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ABSTRACT A novel clustering algorithm by fast search and find of density peaks (DP) was proposed
in Science, 2014. It has attracted much attention from researchers. It can easily select clusters centers with
decision graph. However, it cannot be used to cluster manifold data sets as the existing distance measurement
is not suitable to evaluate the dissimilarity between objects on manifold structure. Some researchers use
graph-based distance to measure the dissimilarity between objects on manifold clusters, but computing
the graph-based distance on the original data set is time consuming. An improved density peaks clustering
algorithm based on shared-neighbors between local cores, SLORE-DP, is proposed in this paper. First, it finds
local cores to represent the data set and redefines the graph-based distance between local cores with shared-
neighbors-based distance. Then natural neighbor-based density and the new defined graph-based distance
are used to construct decision graph on local cores and DP algorithm is employed to cluster local cores.
Finally, the remaining points are assigned to the same cluster as their local cores belong to. Since we use the
new defined graph-based distance to estimate the dissimilarity between local cores, SLORE-DP can be used
to cluster manifold data sets and at the same time it only calculates the shortest path between local cores,
which greatly reduces the running time of the algorithm. We do experiments on several synthetic data sets
containing manifold clusters and several real data sets from UCI. The results show that SLORE-DP is more

effective and efficient than other algorithms when clustering manifold data sets.

INDEX TERMS Shared-neighbors, local cores, density peaks, clustering.

I. INTRODUCTION

As an unsupervised learning, clustering is an important
method for data analysis. It has been widely used in the field
of pattern recognition, image processing, and information
retrieval. Itis designed to divide objects into multiple clusters,
so that similar objects are in the same cluster while different
objects are in different clusters.

Many clustering algorithms have been proposed over the
past few decades. According to different strategies, these
algorithms can be roughly grouped into partitioning methods,
density-based methods, hierarchical methods, model-based
methods and grid-based methods. Among them, partitioning,
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density-based and hierarchical algorithms, due to their simple
principle, are the most popular.

K-means [1] and K-medoids [2] are typical partition-
ing algorithms. However, their performance depends on the
selection of initial cluster centers. To avoid selecting clus-
ter centers, AP algorithm [3] treats all objects as potential
centers. K-AP [4] is an improved AP algorithm. It uses the
immediate result of K clusters by introducing a constraint in
the process of message passing. However, since each point is
always allocated to the nearest center, these algorithms cannot
discover arbitrary-shaped clusters.

DBSCAN [5] is a typical density-based clustering algo-
rithm. It defines clusters as dense regions separated by
sparse regions. Dcore [6] is a hybrid decentralized approach
which is based on finding density cores instead of centroids.
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Its main idea is to find objects with higher density than their
surroundings and these loosely connected objects compose
density cores that roughly retains the shapes of clusters.
RECOME [7] employs relative k-nearest neighbor kernel
density (RNKD) to cluster. RNKD is used to determin core
objects. non-core objects are partitioned into atom clusters
by successively following higher density neighbor relations
toward core objects. Core objects and their corresponding
atom clusters are then merged through «-reachable paths on
k-nearest neighbor graph. DBSCAN, Dcore and RECOME
can discover arbitrary-shaped clusters, but they have to set
parameters without prior knowledge.

In 2014, Rodriguez and Laio reported a clustering algo-
rithm by fast search and find of density peaks (DP for short)
[10] in Science, which is based on the assumption that cluster
centers tend to have a higher density than their neighbors and
a relatively large distance from points with higher densities.
It is able to quickly and effectively identify cluster centers by
projecting the original data set into decision graph. However,
there are some disadvantages in DP algorithm. First, it has
to set cutoff distance to calculate densities of each point.
Second, the decision graph based on Euclidean distance
cannot properly reflect the relationship between objects on
manifold. Third, there is a Domino Effect with the assign-
ment strategy for the remaining points, because once one
point is wrongly assigned, there will be more points assigned
incorrectly, which makes it unable to discover clusters with
complex structures. SNN-DPC [11] is proposed to solve these
problems, but it has to take a lot of time to obtain the shared-
neighbors of all data pairs.

In [8], the authors present a novel hybrid hierarchical clus-
tering based on local cores, HCLORE. In the partition step,
it divides the data set into several clusters by finding local
cores. After that, it temporarily removes points with lower
local density, so that the boundary between clusters becomes
clearer. In the merging process, a newly defined similarities
between clusters ensures the most similar clusters are merged.
In [9], a novel minimum spanning tree clustering algorithm
with local density peaks (LDP-MST) is proposed. HCLORE
and LDP-MST both do well in discovering clusters with
complex structures, but they have to predefine the number of
clusters.

To solve the above problems, a shared-neighbor of
local cores-based clustering algorithm is proposed, called
SLORE-DP. The main innovations of this method include:
(1) it redefines the graph-based distance between local cores
with their shared-neighbors, which greatly reduces the run-
ning time compared with calculating the distance between
all objects in a data set; (2) it constructs decision graph only
on local cores according to the new distance, and uses DP
algorithm to cluster local cores instead of the whole data
set, which enables the proposed method to identify manifold
clusters. The main steps of SLORE-DP is: first, we introduce
natural neighbor to calculate the density of each object and
obtain local cores with local maximum density than their
neighbors, which does not need to set parameters; after that,

151340

we exploit the shared-neighbors of local cores to redefine the
graph-based distance between local cores; then, we use the
new density and the redefined distance to construct decision
graph on local cores and cluster local cores by employing
DP algorithm; finally, the non-local cores are assigned to
the clusters their local cores belong to. The experiments by
comparing our method with DP and SNN-DPC algorithms on
synthetic data sets and real data sets show that our algorithm
can discover manifold clusters faster, better and without any
parameters.

The remaining content is organized as follows. Section II
reviews the related works about DP algorithm and improved
DP algorithms. Section III introduces natural neighbor and
natural neighbor-based local density. Section IV presents the
proposed clustering algorithm SLORE-DP and Section V
shows the experimental results and analysis. Finally, we make
a conclusion in Section VI.

Il. RELATED WORKS

A. DP ALGORITHM

DP algorithm [10] assumes that cluster centers are charac-
terized by a local maximum density and a relatively large
distance from any points with a higher density. For each point
i, the authors define its local density p(i) and distance 6(i)
from points of higher density. For each point i, the local
density is computed with cutoff distance method shown in
Eq. 1 or kernel distance method shown in Eq. 2:

p() =Y x(d(.j) — dc) (1
J

LN 2
p(i) = Zexp(—(d(;”)) ) 5
i ¢

where x(x) = 1if x < 0 and x(x) = O otherwise, d(i, j)
is the Euclidean distance between points i and j and d, is a
cutoff distance. Eq. 1 means that the local density of point i
equals to the number of points whose distances to i are closer

than d... The § distance is defined as follows:
3() = min (d(,))) 3)
J:pi>pi

For the point i with the maximum density, its §(i) is defined
as follows:

8(i) = max(8() )
i#]

According to the definition of § distance, only points with
local or global maximum density have much larger §(7).

DP algorithm computes the the local density p and §
distance for each point and constructs the decision graph to
map the data set into a two-dimensional graph w. 1. t. the local
density p and & distance. In decision graph, cluster centers
stand out with anomalously large value of p and §.

After finding cluster centers, we assign each remaining
point to the same cluster which its nearest neighbor of
higher density belong to. We do not consider finding noise
points here. The DP algorithm is described in Algorithm 1.
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When giving the density of each point and the distance
matrix, the time complexity of DP is O(V), where N is the
number of points in a data set.

Algorithm 1 DP

Input: p: the density, d: the distance matrix
Output: CL: the cluster label of each point
N =size(p);
(sorted p, Index p) = sort(p, descend’);
fori=2:Ndo
x = Indexp(i);
p= argmin
o€lndexp(l:i—1)
3(x) =d(x, p);
NNeighbor(x) = p;
end
8(Indexp(1)) = max(d);
Construct decision graph;
Determine py,;; and §,,i, according to the decision graph
by manually selection;
Ncluster = 1;
for each point p do
if p(p) > pmin and §(p) > Sin then
CL(p) = Ncluster;
Ncluster = Ncluster + 1;
end
end
for each point p do
| CL(p) = CL(NNeighbor (p));
end
Return CL;

(d(x,0));

B. IMPROVED DP ALGORITHMS

Decision graph gives us a better chance to understand the
data, so that DP algorithm can choose the preferred clustering
result quickly. However, it has to set cutoff distance to com-
pute the density and the assignment strategy cannot process
clusters with complex manifold structures.

In order to improve the density measure, some improved
DP algorithms employ k-nearest neighbors to solve the prob-
lem. FKNN-DPC [12] is a robust clustering method by find-
ing density peaks. It computes the local density according to
k-nearest neighbors and the rest of the points are assigned
to the most probable clusters in two steps. In the first step,
it starts from cluster centers and breadth-first searches the
k-nearest neighbors of a point to assign the non-outliers.
In the second step, outliers and the points unassigned by
the technique of fuzzy weighted k-nearest neighbors are
clustered according to the result of the first step. In [13],
the authors propose a clustering algorithm based on k-nearest
neighbors and principal component analysis (PCA), named
DPC-KNN-PCA, in which, k-nearest neighbors is introduced
to compute the local density of each point and PCA is used
to process high-dimensional data sets. In [14], two improved
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algorithms are presented, which adopt different ways to uti-
lize the dissimilarity based on Transitive closure and Shared
Nearest Neighbors.

Some algorithms are proposed to optimize the choice of
cluster centers and automatically determine the number of
clusters. STclu [15] defines k-density to measure the local
density of points and detects cluster centers automatically via
outward statistical testing. DenPEHC [16] is a hierarchical
clustering algorithm based on DP algorithm. It uses deci-
sion graph to generate clustering layers and obtains clusters
on each possible clustering layer. It also introduces a grid
granulation framework to enable DenPEHC to process large-
scale and high-dimensional data sets. 3DC algorithm [17]
automatically detects the number of clusters by employing
a divide-and-conquer strategy and the definition of density-
reachable in the DBSCAN framework. A novel method to fast
determine cluster centers is proposed in [18], which proves
that the singular points outside the confidence interval by
setting the confidence interval are cluster centers through
theory analysis and simulations. QCC [19] is also a hier-
archical clustering algorithm. It first finds the quasi-cluster
centers which correspond to initial clusters and the density
of a quasi-cluster center is the highest among its k-nearest
neighbors or reverse nearest neighbors. Then, it defines a new
metric to evaluate the similarity between initial clusters and
obtains the clustering results by continually merging the most
similar initial clusters.

Some improved DP algorithms are proposed to process
data sets containing complex structured clusters. SNN-DPC
[11] defines SNN similarity. When computing the local den-
sity and § distance, it considers the information of the nearest
neighbor and the shared neighbor between different points.
Then it introduces a two-step assignation way: inevitable
subordinate and possible subordinate. Inevitable subordinate
accurately and quickly identifies and allocates points cer-
tainly belong to a cluster through counting the number of
shared neighbors between two points. Possible subordinate
allocates the remaining points through finding the clusters to
which more neighbors belong. NaNLORE [20] improves DP
algorithm by introducing the definitions of local represen-
tatives and density-adaptive distance. Local representatives
are used to represent the whole data set and the density-
adaptive distance helps to measure the dissimilarity between
local representatives. It constructs decision graph on local
representatives according to the density-adaptive distance,
which makes it applicable to cluster data sets with complex
structures.

There are also some researchers apply DP algorithm
to image processing [21], community detection [22]-[25],
extracting multi-document abstracts [26] and noise
removal [27].

IIl. PRELIMINARIES
A. NATURAL NEIGHBOR

Many algorithms employ k-nearest neighbors to evaluate the
local density of points, but they have to set k value. Natural
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neighbor [28] can adapt to the distribution of data sets and
obtain the k value automatically. The performance in [20],
[28]-[30] demonstrates its effectiveness. It is inspired by the
reality that the friendship between two objects should be
mutual. If everyone has at least one friend or the number
of persons who take him or her as friends does not change,
we call it reaches natural stable state.

For a data set D, the Euclidean distance between point p
and g is denoted as d(p, g). We assume that o is the k-th near-
est neighbor of point p. Then, k-nearest neighbors and reverse
k-nearest neighbors are defined as shown in Definition 1 and
2, respectively.

Definition 1: (k-nearest neighbors) The k-nearest neigh-
bors of point p are a set of points whose distance to p are less
than or equal to d(p, 0), that is, NNx(p) = {x € D|d(p,x) <
d(p,0)}

Definition 2: (Reverse k-nearest neighbors) The reverse
k-nearest neighbors of point p are a set of points who consider
p as one of its k-nearest neighbors, that is, RNNy(p) = {x €
Dip € NNy (x)}.

Natural neighbor information is obtained by the follow-
ing steps: we initialize r with 1 and add one every time;
we search r-th-nearest neighbor and count the number of
reverse neighbors nb(p) for each point p in each iteration;
when the number of points who do not have reverse neigh-
bors is constant, it terminates and r at this moment is
called natural characteristic value A; finally, it returns A and
nb-nearest neighbors of points. The detailed process is shown
in Algorithm 2.

Algorithm 2 NaN-Searching

Input: D: the data set
Output: A, NN,
Initializing: r = 1, nb(i) = 0, NNo(i) = ¢, RNNo(i) = ¢,
Numb(0) = N,
while true do
for each data point p € D do
Use kdtree to find the r-th neighbor g of p;
nb(g) = nb(q) + 1;
NN:(p) = NNr—1(p) U {q};
RNN;(q) = RNN,-1(¢) U {p};
end
Compute the number of points which do not have
reverse neighbors (i.e., nb(p) = 0) Numb(r);
if Numb(r) == Numb(r — 1) then
‘ Break;
end
r=r+1;

end
A=r;
Output the A, NN;

In Algorithm 2, KD-tree is introduced to search r-nearest
neighbors, which will reduce the time complexity of Algo-
rithm 2 to O(NlogN), otherwise, its time complexity is
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ON 2logN ). (N is the number of objects in a data set). Intu-
itively, points in dense regions have more neighbors than that
in sparse regions. nb(x) is greater for points in dense regions
than that in sparse regions according to Algorithm 2. It well
reflects the local characteristic of points. It is reasonable
to use nb(x) to define the local neighbor of point x. Thus,
we give the definition of local neighbor as follows.
Definition 3: (Local neighbor) Local neighbor of p is the
nb(p)-nearest neighbors, that is, LN (p) = N Nppp) ().

B. NATURAL NEIGHBOR-BASED LOCAL DENSITY

The density of points is used to measure the intensity and
sparsity of the space in which it is located. Points in dense
regions obviously have larger density than that in sparse
regions. The key is to quantify the density. We find that the
sum of the distances between a point and its k nearest neigh-
bors is smaller in a dense region than that in a sparse region.
STclu [15] defines k-density as the ratio of k and the sum
of distances with its k-nearest neighbors. The authors have
proven that k-density performs better in discovering cluster
centers than that in [10]. Similar to k-density, we define
natural neighbor-based local density as shown in Eq. 5:

A
D = 5
np) erNNA(p) d(p, x) ©

where A is natural characteristic value. Different from the
definition in [15], the new defined local density does not
need to set parameter k by manually, instead, we use natural
characteristic value X to set parameter k.

IV. THE PROPOSED ALGORITHM

A. LOCAL CORES

In [20], local representatives are used to represent the whole
data set. However, when searching local representatives,
the authors take XA nearest neighbors of each point into
account. The same number of neighbors for each point makes
the method ignore small clusters, so that the local feature of
the data set is not well reflected. Local cores in [8], [30] are
proposed to solve the existing problem in local representa-
tives. The detailed definitions are as follows.

Definition 4: (Representative) Among point p and its the
local neighbors, g’s local density is the largest, then we
say that g is the representative of p and its local neighbors.
We denote it as Rep(p) = q.

Since we search the local neighbors for each point, there
will be a situation that a point is in the local neighbors of
two different representatives at the same time. Which repre-
sentatives should be chosen to be the final representative of
the point is what the representative competition rule to do.
Additionally, there will also be a situation that if point p’s
representative is ¢ and ¢’s is r, then how to determine the final
representative of p is what the representative transfer rule to
do. They are formally defined as follows.

Representative competition rule (RCR) For point p,
if Rep(p) = R1 and Rep(p) = R2 at the same time, then
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Rep(p) = argmin {d(p, x)}, that is, the representative closer
x€{R1,R2}
to point p will be the selected to be the final representative

of p.

Algorithm 3 LORE-Searching

Input: LN: the local neighbors, Den: the local density
computed with Eq. 5
Output: LORE: the local cores, MLORE': the members
of local cores, Rep: the representative
Initializing: Rep = ¢, LORE = ¢;
for each point i in the data set do
y = arg max(Den(x));
X€LN(i)
for each point x in LN (i) do
if Rep(x) == ¢ then
| Rep(x) =y;
end
if Rep(x) == z and z # y then
//Determine Rep(x) according to RCR;
if d(x,y) < d(x, z) then
| Rep(x) =y;
end

end

for each point p in the data set do

if Rep(p) == x then
Rep(p) = Rep(x);//Determine Rep(z)
according to RTR;

end

end
end

end
K=1;
for each point x in the data set do
if Rep(x) == x then
LORE(K) = x;
K=K+1;
end
end
for i=1:K do
| MLORE(i) = find (Rep = LORE(i));
end

Representative transfer rule (RTR) If Rep(p) = ¢, and
Rep(q) = r, then Rep(p) =r.

Definition 5: (Local Core) After changing the represen-
tative of each point according to RCR and RTR, a point p
is a local core if Rep(p) = p. We denote it as LORE =
{pIRep(p) = p}.

RCR ensures that each object finds a more reasonable
representative. RTR ensures that each representative can rep-
resent as large neighborhood as possible, which reduces the
number of local cores. local cores are obtained by LORE-
Searching algorithm which is described in Algorithm 3. The
definition of members of a local core is as follows.

VOLUME 7, 2019

Definition 6: (Members of local core) For a local core p,
the point is one of the members of p if its final representative
is p. We denote it as MLORE (p) = {x|Rep(x) = p}.

B. GRAPH-BASED DISTANCE WITH SHARED-NEIGHBORS
OF LOCAL CORES
Euclidean distance cannot well represent the relationship
between objects on manifold clusters. Some researchers [31]
suggest employing the geodesic distance. However, the exact
geodesic distance is difficult to get, because we do not know
the prior information about the underlying manifolds. Nev-
ertheless, the authors in [32] have pointed out that if there
are sufficient samples from the manifold, then we can use
the graph-based distance to approximate the geodesic dis-
tance. The graph-based distance can be calculated with the
shortest path. The algorithms in [20], [31], [33] mainly use
k-nearest neighbor graph to compute the graph-based dis-
tance. They construct k-nearest neighbor graph on the whole
data set and employ Euclidean distance, density sensitive
distance or Gaussian kernel function to weight the edges.
However, calculating the shortest path on the whole data set
is time consuming. In order to overcome this shortcoming,
we define shared-neighbors distance between local cores and
only compute the shortest path between local cores on the
basis of the new defined distance.

Definition 7: (Neighbors of local cores) The neighbors
of a local core p are the union of its members(including
itself)’s A nearest neighbors. We denote it as NL(p) =

U NN (g).
geMLORE(p)

Definition 8: (Shared-neighbors between local cores) For
two different local cores p and ¢, the shared-neighbors
between them are the intersection of their neighbors.
We denote it as SL(p, g) = NL(p) N NL(g).

Definition 9: (Shared-neighbors-based distance) Fore local
cores p and g, their shared-neighbors-based distance is com-
puted as Eq. 6.

SD(p, q)
d(p,
0.9 . ifISL(p. @) #0
ISL(p. @)l x > Den(o) ©
0eSL(p,q)
maxd, ifISL(p,q)| =0

In Eq. 6, d(p, q) represents the Euclidean distance between
the local cores p and g, Den(o) represents the natural
neighbor-based local density of the point o and maxd rep-
resents the maximum value of Euclidean distance among all
pairs of local cores.

Because of the variation of distribution of the data set,
the local cores are unevenly dispersed in the data set.
Therefore, it is not suitable for using Euclidean distance
to measure the dissimilarity between local cores. Since the
shared-neighbors-based distance utilizes the neighbor infor-
mation between local cores, it shortens the distance between
local cores that are closely connected by dense regions and

151343



IEEE Access

D. Cheng et al.: Improved DP Clustering Based on Shared-Neighbors of Local Cores for Manifold Data Sets

amplifies the distance between local cores that are separated
by sparse regions.

In order to obtain the intrinsic geometric features of
manifold data sets, the graph-based distance computed
with shared-neighbors-based distance between local cores is
defined as follows.

Given the shared-neighbors-based distance between local
cores, let P = {p1,pa, ..., pm} represent the shortest path
from py(i.e., p) to py(i.e., q). Then, the graph-based distance
between local cores p and ¢ is computed as Eq 7.

m—1
GD(p, q) = ) SD(p. pi+1) (7)
k=1
where py and pix11, | < k < m are the local cores along the
shortest path P.

C. CLUSTERING LOCAL CORES WITH DP

First, we construct decision graph on local cores. For a local
core p, we redefine its density p(p) and §(p) distance. Its
density p(p) is its natural neighbor-based local density, which
is computed as

p(p) = Den(p) ®)

Its §(p) distance is computed as shown in Eq. 9
S(p) = min GD(p, 9
®) qeLORE, p(q)> p(p) »- ) ©)

For the local cores p with the highest density, its § distance is
computed as :
8(p)= max (8(0)) (10)
0€LORE ,0#p

We construct decision graph on local cores according to
p(p) and §(p) for each local core p. Since the decision graph
gives us a chance to better access to the information contained
in the data set and select the preferred clustering result, it is
better to keep this kind of user-algorithm interaction.

According to the new decision graph, local cores with rel-
atively large density p and § distance are selected as the final
cluster centers. After the cluster centers have been found,
we assign each remaining local core to the same cluster that
the local core with higher density and the minimum graph-
based distance belongs to.

D. SHARED-NEIGHBORS OF LOCAL CORES-BASED DP
ALGORITHM (SLORE-DP)

On the basis of the above definitions, we propose a novel
shared-neighbor of local cores-based DP algorithm (SLORE-
DP). The basic idea of SLORE-DP is: first, we find local
cores, define the distance between local cores on the basis
of shared-neighbor of local cores and calculate the graph-
based distance between local cores based on the new defined
distance; then, we use the redefined density and § distance
to construct decision graph and exploit DP to cluster local
cores; finally, the remaining points are assigned to the clus-
ter their corresponding local cores belong to. The proposed

151344

algorithm SLORE-DP is detailed in Algorithm 4, in which
NaN-Searching() is the natural neighbor searching algorithm
described in Algorithm 2, LORE-Searching() is to search the
local cores and it is described in Algorithm 3 and DP() is the
DP algorithm detailed in Algorithm 1.

The steps of the proposed algorithm SLORE-DP includes:
(1) find local cores according to the result of NaN-Seaching
algorithm, (2) compute the shared-neighbors-based graph-
based distance between local cores and (3) employ DP algo-
rithm to cluster local cores. The time complexity of searching
natural neighbor information is O(NlogN) when introduc-
ing KD-tree and searching local cores is O(N). Therefore,
the first step’s time complexity is O(NlogN). Assuming the
number of local cores is N; (N; < N), then, the time com-
plexity of computing the new graph-based distance between
local cores is 0((N1)2). Since we only cluster local cores with
DP algorithm, its time complexity is O(N;). The overall time
complexity of SLORE-DP algorithm is O(NlogN).

Algorithm 4 SLORE-DP

Input: D: the data set

Output: CL: the cluster label

(A, LN) = NaN-Searching(D);

for each point p in the data set D do
Compute the density Den(p) for each point p
according to Eq. 5;

end

(LORE, MLORE, Rep) = LORE-Searching(LN, Den);

Compute the shared-neighbors-based distance matrix SD

according to Eq. 6;

Compute the graph-based distance matrix GD between

local cores according to Eq. 7;

LORE_CL = DP(Den(LORE), GD);

for each non-local core x in D do

‘ CL(x) = LORE_CL(Rep(x));
end

V. EXPERIMENTAL ANALYSIS

We evaluate the performance of the proposed algorithm
SLORE-DP by comparing it with DP and SNN-DPC algo-
rithms. For DP algorithm, to ensure average number of neigh-
bors is around 1% to 2% of the total number of points in
the data set, the the authors in [10] suggest setting the cutoff
distance as the 2%-th shortest distance and computing the
local density with the kernel distance method. For SNN-DPC,
k is set as 9, which is also suggested by the authors.

A. THE COMPARISON OF DECISION GRAPHS ON
MANIFOLD DATA SETS

We first compare the decision graphs of DP, SNN-DPC with
that of SLORE-DP on two synthetic data sets (Jain and Db2).
Jain is from [34], including two moon shaped-clusters with
large variation in density, a total of 373 points and Db2 is from
[5], consists of four manifold clusters, a total of 315 points.
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FIGURE 1. The comparison of decision graphs on jain.

The decision graphs are shown in Fig. 1 and Fig. 2, where the
red points are selected cluster centers.

As for Jain, DP selects two centers in the dense cluster
and no center in the sparse cluster, thus it does not obtain
the desired clustering result; SNN-DPC and SLORE-DP cor-
rectly find two centers and get the right clustering results.
As for Db2, DP and SNN-DPC both choose three centers
in the longest cluster and the longest cluster is divided into
three clusters; SLORE-DP correctly identifies four centers
in the four clusters and obtains the correct clustering result.
The results show that DP cannot apply to manifold data sets;
SNN-DPC redefines local density and § distance using
shared-neighbors, which helps it apply to manifold data sets
with simple structures, but it still cannot be used to pro-
cess data sets with complex structures; SLORE-DP uses the
shared-neighbors-based distance to calculate the graph-based
distance, which preserves the dissimilarity between points on
manifold clusters and helps it apply to complex manifold data
sets.

B. PERFORMANCE ON SYNTHETIC DATA SETS AND REAL
DATA SETS

To prove the effectiveness of SLORE-DP, we also compare
the performance of the proposed method SLORE-DP, DP and
SNN-DP algorithms on more synthetic data sets and real data
sets. In this section, the accuracy (ACC) and the normalized
mutual information (NMI) [35] are employed to evaluate the
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FIGURE 2. The comparison of decision graphs on Db2.

clustering performance. They both range from O to 1, and the
larger the value is, the better the clustering result means. The
value of 0 means that the clustering result is useless and the
value of 1 tells that the clustering result perfectly matches the
class label vector. The configuration of the computer used
in our experiment is as follows: processor is Intel Core i7
3.6GHz; memory size is 16GB; programming environment
is MATLAB R2013a.

TABLE 1. The synthetic data sets.

Dataset Instances  Attributes  Clusters  Source
Dataset 1 788 2 7 [36]
Dataset 2 1873 2 3 [30]
Dataset 3 1156 2 4 [30]
Dataset 4 1368 2 4 [37]
Dataset 5 1741 2 6 [30]
Dataset 6 8000 2 6 [38]

Table 1 has listed the detailed information of synthetic data
sets. The clustering results of DP, SNN-DPC and SLORE-DP
are shown in Fig. 3-5 and the comparison of ACC, NMI and
Time is presented in Table 2.

Seen from the results, DP, SNN-DPC and SLORE-DP are
all effective to detect spherical clusters, thus ACC and NMI
scores of the three algorithms for the first two data sets are
equal or close to 1. However, DP cannot process data sets
with manifold structures, like Dataset 3-6, because it cannot
choose the correct cluster centers according to the decision
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FIGURE 3. The clustering results of DP.
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FIGURE 4. The clustering results of SNN-DPC.

graph. SNN-DPC can be used to cluster manifold data sets, is far less than that of SNN-DP. In terms of the performance

like Dataset 4, but when clustering data sets with long con- on complex manifold clusters and running time, SLORE-DP
cave clusters or other complex structures, it makes mistakes. outperforms DP and SNN-DP algorithms.

The clustering results of ACC and NMI scores show that We also do experiments on several benchmarking real
SLORE-DP performs well when discovering clusters with data sets from UCI, which include Iris, Wine, Seed, Iono-
complex structures. Besides, the running time of SLORE-DP sphere, Cancer and Control. Table 3 has shown the detailed
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TABLE 2. The comparison of ACC, NMI and time on synthetic data sets.

Dataset 1 ~ Dataset2  Dataset3  Dataset4  Dataset5  Dataset 6
ACC 1.00 1.00 0.72 0.39 0.65 0.84
DP NMI 1.00 1.00 0.68 0.28 0.68 0.78
Time(s) 0.16 0.69 0.26 0.38 0.59 13.81
ACC 0.97 1.00 1.00 0.37 0.67 0.64
SNN-DPC NMI 0.95 0.99 1.00 0.21 0.72 0.73
Time(s) 32.57 183.37 69.09 99.56 158.83 3361.15
ACC 0.99 1.00 1.00 1.00 1.00 0.99
SLORE-DP NMI 0.99 0.98 1.00 1.00 1.00 0.97
Time(s) 1.57 3.46 1.37 1.83 2.67 40.05
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FIGURE 5. The clustering results of SLORE-DP.

TABLE 3. The real data sets from UCI.
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TABLE 4. The comparison of ACC, NMI and time on real data sets.

Datasets Instances  Attributes  Clusters Iris  Wine Seed Ionosphere  Cancer  Control
Tris 150 7 3 ACC 001 098 0.89 0.68 0.80 0.56
. DP NMI 0.81 0.91 0.70 0.09 0.35 0.75
\SNel:g ;Z(S) 173 g Time(s)  0.04 0.04 0.04 0.05 0.12 0.18
ACC 0.95 0.71 0.78 0.56 0.94 0.44
Ionosphere 351 34 2 SNN-DPC ~ NMI  0.84 063 063 0.07 0.68 0.67
Cancer 569 30 2 Time(s) 1.21 1.71 2.36 6.54 17.20 19.18
Control 600 60 6 ACC 001 098 0.89 0.70 0.86 0.60
SLORE-DP NMI 0.81 0.91 0.71 0.12 0.49 0.82
Time(s)  0.17 0.18 0.21 0.34 0.57 0.67

information of these real data sets. The comparison of ACC,
NMI and Time is shown in Table 4. The best results are
shown in bold. From the results, we can learn that the ACC
and NMI scores of SLORE-DP are the highest for Wine,
Seed, Ionosphere and control. For Iris and Cancer, SLORE-
DP gets the second best results. Both DP and SNN-DPC
achieve the best results on only two data sets. The running
time of SLORE-DP is much less than that of SNN-DPC.
Therefore, in terms of the performance and running time,
SLORE-DP is more effective and efficient than other
algorithms.

VOLUME 7, 2019

VI. CONCLUSION

In this work, an improved density peaks clustering algorithm
SLORE-DP is proposed, which is based on shared-neighbors
of local cores. Its main idea is that it employs natural
neighbor-based local density and shared-neighbors-based
graph distance between local cores to construct the decision
graph in the DP framework to make it applicable to cluster
manifold data sets. First, we get local cores and compute
the shared-neighbors-based graph distance between local
cores. Then, we employ DP algorithm to cluster local cores.
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Finally, the non-local cores are assigned to the clusters their
local cores belong to. Since we utilize the graph distance with
the shared-neighbors-based distance to assess the dissimilar-
ity between local cores, SLORE-DP is effective for clustering
manifold data sets and at the same time it avoids calculating
the shortest path on the whole data set, reducing the running
time. The experimental results on both synthetic and real data
sets demonstrate that SLORE-DP is significantly more effec-
tive and efficient than DP and SNN-DPC when clustering
manifold data sets.
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