 =

[
0.1
0.34

]
,

FIGURE 3. Simulated results for closed-loop system (22).

E2 =
[
0.2
0.45

]
, E3 =

[
0.1
0.24

]
, D1 = D2 = D3 = 1.5,

F1 = F2 = 0.25, F3 = 0.15. (22)

First, we solve the conditions in Proposition 1 with α =
β = 0, 1min = 0, 1max = 2, ϑ = 3.6, d = 2, ε = 0.001.
However, no feasible solutions can be found for any γ . This
implies that a non-increasing Lyapunov can’t be easily found
in this case.

Then, according to Remark 3, we set α = β = 0.5, and
let other parameters remain unchanged. Through permitting
the increase of the Lyapunov function when the modes of
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the controller and system are unmatched, the optimization
problem (20) becomes feasible, and γ̄min = 5.27 is obtained.
Finally, we let tk+1 − tk = T = 5.6, k ≥ 0, and apply the

same initial condition and disturbance input as in [18] and
Example 1. Some simulated results are shown in Figure 3,
from which we can see that although the state trajectory
diverges at the first unmatched interval, it converges to zero
rapidly during the rest time. Similarly, the energy function
increases during the unmatched interval, but it still decreases
to zero quickly during the matched interval. This shows the
L2-gain performance is guaranteed for the system.

V. CONCLUSION
The non-weighted L2-gain control problem has been investi-
gated in this paper for asynchronously switched systems with
detectable switching instants and ranged mode-identifying
time. A clock-dependent sufficient condition has been
obtained to verify the existence of non-weighted L2-gain
controller for the concerned systems. The condition is
relaxed into computable conditions via SOS approximation
approach. By solving a set of SOS program, a couple of
synchronous and asynchronous controller gains is obtained.
Two examples are provided in the end to illustrate the results
of the paper.
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