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ABSTRACT The receding horizon control (RHC) combining with the various intelligent algorithms is a
common method for the dynamic vehicle routing problem (DVRP). However, the traditional RHC only
considers the objects within each time window while making route plan, and can’t make adjustment
according to the situations of the objects near the window. In order to deal with this problem, a fuzzy receding
horizon control strategy (FRHC) is proposed. By combining the RHC and the membership function theory,
the relationship between objects and time window is redefined. And the travel routes are planned by the
genetic algorithm (GA) for each fuzzy time window. Finally, ten instances are selected from the DVRP
standard test library to verify the proposed strategy. The experimental results show that when comparing
with the RHC strategy, the FRHC can reduce the distance, the waiting time of all customers and the number
of waiting customers dramatically. The FRHC combines with the GA (FRHC-GA) method is also reasonable
and effective.

INDEX TERMS Dynamic vehicle routing problem, fuzzy control, membership function, receding horizon
control.

I. INTRODUCTION
The Vehicle Routing Problem (VRP) is a classical NP-hard
problem in the field of operations research, is always a hot
topic [1]–[6]. It arms to design an optimal route for a number
of vehicles in serving a set of customers. The vehicles serve
each customer in an orderly manner to get the plan with the
shortest distance or the shortest waiting time under some
constraints. The VRP is mainly divided into two categories
according to its characteristics: the Static VRP (SVRP) and
the Dynamic VRP (DVRP). The main feature of the SVRP
is that all the information of the environment such as the
customer demands and travel costs is known and unchanged.
However, this assumption is rarely true in real life, where the
environment is often changing over time, e.g. a new customer
request arrives while the vehicles are on their routes. In such a
dynamic environment, the theories and the solution methods
of the SVRP are no longer applicable.

The DVRP is first proposed by Psaraftis [7], [8].
The main difference between the DVRP and the SVRP is
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that the information of customers (e.g. demand, address,
service time, etc.) may change with time. To solve
DVRP, many scholars have proposed various optimiza-
tion algorithms [9]–[25]. These approaches can be roughly
divided into three categories. (1) The original travel route is
generated at the beginning of the system. The system will
modify the original travel route when the dynamic informa-
tion generates [10]. (2) The original travel route is generated
at the beginning of the system. And the system arranges
other vehicles for the dynamically changing customers. (3)
The system time is divided into a number of time windows
which are called time segments. At the beginning of each time
window, the system collects the dynamic change information
generated in the previous time window, and arranges the
vehicles for the customers whose service time is in the current
time window [9].

Among the above three approaches, the vehicles are
required to be fully loaded at the depot in the first
approach. Then the vehicles can serve the newly generated
customers in time. Nevertheless for the express delivery
and the take-away delivery, the vehicles must return to the
depot for replenishment when a new customer generates.
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FIGURE 1. The example travel route graph.

Therefore this approach has limitations [12]. In the second
approach, the system arranges the vehicles individually for
the dynamically changing customers. There is no doubt that
this approach increases the cost of distribution. In the third
solution, the system time is divided into a number of time
windows. The system just need to arrange the vehicles for the
customers whose service time is in the current time window.
This solution reduces the computational pressure of adjusting
the travel plan and restores the dynamic nature of the DVRP,
and its optimization effect is verified. It’s also a common
problem-solving method. This method is often referred to
as RHC [26]–[31], it is widely used in the flight schedul-
ing problem [29], [30], the dynamic scheduling problem,
the unmanned combat aerial vehicles [26], [27], and the big
data research.

The essence of RHC is dividing the whole horizon into
a number of time windows. And the system makes each
vehicle travel plan for each time window. But RHC generally
uses average allocation when dividing time windows, and the
setting of the time window is too strict. For example: a system
time is devided into the 0-30 minutes and the 30-60 minutes
two time windows, and there’s a customer who needs to be
served at 31th minute. This customer must be divided into
30-60 minutes time window for serving. But this customer is
in the same area with customers within the first time window,
like Figure 1. The travel route will be better if this customer
was traveled in the first time window.

As for the above situation, this paper proposes a FRHC
strategy is proposed. which combines the theories of the RHC
and the fuzzy set [15], [32]–[36], and defines the membership
function [15] of the FRHC. By blurring the end time of the
time window, a more efficient and reasonable strategy of the
optimizing the DVRP is produced.

The main contributions of this paper have three aspects: 1.
this paper proposes the FRHC strategy, and the membership
functions of the FRHC is defined; 2. the FRHC optimizes
the RHC strategy. The RHC is a common strategy for the
dynamic problems. The traditional RHC only considers the
objects within current time window, can’t make overall plan

according to the situations of the next time window. The
FRHC is proposed to optimize this problem. Through exper-
imental comparison, it is verified that results of the FRHC
are indeed better than RHC; 3 the DVRP problem is solved
by using the FRHC combined with the GA method in this
paper, and the experimental results are compared with other
algorithms. It is verified that the practicality of the FRHC for
solving the DVRP.

II. PROBKEM DESCRIPTION AND MATHEMATICAL
MODEL
A. PROBLEM DESCRIPTION
The DVRP is a problem in which a set of dynamically
changing customers are served by a number of vehicles. The
customers here are generally divided into two categories: the
early customers and the late customers [9], [12]. The cus-
tomers who have been obtained before the start of the system
service time are called the early customers. They may not be
served during last system service cycle or be obtained during
system rest time. The late customers refer to the system
receiving new customers continuously during service time,
or the early customer changing theirs demand. As for the early
customer changing theirs demand, it is often called disturb.
This paper considers the vehicle travel route coordinated by
the early customers and the later customers. To ensure that
each customer’ need is satisfied, and the customers’ demands
of each vehicle do not exceed the maximum capacity of
the vehicle. The problem aiming is to minimize the vehicle
traveled distance and the waiting time of all customers.

DVRP can be defined as follow. There is a depot v0 with
service time [0-SystemTime]. C = {c1, c2, . . . , cK} is a set of
the vehicles. There areK vehicles, and the capacity of vehicle
is Q. V = {v1, v3, . . . , vI} is a set of the customers. The cus-
tomersV contains the early customersVE = {v1, v3, . . . , vI ′}
and the late customers VL = {v2, v5, . . . , vI ′′}. Each cus-
tomer includes the system reception time GT, the expected
service time PT, the demand M , the actual arrival time AT,
the abscissa X , the ordinate Y , and the waiting timeWT. The
vehicles start from the depot v0 and serves the customers in
the V . If the customer’s AT before the PT, the vehicles need
to wait, and the PT of the customer is taken as the departure
time of the next customer. Otherwise, the AT of the customer
is taken as the departure time of the next customer. Each
customer can be served only by one car and once. The aiming
is to minimize the vehicle traveled distance and the waiting
time of all customers.

B. MATHEMATICAL MODEL
For convenience of description, the symbol or variable is
defined as:
ST: the depot’s service time or the system time;
v0: the depot;
V : a set of the customers;
I : the number of customers;
VE: the early customers, VE ⊆ V ;
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VL: the late customers, VL ⊆ V ;
vi: the ith customer, vi ∈ V ;
Xi: the abscissa of the ith customer;
Yi: the ordinate of the ith customer;
Mi: the demand of the ith customer;
GTi: the system reception time of the ith customer;
PTi: the expected service time of the ith customer;
ATi: the arrival time of the ith customer;
WTi: the waiting time of the ith customer;
C : a set of the vehicles;
K : the number of vehicles;
ck : the kth vehicle;
Q: the capacity of the vehicle;
Speed: the travel speed;
Lij: the distance cost from the ith customer to the jth

customer;
Xijk : from the ith customer to the jth customer is served by

the kth vehicle;
α : adjustment coefficient of the objective function;
According to the above problem descriptions, the model

and objective function of minimizing the total cost of the
DVRP optimization are as follows:

WTi =
{
0, if ATi ≤ PTi
ATi − PTi, otherwise

(1)

F =
I∑
i=0

I∑
j=0

K∑
k=1

LijXijk + α
I∑
i=1

WTi (2)

V = VE ∪ VL, VE 6= ∅, VL 6= ∅ (3)
I∑
i=0

Mi ≤ KQ (4)

I∑
i=0

K∑
k=0

Xijk = 1 (5)

I∑
j=0

K∑
k=0

Xijk = 1 (6)

I∑
i=0

I∑
j=0

MiXijk ≤ Q (7)

The equation (1) is the calculation method of the waiting
time. The formula (2) is the calculation method of the objec-
tive function. The equation (3) means that both early and
late customers exist. The equation (4) means that the total
demands for all customers are less than the total capacities of
all vehicles. The equations (5) and (6) ensure that there is only
one travel route between any two customers. The equation (7)
means that the demands of the customers in one vehicle do not
exceed the maximum capacity of the vehicle.

However, in real life, the model can be modified according
to different problems. For example, the model only con-
sider one vehicle can server several customers at a time,
without considering the customer’s demand and the vehicle
capacity.

FIGURE 2. The RHC example graph.

III. METHODOLOGY
This chapter introduces the specific ideas of the FRHC to
solve the DVRP. The theoretical basis and model definition
of the FRHC are introduced in detail. And two examples
are given to illustrate the advantages of the FRHC. The
framework and method steps of the FRHC combines the GA
(FRHC-GA) for solving the DVRP are introduced, and the
GA is modified according to the model of the problem.

A. FRHC METHOD
1) RHC METHOD
The system time ST is divided into N time windows, the time
window size is T . The start time and the end time of the
system service time are T0 and T0 + NT . The start time and
the end time of the nth (n >0 and n <= N ) time window are
TSn = T0 + (n− 1)T and TEn = T0 + nT .
As shown in Figure 2. It is an example for the RHC

optimizing the DVRP. For the processing of the nth time win-
dow, all objects in current time window are optimally sorted
by one intelligent algorithm, such as the genetic algorithm.
Generally, one time window is served by one car, and the
unprocessed objects are put into next time window. Those
objects can be prioritized in next time window. The DVRP
is optimized by scrolling the time window and repeating the
above steps.

2) FRHC STRATEGY ANALYSIS AND MODEL DEFINITION
Under the traditional set theory, customers in the same time
window are called a set. The customers are called the ele-
ments. The relationship between the elements and a set is only
‘‘belonging’’ and ‘‘not belonging’’.
Definition: The set A is the customers in the nth time

window, for any customer vi in customer V , vi only has two
cases of ‘‘belonging to A’’ or ‘‘not belonging to A’’. This
feature can be expressed as a function:

VA(vi) =
{
1, if vi ∈ A
0, otherwise

(8)

Or

VA(vi) =
{
1, if TSn ≤ PTi < TEn
0, otherwise

(9)

VA(vi) is the feature function of the set A.
The customers who are not in the set Awill be served in the

other time windows. In fact, some customers do not belong
to the set A, but their PTs are very close to the end time of the
nth time window. If these customers can be served together
with the customers in set A, the entire travel route will be
optimized.
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FIGURE 3. The membership function graph.

For example, the size of the time window is 30 minutes,
there is a customer’s PT is 31th minute. At this time, this
customer should be served in the second time window, but
31th minute is also very close to 0-30 minutes time window.
So it is said that there is 29/30 similarity degree between this
customer with the customers in the first time window, and
1/30 not similar. This 29/30 is just a degree of similarity. In a
fuzzy set, the similarity degree of an element belonging to a
fuzzy set is called membership degree.

In the classical set method, VA(vi) only has values 0 and 1,
which are extended to intervals [0, 1] in fuzzy set method. Let
the fuzzy set Ã be a mapping from the domain V to [0, 1]:

Ã :→ [0, 1] (10)

vi 7→ Ã(vi) (11)

Ã is the fuzzy set on domain V , Ã is the membership
function of the fuzzy set Ã. The membership function can
be defined by functions such as the trigonometric functions,
the trapezoidal functions, and the Gaussian functions.

For the convenience of calculation, the membership func-
tion in this paper is defined by a piecewise function, and the
membership function µA(vi) is defined as follows:

µA(vi) =


1, if TSn ≤ PTi ≤ TEn

1−
PTi − TSn

T
, if PTi > TS(n+1) and

PTi < TE(n+1)
0, otherwise

(12)

µA(vi) indicates the degree of ambiguity of customers in
adjacent time windows. But how to distinguish if the cus-
tomer can join the current time window, an important param-
eter is also required: the decision-making threshold value
FT ∈ [0, 1], µA(vi) ≥ FT can extract some customers form
next time window into the fuzzy time window for service.

B. THE FRHC-GA FRAMEWORK AND STEPS OF FRHC
Step1: Initialize the FRHC. According to the service time

of depot, the system set the value of the time window size T ,
the membership function and the value of FT.
Step2: Get the customers information. If it is the first time

window: (1) get all the early customers information, (2) get
the late customers information in the current timewindow, (3)
use the membership function and the FT value, extract all the
customers that can be served in the current time window and
arrange the service for them. If it is not the first time window:

FIGURE 4. The framework flow chart.

(1) get the late customers information in current timewindow,
(2) use the membership function and the FT value, extract all
the customers that can be served in current time window and
arrange the services for them.
Setp3:Make the travel route. The extracted customers will

be optimized the travel route by the GA, with the manner
of priority serving the previous time window customers. The
customers not served in this time window are handed over to
the next time window.
Setp4: Scroll the time window. Go to Step2 to continue in

the next window, until all the windows have been finished.
Step5: Process the remaining objects. For the customers

who has not yet served, the system will arrange a vehicle for
service (regardless of various restrictions).

C. GENETIC ALGORITHM
The FRHC can dynamically dispatch vehicles to serve cus-
tomers. As for customers whose PT is in current fuzzy time
window, the system use the GA algorithm to generate the
vehicle route. According to the structure and characteristics
of the DVRP model, the traditional GA has been partially
adjusted.

The GA mainly includes ‘‘initializing the popula-
tion’’, ‘‘improving the initial population’’, ‘‘selecting’’,
‘‘crossover’’ and ‘‘mutation’’. It combines the local search
to optimize the solution. In this paper, for the case where the
number of customers does not exceed 5, the optimal solution
is found by traversing all individuals. The specific design of
each part will be carefully described below.
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FIGURE 5. Crossover operator graph.

(1) Initialize the population. The algorithm uses the
customer sorting number to encode. According to the cus-
tomer number in each fuzzy time window, many random
customer number sequences are generated. The algorithm
traverse each sequence, reads each customer’s information
orderly from the beginning to the end, and judging if the total
number of served customers exceeds the limit. If the limit is
not exceeded, the sequence will be retained; if it is exceeded,
the previously read customer number will be intercepted as
a new sequence and retained. A sequence here is called an
individual, and a group of sequences is called a population.

(2) Evaluation function: P = 1000/F . The P is the value of
the evaluation function, and the F is the value of the objective
function in DVRP. The smaller the F value, the larger the P
value is, and the better the individual is.

(3) Improving the initial population. 20 individuals are
selected randomly, and sorts by the customer’s PT from small
to large.

(4) Selecting. The P value of each individual is calculated
according to the evaluation function. Two individuals are
selected for crossover using the roulette algorithm.

(5) Crossover. For the selected individuals, a random num-
ber is generated as the dividing point respectively. This ran-
dom number is less than half of the length of the sequence.
The sequence of the previous part after cutting is retained.
The customers are added orderly according to another indi-
vidual original sequence. The repeated customer will be
dropped, and others will be retained. After a new sequence
generated, it is necessary to determine if the customers’
demands exceeds the limit of the vehicle capacity. If it is
not exceeded, the sequence will be retained, otherwise the
sequence will be cut. Then two new individuals are generated.
The original individual is compared with the new individual
who retains the previous part. If the new individual’s P value
is smaller, then the new individual will replace the original
individual, otherwise the original individual will be retained.

(6) Mutation. Mutation 1: a customer in the individual is
selected randomly, the customer is inserted into all positions
of the sequence sequentially, and the P values of all inserted
individuals are compared, and the individual with the small-
est P value are retained. Mutation 2: the customer with the
longest waiting time is found, this customer is inserted into
all positions of the sequence sequentially, and the P values
of all inserted individuals are compared, and the individuals
with the smallest P value are retained.

(7) Local search. After the iteration is over, all individu-
als are optimized by the Single Insertion (SI) local search
method. The SI is a commonly used local search operator for
solving the VRP. For a individual, one customer is extracted
in turn, and this customer is inserted into all positions of
the sequence sequentially, and the P values of all inserted
individuals are compared, and the individual with the smallest
P value are retained.

IV. EXPERIMENTAL STUDIES
The experimental environment of this paper is Intel Core
i5-7500 CPU with main frequency of 3.4 GHz and 8G mem-
ory hardware platform. The algorithm is written in JAVA
language and simulated for the vehicle travel route of the
DVRP with the FRHC strategy. Multiple instances in the
DVRP standard test library are verified by the FRHC-GA
method. The experimental results are compared with the
results obtained by RHC, the first come first served algorithm
(FCFS), the PT sorting method (FAST), the nearest neigh-
borhood search algorithm (NN), and the objective function
nearest neighborhood method (NNF).

A. INSTANCE DESIGN AND PARAMETER SETTING
The instances are from the VRP standard test library, they can
be downloaded from theURL ‘‘http://neo.lcc.uma.es/vrp/vrp-
instances/’’. The instance includes some necessary informa-
tion (e.g. the depot, the abscissa X , the ordinate Y , and the
demand M ). In order to reflect the dynamics of the DVRP,
this experiment adds the GT and the PT information based
on those instances. In this paper, 10 instances are selected for
simulation, such as A-n32-k5(n32k5), A-n45-k6(n45k6) and
so on. The number of customers in those instances ranges
from 32 to 65. Those instances can verify the effectiveness of
the FRHC in the different customer group size.

Each customer’s PT is assigned in a random manner and
distributed within the ST evenly. The ratio of early customers
to late customers is 4:1. In this proportion, the customers
are selected as the late customers randomly, and the late
customers’ GTs are assigned (0, PT). Table 1 selects the
A-n61-k9 instance for data display.

Because of each customer’s PT taking a random way to
assign values, here is a statistical analysis of the data in the
above table. There are 60 customers in addition to the deport
v0, the PTs of these 60 customers are counted and a histogram
is drawn as shown in Figure 6. The customer’s PT line is
tortuous. Some customers have small customer numbers, but
their PT is big. The PTs of these 60 customers are sorted from
small to large, and a histogram is drawn as shown in Figure 7.
It can be seen that the customer’s PT line can be regarded
as a straight line approximately. From this it can be verified
that the PT assigned randomly obeys the average distribution
approximately.

This experiment uses multiple instances to simulate DVRP.
For the convenience of experiment, the number of vehicles K
is not limited, each vehicle can serve up to 8 customers, and
the travel speed is Speed = 20km/h. The service start time
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TABLE 1. n61k9 instance data diaplay.

FIGURE 6. The PT histogram.

FIGURE 7. The PT histogram2.

is T0 = 0h, the system service time is ST = 4h, and a time
window size is T = 0.5h.
The objective function is a weighted sum of the travel

distance and the customers waiting time. In order to balance
the weight of the travel distance and the customers waiting
time, the adjustment coefficient of the objective function α
is set to 20. In the GA, the number of initialized populations

is 200, and 180 individuals are selected for crossover during
each iteration (the selection rate is 0.9), and all individuals
are mutated. The algorithm run 300 generations to end the
iteration.

B. FRHC ANALYSIS
1) MEMBERSHIP FUNCTION AND THRESHOLD VALIDITY
ANALYSIS
In order to explore the validity of the membership function
in FRHC, five values are selected for the FT (FT = {29/30,
27/30, 25/30, 23/30, 21/30}). A set of experiments use these
five values to simulate all instances. The results compare the
optimal solution obtained by RHC to discuss the validity of
membership function and the values of FT.

According to different instances, the algorithm runs
30 times to get the best solution in the cases of the RHC
and the different FT values. From the two aspects of the
average value and the minimum value, the objective function
F , the travel distance L, the customers waiting time WT and
the number of waiting customers WN (The customers whose
AT are later thanPT.) are counted. The specific data are shown
in Tables 2 and 3.

Table 2 shows the minimum values of the F based on each
instance running 30 times. Compared with the solution of
the RHC: there are 46 solutions (92%) with the F values
less than the RHC’s F values, and 4 solutions (8%) are flat;
there are 35 solutions (70%) with the L values less than the
RHC’s L values, and 5 solutions (10%) are flat; and there
are 46 solutions (92%) with the WT values less than the
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TABLE 2. The minimum value of the solution at different FT values.

TABLE 3. The average value of the solution at different FT values.

RHC’sWT values, and 4 solutions (8%) are flat; and there are
44 solutions (88%) with the WN values less than the RHC’s
WN values, and 6 solutions (12%) are flat.
Table 3 shows the average values of the solutions, based

on each instance running 30 times. This experiment aiming
is to minimize the vehicle traveled distance and the waiting
time of all customers. It can be clearly seen that the solu-
tions obtained by the FRHC are generally smaller than the
solutions obtained by RHC. This experiment has 5 different
values of FT and 10 instances. Compared with the solution
of RHC: there are 46 solutions (92%) with the F values less
than the RHC’s F values, and 4 solutions (8%) are flat; there
are 36 solutions (72%) with the L values less than the RHC’s
L values, and 4 solutions (8%) are flat; there are 46 solutions
(92%) with theWT values less than the RHC’sW values, and
4 solutions (8%) are flat; and there are 44 solutions (88%)
with the WN values less than the RHC’s WN values, and
6 solutions (12%) are flat.

In some case, the L values increase slightly, such as the
n45k7 instances in Table 2 and 3. This is a normal situa-
tion, because of the objective function F = L + α WT.
When the magnitude ofWT decreases is significantly greater
than the magnitude of L increase, the value of F is also
smaller.

The AVG data in Table 3 is the average of all instances.
In order to discuss which value is more reasonable from the
five values of FT = {29/30, 27/30, 25/30, 23/30, 21/30},
the AVG data fold-line graph is drawn, Figure 8. The abscissa
represents RHC, FT = 29/30, FT = 27/30, FT = 25/30,
FT = 23/30, FT = 21/30 from left to right. The solid line
represents F . The dotted line represents theWN.
From this fold-line graph, it can be seen that the lines show

a downward trend with the decrease of the FT value. It can
be seen from the line of F and WN that the lines decreases
with a certain slope (the slope is a number less 0), but the
slope of the fall at FT = 23/30 becomes larger; the line
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FIGURE 8. The AVG data’s F and WN fold-line graph.

of WT has the same situation at FT = 23/30. Therefore,
it is inferred that the FT = 23/30 of FRHC can get the best
effect.

From the data from Table 2 and Table 3, it can be seen
that all solutions obtained by the FRHC are better than the
solutions obtained by the RHC. Therefore, it can be said that
the model of the FRHC and membership function designed
in this experiment are effective. By comparing the results of
the values of the FT, it is determined that this FRHC model
has the best optimization effect when FT is 23/30. The FRHC
mentioned in the experiments below uses this parameter by
default.

2) FRHC ADVANTAGE ANALYSIS
The traditional RHC has too strict rules for setting the time
window. It only serves the customers in current time window.
The FRHC uses the membership function and the decision-
making threshold value to blur the time window. It can extract
some customers in other time windows, and join them in
the fuzzy time window for service. And it optimizes the
travel route compared to the RHC. Here are two simulation
scenarios to analyze the advantages of FRHC.

Scenario 1, the customers are concentrated in some time
windows. This has caused some customers can’t be serviced
quickly. But the vehicle still has service capability in other
time windows. The FRHC extract some customers in other
time windows and, join them in the fuzzy time window
for service. In this way, it can reduce the concentration of
customers and optimize the vehicle travel route, as shown
in Figure 9.

Scenario 2, the customers in the DVRP are randomly
appearing, so the locations of customers within a time win-
dow are random. One or two more faraway customers may
appear in each time window. If the vehicle serve those cus-
tomer in current time window, it will cause other customers
waiting. And these customers locations are close to the cus-
tomers’ area in the next time window. At the same time,
the next time window has one or two customers locations
are close to the customers’ area in the current time window.
If these two time windows can exchange these faraway cus-
tomers, it will reduce customers’ average waiting time and
vehicle’s travel distance.

FIGURE 9. The FRHC optimization effect example for scenario 1 graph.

FIGURE 10. The FRHC optimization routing example for scenario 1 graph.

C. COMPARISON ALGORITHM
The first come first served algorithm (FCFS) and the
nearest neighborhood search algorithm (NN) are also classic
algorithms for the DVRP besides GA. Here lists four
algorithm: the FCFS, the NN, the PT sorting method (FAST)
and the objective function nearest neighborhood
method (NNF).

FCFS, the first come first served algorithm. The customers
are sorted according to the order of the customers’ GTs from
small to large. The vehicle travels to the sorted customers in
turn. If the customer’s AT before the PT, the vehicles need to
wait, and the PT of customer is taken as the departure time of
the next customer. Otherwise, the AT of customer is taken as
the departure time of the next customer.

FAST, the PT sorting method. The customers are sorted
according to the order of the customers’ PTs from small to
large. The vehicle travels to the sorted customers in turn.
If the customer’s AT before the PT, the vehicles need to wait,
and the PT of customer is taken as the departure time of the
next customer. Otherwise, the AT of customer is taken as the
departure time of the next customer.

NN, the nearest neighborhood search algorithm. The start-
ing position of vehicle is the depot. The system calculates the
distances from all unserved customers to the current location,
and finds the nearest customer as the next customer. If the
customer’ AT before the PT, the vehicles need to wait, and
the PT of customer is taken as the departure time of the
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FIGURE 11. The FRHC optimization effect example for scenario 2 graph.

FIGURE 12. The FRHC optimization routing example for scenario 2 graph.

next customer. Otherwise, the AT of customer is taken as the
departure time of the next customer.

NNF, the objective function nearest neighborhood method.
The starting position of the vehicle is the depot. The system
calculates the objective function values from all unserved
customers to the current location, and finds the customer
whose objective function value is nearest as the next cus-
tomer. If the customer’ AT before the PT, the vehicles
need to wait, and the PT of customer is taken as the
departure time of the next customer. Otherwise, the AT
of customer is taken as the departure time of the next
customer.

D. EXPERIMENTAL RESULTS AND ANALYSIS
As the 3th solution method introduced in the Introduction,
the method is generally divided into two parts for solving the
DVRP. The first step is dividing the system time into some
time windows. The second step is optimizing the travel routes
for each time window by the algorithms, like the GA, the NN,
or the FCFS. The FRHC is a new strategy proposed for the
first step, and the FRHC-GA method is used to solve the
DVRP in this paper. In order to verify the performance of the
FRHC and the effectiveness of the FRHC-GA, several sets of
experiments are designed.

1) COMPARISON ANALYSIS OF THE FRHC AND THE RHC
In order to further verify the versatility and strategy
performance of the FRHC, the FRHC strategy is also

TABLE 4. The average values of the FRHC-GA and the RHC-GA.

TABLE 5. The results of the FRHC-FCFS and the RHC-FCFS.

combined with the FCFS, the FAST, the NN, and the NNF
algorithms to solve the DVRP. In addition, the RCH is also
combined with these algorithms. Comparing the results under
different strategies and algorithms, the objective function F ,
the travel distance L, the customers waiting time WT and
the number of waiting customers WN, the calculation time
(algorithm runtime) RT are counted.

As can be seen from Table 4-8, the FRHC greatly reduces
the number of waiting customers. From the AVG data of each
table, it can see that and the values of FRHC are smaller than
the values of RHC. At the same time, the calculation times of
the algorithm between FRHC and RHC are basically equal.
It can be seen that the FRHC is universal and its performance
is better than that of the RHC.

2) COMPARISON ANALYSIS OF THE FRHC-GA AND
OTHER ALGORITHMS
In this paper, the FRHC combined with the GA is proposed
to solve the DVRP. In order to further verify the effectiveness
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TABLE 6. The results of the FRHC-FAST and the RHC-FAST.

TABLE 7. The results of the FRHC-NN and the RHC-NN.

TABLE 8. The results of the FRHC-NNF and the RHC-NNF.

of this method, the experimental results of the other four
algorithms under the FRCH strategy are compared.

FIGURE 13. The F values radar graphs of various algorithms.

FIGURE 14. The WN values radar graphs of various algorithms.

TABLE 9. The average results from Table 4-8.

TheDVRP’s aiming in this paper is to minimize the vehicle
traveled distance and the waiting time of all customers, so the
objective function F = L + α WT.

From the Figure 13 and 14, it is shown that the FRHC-GA’s
F values and the FRHC-FAST’s F values are closed. But the
FRHC-GA’s WN values are smaller than the FRHC-FAST’s
WN values.

It can be seen from Table 9. The L values obtained
by the FRHC-NN method are the shortest, but WT values
are the longest, the WT values are about 7 times longer
than the FRHC-GA, and the WN values are bigger than the
FRHC-GA. The WT values obtained by the FRHC-FAST
method are the smallest, but the L, the F and the WN values
are bigger than FRHC-GA. The FRHC-GA is better than the
RHC-GA, FRHC-FCFS, FRHC-NNF and RHC-GA in every
points.

From Table 4-8, the RTs are less than 3s, and the different
are very small. The GA algorithm is a metaheuristic algo-
rithm. Compared with the other four algorithms, the GA will
spent more time, but can get more better solution. The calcu-
lation times will increases of all algorithms with the number
of customer, but the GA always can get the better solution
than others. To sum up all the above points, the FRHC-GA
method for the DVRP is rational.
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TABLE 10. The results of the n61k9 instance running 30 times under the
FRHC-GA method.

3) ANALYSIS OF THE FRHC-GA RESULT
In order to verify the convergence and validity of the
FRHC-GA. This section lists the results of the FRHC-GA for
the n61k9 instance, counts the number of best solutions, and
analyses the travel route of the best solutions.

Table 10 show the results of the n61k9 instance run-
ning 30 times under the FRHC-GA method. This table lists
first two vehicles’ travel routes. There are 7 best results
in 30 results. And the standard deviations are very small.
So the results of FRHC-GA method solving the DVRP are
convergent.

Table 11 lists the customer service information of the best
travel route in Table 9.

In Table 1, the PT value of the No.5 customer is 9, and
the PT value of the No.1 customer is 7. The distance between
the No.1 customer and the No.5 customer is too far. If the
No.5 customer is served after the No.7 customer, it will cause

TABLE 11. The best travel route information of the n61k9 instance.

the other customers to wait. Therefore, the No.5 customer
is deferred from service. The No.13 customer is in the 2th
time windows in the traditional RHC strategy, but in the
1th time windows in the FRHC. The No.13 customer is
near to the No.8 customer, so this customer is served after
No.8. Because of each vehicle can serve up to 8 customers,
the No.5 customer is placed in a second fuzzy time window
for processing.

The FRHC exchanges the No.5 customer and No.13
customer compared with the traditional RHC strategy.
This is the situation of the Scenario2 introduced in the
section III.A.3).

Combine all the above conclusions, this set of experi-
ments verifies the rationality of the FRHC strategy, and the
effectiveness of the FRHC-GA method in solving DVRP.

E. HYPOTHESEIS TESTING
According to the experimental results, the significance level
of 5% Nemenyi test is used to compare the FT values,
the FRHC and other algorithms. If the average position
between two algorithm in all data set is less than or equal to
the critical difference, we believe that there is no significant
difference between the two algorithms. Otherwise there is
significant existed.

For the average accuracy evaluation indexes, as shown
in Figure 15-22: the CD values of different FT values are less
than the values of RHC, and the values of FT = 21/30 and
FT = 23/30 are closed to. It verifies the FRHC strategy is
better than RHC.
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FIGURE 15. The F average result data’s CD graph.

FIGURE 16. The L average result data’s CD graph.

FIGURE 17. The WT average result data’s CD graph.

FIGURE 18. The WN average result data’s CD graph.

FIGURE 19. The F minimum result data’s CD graph.

FIGURE 20. The L minimum result data’s CD graph.

FIGURE 21. The WT minimum result data’s CD graph.

From Figure 22-24, by comparing the CD values between
the different algorithms, the FRHC-GA is the smallest. So the
FRHC-GA method for the DVRP provided in this paper is
effective.

FIGURE 22. The WN minimum result data’s CD graph.

FIGURE 23. The algorithms average results’ CD graph.

FIGURE 24. The algorithm minimum results’ CD graph.

V. CONCLUSION
The RHC is an important strategy of solving the DVRP.
The traditional RHC only considers the objects in the current
time window, and can’t make overall plan according to the
situation of the objects near the window. This paper proposed
a FRHC strategy to optimize this question. By combining
RHC and membership function theory, the time windows of
the RHC is blurred. The decision-making threshold value
helps to redefine the fuzzy time windows. The membership
function of the FRHC is defined in this paoper. This strategy
increases communication between adjacent time windows.
The advantage and the effective of the FRHC are verified
by comparing with the RHC. The proposed method for
solving the DVRP, the FRHC combined with the GA, can
reduce the travel distance, the customers waiting time and
the number of waiting customer compared with FRHC-NN,
FRHC-FCFS. . .. The FRHC-GA method is also reasonable
and effective.
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