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ABSTRACT In this paper we present theGroup Seat ReservationKnapsack Problemwith Profit on Seat. This
is an extension of the the Offline Group Seat Reservation Knapsack Problem. In this extension we introduce
a profit evaluation dependant on not only the space occupied, but also on the individual profit brought by
each reserved seat. An application of the new features introduced in the proposed extension is to influence
the distribution of passengers, such as assigning seats near the carriage centre for long journeys, and close
to the door for short journeys. Such distribution helps to reduce the excess of dwelling time on platform.
We introduce a new GRASP based algorithm that solves the original problem and the newly proposed one.
In the experimental sectionwe show that such algorithm can be useful to provide a good feasible solution very
rapidly, a desirable condition in many real world systems. Another application could be to use the algorithm
solution as a startup for a successive branch and bound procedure when optimality is desired. We also add a
new class of problem with five test instances that represent some challenging real-world scenarios that have
not been considered before. Finally, we evaluate both the existing model, the newly proposed model, and
analyse the pros and cons of the proposed algorithm.

INDEX TERMS Heuristic, GRASP, knapsack 2D, two-dimensional packing problem, seat reservation.

I. INTRODUCTION
In this paper we extend the Offline Group Seat Reservation
Knapsack Problem (GSR-KP) presented in [6]. In the orig-
inal formulation, a train with W seats stops in H stations.
It is required to allocate n reservations. Each reservation i
occupy a set of contiguous seats for wi people from one
initial station yi to a final one hi. The profit is identified as
to maximise the space occupied during the journey. In our
extension the value of the profit of the reservation is depen-
dent also on the profits assigned to seats in which the reser-
vation is eventually allocated. Our extension makes the prob-
lem more realistic, allowing the modelling of scenarios that
were not possible to model with the original formulation.
The new scenarios cover the cases where the ideal position
of an item is affected by how long the item must be kept
in its position. We exploit the original naming style and
call the new extension Group Seat Reservation Knapsack
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Problem with Profit on Seat (GSR-KPPS). Moreover, solv-
ing realistically sized instances is challenging for a general
solver and often having a good solution rapidly may be
better than having an optimal solution later, e.g. when there
are fixed time constraints. Thus, we suggest a new GRASP
procedure that solves GSR-KP and GSR-KPPS. Eventually,
we adapt and improve the original instances considered in [6]
adding a random profit on seats and proposing five new
problems.

The GSR-KP is the problem of maximising the use of
seats in a train during its journey. In the offline version,
the passengers reserve a seat from a departing station until
their arrival station. Each reservation is known in advance
and before the train departs. A reservation can occupy on
one or more than one seats. Groups of people are considered
to be willing to sit on close seats, this is true especially
for long journey, e.g. business trips or family trips with
children. For example, according to a survey by Transport
Focus [29] in a typical busy UK station that is used for both
long and short/commuting journeys, 29% of passengers were
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travelling in groups, and 7% of passengers were travelling
with children.

GSR-KP belongs to the family of the packing problems in
two dimensions. In the packing terminology, the reservations
are the items, and the train is the bin. The bin and items are
rectangles. Packing rectangles into a rectangle is a strongly
NP-Complete class of problems [22]. Regarding the bin,
the dimension of the side parallel to the horizontal axis repre-
sents the number of seats, while the dimension of the vertical
side represents the journey length of the train. For each item,
the dimension of the horizontal side represents the number of
people in the reservation, while the dimension of the vertical
side represents the journey length of the reservation. The
dynamic of a reservation consists of reserving a seat, or a
group of seats, from a departing station to an arrival station.
This special behaviour is modelled by a special constraint
which forces the vertical position of the item.

The GSR-KP has similarities with the Dynamic Storage
Allocation Problem (DSA) [14], but they can be considered
two different problems. One of the differences is on the
definition of the bin. Both problems consider a fixed height
for the bin. However, while the bin in the GSR-KP has a
maximum width, the bin in the DSA is generally an open
bin. The second difference between the two problems is
their objective. The GSR-KP maximises the space occupied,
or equivalently minimises the wasted space. The DSA on the
other hand has the same objective as a bin packing problem,
i.e. it tries to compress the allocation of memory space toward
one side to ensure that the allocated areas are contiguous.

Thus, a solution of the DSA can be a solution of the GSR-
KP, but a solution of the GSR-KP may not be a solution of
the DSA. A DSA problem only has the same solution as the
GSR-KP if it is a special instance with an upper bound on the
available storage space, and if the amount of memory space
to be allocated is strictly greater than the available storage
space.

We propose to extend GSR-KP to create a new model that
can distribute the allocation of passengers based on their jour-
ney length and the profit of the seats, e.g. allocate reservations
of long journeys or groups in the centre of the carriage, and
reservations of short journeys or unitary groups near doors,
reducing the excess of friction during the boarding/alighting
phases [34]. Another notable application is in the events
industry, e.g different stands may cost differently depending
on their location and size. Applications as such can also be
modelled using this newly proposed model, considering the
lending requests as reservations with time and size, while the
price paid to the lender is dependant on the position in which
the request will be placed. A similar problem exists also in
the tourism industry, for example in the booking system of an
hotel, different room may have a different profit.

Our work can be especially meaningful for the United
Kingdom (UK) rail industry [20], [30]. The UK rail industry
is an open market, Train Operators are private, or a mix of
private and public, companies in competition on the main
corridors. In longer journeys, i.e. from Liverpool to London,

booking a seat in advance is the common rule of thumb to
avoid standing up for the whole journey. Train Operators
are interested in reducing delays to improve the Public Per-
formance Measure and gain a competitive advantage over
competitors.

The first novelty of this paper is the introduction of a
new problem extension, theGSR-KPPS, that binds seat-based
profit with the length of the reserved journey in a mixed
integer programming (MIP) model.

The second novelty is a GRASP based algorithm that is
suitable for both GSR-KP and GSR-KPPS. Such algorithm is
useful when the time to achieve a solution is fixed.

The third novelty is the adaptation and extension of the
instances used in [6]. We introduced a new group of problems
that better represents some challenging real world scenarios
than the ones suggested in the original paper.

The paper is organised as follows. In section II we outline
the consistent work found in the literature. Definitions and
terminology follows in section III along with the MIP model
in detail, section IV outlines the proposed algorithm. The
new instances are explained in section V, section VI shows
computational results and the paper ends with conclusions in
section VII.

II. PREVIOUS WORK
To the best of our knowledge, since the original publication
of the problem in [6], none of the follow-up study on the
Group Seat Reservation Problem has shown to be better than
the original work. An online version of the seat allocation
problem was first published in [3], and further analysis was
made in [18]. A real-time algorithm that aims to reduce the
boarding/alighting time by maintaining a uniform load on
carriages through systematic distribution of passengers with
flexible tickets has been recently proposed by the authors
in [34].

Many papers have been published in the more general
packing problems context, some examples of new approx-
imation approaches are genetic algorithms [17], [19], [21],
[31] and their biased versions [15], [16], divide and conquer
algorithms (in which the solution space is partitioned and
searched independently) [33], neuro-genetic approaches that
mix neural networks and genetic algorithms [10], GRASP
algorithms [27] and GRASP/Path relinking [1], Tabu search
[4], [8] and other greedy randomized heuristics [7], [24].

The GSR is a specialised version of the bin packing prob-
lem in the two dimensional case, so every algorithm that has
been designed for orthogonal two dimensional rectangular
packing will work on a GSR problem. The difference in our
contribution is that none of them can exploit the nature of
the problem: in a two dimensional problem both dimensions
are free, while in a GSR problem the allocation toward one
dimension is constrained.

III. DEFINITIONS, TERMINOLOGY AND MIP MODEL
Using the usual terminology of the packing problems and
utilising as much as possible the terminology used in [6],
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a train contains W seats and stops at H stations. Let N =
{1, . . . , n} be the set of reservations. Each reservation asks to
reserve wi seats from station yi to station yi+ hi. Without any
loss of generality, we can assume that wi ≤ W .
First, we briefly describe the original GSR-KP as shown

in [6]. The active stations are represented as Y := {yi, |i ∈
N }

⋃
{yi + hi, i ∈ N }, and Ny := {i ∈ N | yi ≤ y < yi + hi}

is the set of requests using a seat at station y ∈ Y . Associated
with each station y ∈ Y there is a ‘‘height’’Hy that represents
the distance from station y to the next active station in Y . Let
δi = 1 if request i is selected. Let xi be the first seat (from the
left, horizontal axis) of request i. Let E = {(i, j)} be the set
of rectangle pairs which in some way share a station (vertical
axis). Finally, let lij = 1 iff request i is located left of request j.
The original model is shown in Eq: (1)-(8), the item profit
is identified with the item area (wi · hi), the objective (1)
is to maximise the profit. Constraint (2) enforces that the
number of allocated seats must not exceed the train capacity
in any station. Constraint (3) makes sure that two requests i
and j are selected, than only one must be on the left of the
other. Constraint (4) enforces that two selected itemsmust not
overlap. Constraint (5) ensures that an item must be allocated
inside the train. The remaining constraints (6)-(8) define the
domains of the model variables. We refer the reader to the
original paper for a further explanation.

maximize
∑
i∈N

hi · wi · δi (1)

s.t.
∑
i∈Ny

wi · δi ≤ W , y ∈ Y , (2)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (3)

xi − xj +W · li,j ≤ W − wi, (i, j) ∈ E, (4)

0 ≤ xi ≤ W − wi, i ∈ N , (5)

li,j ∈ {0, 1}, (i, j) ∈ E, (6)

δi ∈ {0, 1}, i ∈ N (7)

xi ≥ 0, i ∈ N . (8)

Our model extends the original one by considering also a
profit value associated to the seat. From the modelling per-
spective, it translates in a two-dimensional knapsack problem
where the item profit is dependant on a combination of its
area and its position inside the bin. The distribution of the
passengers among and along the carriages can be modelled
by assigning profits on the seats, i.e. considering the seats
of each carriage, the central seats have higher profit than the
seats near to the doors (this profits assignment will allocate
reservation with longer journey or more people in the center
of the carriage).

Let Q := {1, . . . ,W } be the set of seats, and pk , k ∈ Q be
the profit pk associated to the seat k . Let γi,k , i ∈ N , k ∈ Q
be 1 iff reservation i occupies seat k .
The new formulation is shown in Eq: (9)-(19).

maximize
∑
i∈N

∑
k∈Q

hi · γi,k · pk (9)

s.t.
∑
i∈Ny

wi · δi ≤ W , y ∈ Y , (10)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (11)

xi − xj +W · li,j ≤ W − wi, (i, j) ∈ E, (12)

wi · δi ≤
∑
k∈Q

γi,k ≤ wi · δi, ∀i ∈ N (13)

− (1− γi,k ) · 2W + xi ≤ γi,k · k ≤

xi + wi · δi, ∀i ∈ N , k ∈ Q (14)

γi,k ∈ {0, 1}, i ∈ N , k ∈ Q (15)

0 ≤ xi ≤ W − wi, i ∈ N , (16)

li,j ∈ {0, 1}, (i, j) ∈ E, (17)

δi ∈ {0, 1}, i ∈ N (18)

xi ≥ 0, i ∈ N . (19)

The differences between the models are on the objec-
tive (9), which now includes the profit associated on the seat,
and in three additional constraints (13)-(15). Considering an
unitary profit we will produce the same results of the original
model, thus, the proposed model can be considered as an
extension of the original problem. Constraint (13) represents
the total allocation of a reservation. If the reservation i is
booked, then wi seats must be allocated, otherwise none has
to be assigned. Constraint (14) enforces the contiguity of
the allocated seats k , for the reservation i. Constraint (10)
represents the knapsack constraint, which enforce allocation
inside the train. Constraints (11) and (12) represent the fact
that two items i,j must not overlap.

IV. PROPOSED ALGORITHM
In this section we describe the proposed algorithm. The
algorithm is a GRASP procedure [12], [13], [26], [27] that
exploits a percentage of the best bound found by the contin-
uous relaxation of the problem (relaxing integer and boolean
variables to real variables) for enforcing a stopping condition.
The rationale to use a GRASP based method is to produce
a simple algorithm that produces good solutions in a very
limited time. Such algorithm can be used as a startup for
a successive branch and bound procedure, or can be used
directly when achieving a solution in the timelimit is more
important than achieving absolute optimality.
The main procedure, Algorithm 1 (Algorithm will be

abbreviated as Alg from now on), is composed by the fol-
lowing steps: create a random candidate solution, evaluate
the candidate and update the best solution if the candidate
improves the current best solution. If the solution is not
improved then pick a uniformly random number c ∈ [0, 1]
and if c ≤ 0.5 try to improve the current candidate, otherwise
try to improve the best solution found so far.
The stopping criteria of the main procedure are met when

at least one of the following conditions is met. First, the max-
imal number of iterations max_iterations has been achieved.
Second, a time threshold timelimit has been reached. Third,
a threshold has been reached on the best candidate evalu-
ation cbest . The last threshold is calculated as the fraction

152360 VOLUME 7, 2019



I. Deplano et al.: Offline Group Seat Reservation Knapsack Problem With Profit on Seats

Algorithm 1 Main_Procedure(Relaxed_Bound,
Bratio,Timelimit,Max_Iterations)
cbest ⇐ epoch⇐ 0, start ⇐ current_time(), best ⇐ ∅
while (current_time()− start ≤ timelimit and
relaxed_bound · bratio > cbest and
epoch < max_iterations do
candidate, limit, bound ⇐ generate_candidate()
if bound > cbest then
cbest , limitbest , best ⇐ bound, limit, candidate

else
if uniform(0, 1) ≤ 0.5 then
candidate, limit, bound ⇐

local_search(candidate, limit)
if bound > cbest then
cbest , limitbest , best ⇐ bound, limit, candidate

end if
else
candidate, limit, bound ⇐

local_search(best, limitbest )
if bound > cbest then
cbest , limitbest , best ⇐ bound, limit, candidate

end if
end if

end if
epoch⇐ epoch+ 1

end while
return best, limit, cbest

bratio of the objective value relaxed_bound of the continuous
relaxation of the problem. The combination of these three
stopping criteria has been chosen to keep the running time
of the algorithm balanced in borderline conditions.

The return values of the main procedure are best , limit and
cbest . best is the sequence of indexes that represents the best
solution, limit is the position of the last fitting reservation
index in best , cbest is the evaluation of the profit totalised in
the feasible part of the best solution.

The evaluation procedure, Alg 2, requires as input the
candidate list. We remind that a candidate solution is a
permutation of the n indices that represent the reservations,
the evaluation procedure ‘‘cuts’’ the candidate up to the last
feasible element limit . There are two ideas behind the eval-
uation: firstly to exploit the corner point concept presented
in [23] and secondly to to exploit the problem structure, and
reduce the positions to evaluate along the horizontal axis only.
The evaluation procedure keeps a list of candidate positions
in corner . The algorithm tries to place the items in the first
feasible candidate position. corner is initially initialised with
the position 0. After an item i fits in a position x ∈ corner ,
the candidate positions list is updated with the corner of
the item i, corner := corner

⋃
{wi + x}. The evaluation

procedure is a constructive first fit heuristic [35].
The candidate generation, Alg 3, makes use of a shuffle(x)

function, where x is the set to shuffle. shuffle(x) returns a

Algorithm 2 Evaluate_Candidate(Candidate)
Require: candidate ordered list of indexes
Require: n number of items
Require: N ⇐ set of items
corner ⇐ {0}
positioned ⇐ ∅
end = n
bound ⇐ 0
for i ∈ candidate do
test ⇐ false
if hi + yi ≤ H then
for x ∈ corner do
if x + wi ≤ W then
if isNotOverlapping(x, i, positioned) then
positioned ⇐ positioned

⋃
{(x, i)}

corner ⇐ corner
⋃
{x + wi}

test ⇐ true
end if

end if
end for

end if
if test = true then
bound ⇐ bound +

∑
j∈Q pj ∗ hi

else
end ⇐ position of i in candidate
return candidate, end, bound

end if
end for
return candidate, end, bound

Algorithm 3 Generate_Candidate()
Require: n number of items
candidate⇐ shuffle([1, . . . , n])
return evaluate_candidate(candidate)

random permutation of x. After that, the candidate is eval-
uated with the procedure in Alg 2.

The local search procedure, Alg 4, swaps half of the posi-
tions of the feasible region with positions picked randomly.
The method exploits the solution structure: items that belong
to feasible regions are located in the initial part of the solution
array. So swapping half of the items forces the method to
evaluate new solutions while keeping parts of the solution.
An example is shown in Fig 1. The local search procedure
is in fact reducible to the 2-opt local search [9], with the
identification of the sets of the candidates to swap with the
feasible and unfeasible region.

The Alg 1-4 are designed to be a very fast procedure that
can be used to determine lower bounds for a branch and bound
framework. The component with varying computational cost
is the evaluation procedure Alg 2, since Alg 3 and Alg 4 have
a constant number of operations.

Let n be the number of items and W be the maxi-
mal number of seats. The worst case scenario for Alg 2
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TABLE 1. Main features of the original instances compared with the proposed one.

Algorithm 4 Local_Search(Candidate,Limit)
Require: n, numberofavailableitems
Require: candidate ordered list of indexes from 1 to n
Require: limit index of the candidate list that indicate the
first element that does not fit in the bin
s⇐ round(limit/2)
if s = 0 then
s⇐ 1

end if
counter ⇐ 0
while counter ≤ s do
source⇐ uniform(1, limit)
target ⇐ uniform(1, n)
if source 6= target then
swap(candidatesource, candidatetarget )

end if
end while
return evaluate_candidate(candidate)

FIGURE 1. An example of a local search procedure. a) shows the swap
sequence between the feasible and unfeasible region, b) reports the
array consequence of the swapping sequence, the limit of the feasible
region is removed because the new array requires a new evaluation. The
reader should note that since the swapping sequence is random,
the combination of multiple swaps may result in a swap of elements in
the feasible region.

is having groups of one element, the procedure will
make n·(n+1)

2 isNotOverlapping(x, i, positioned) operations.
isNotOverlapping(x, i, positioned) can be implemented as a
loop with a check if the new item overlaps with the others
already placed. In the worst case it has to compare N items.
Summarising, the evaluation procedure Alg 2 has a worst case
scenario with a time complexity of O(N 3).

This complexity can be reduced toO(log2(n) ·N 2) by using
a balanced binary tree to represent the already placed objects,
and a dichotomy search for the isNotOverlapping(x, i,
positioned) procedure.

V. CLASS INSTANCES
The original paper [6] considers problem instances used
in the literature of the two-dimensional packing, in a total
of 190 experiments in five main classes, namely CGCUT [5],
WANG [32], GCUT [2], OKP [11], GXON and GXOU [6].
The instances can be downloaded from the author’s
repository1.

Table 1 shows a comparison between themain features. For
each feature we report the minimum andmaximum values for
each parameters to show a broad picture of the problem class.
Experiments number shows the number of instances avail-

able in the class, stations reports the journey length measured
as number of stations, seats is the number of seats available in
the train, journey represents the journey length for the reser-
vations, reservation stands for the number of reservations
for each instance and groups are the group dimension in the
reservations.

DEPL is the new class of instances that we propose, con-
sidering also the recent work of [28]. The idea behind is to
provide a challenging problem class inspired by a real-world
scenario that can be hard to solve. DEPL has an high number
of reservations to represent a busy connection between cities,
and a range of limits for the other features compatible with
a broad range of railway journeys. Most of the details of the
proposed instances are based on the real statistics, facts or
observations from the UK industry. Specifically:
• The reason for consider up to 50 stations only is that
a journey lasting 50 stations is unlikely to happen bar
exceptional cases. An example of an exceptional case
could be the Trans-Siberian Railway (the longest in the
world), which stops in 157 stations during the journey
from Moscow to Vladivostok.

• The range of available seats (400-750) is based on
the actual number of seats available on the dominant

1http://hjemmesider.diku.dk/p̃isinger/codes.html
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TABLE 2. Experiment group one, comparison with unitary profit, first part.

inter-city trains in Great Britain West coast line, such as
the Virgin Trains fleet.

• The large number of reservations is based on statistics
of the Rail Executive [25]. This statistics showed that
for the InterCityWest Coast lines (the major north-south
rail connection in Great Britain) with over 100 miles
journey distance, at least 60% of tickets purchases are
reservations (these are advanced tickets, with which
seat reservation is mandatory). This 60% figure is just
the lower bound. The actual percentage of reservation
should be much higher, because the rest of ticket pur-
chases (near 40% for this type of journeys) are peak and
off-peak tickets, which also offer optional or default seat
reservations. For peak and off-peak tickets, passengers
normally choose reservations tomake sure that they have
a seat.

• The group size is shaped considering the most likely
number of people in a group in a train journey. Based on
observations, we have limit the typical number of people
in a group to 9 or less, since bigger groups may prefer
to reserve directly a bus or a private driver especially in
long journeys like the case considered here.

VI. EXPERIMENTAL RESULTS
The experiments are divided in two main groups, group one
considers unitary profits while group two considers random

profit. For each group we evaluated all the instances of the
classes in Table 1: a total of 195 problem instances per group.

In each experiment we reported the gap, defined as the best
bound of the continuous relaxation of the model. The formula
is reported in Eq: (20), where bestbound is the best bound
of the continuous relaxation of the model, bestinteger is the
best solution found so far, and ε = 1

1010
is a small numeric

constant to avoid a division by zero error.We applied the same
formula to calculate the gap in the heuristic results as well.

gap =
|bestbound − bestinteger|

ε + |bestinteger|
(20)

The model in Eq:(9)-(19) has been implemented in
OPL and solved using IBM CPLEX R© 12.7. The proposed
Algorithm 1-4 have been implemented in Python 3.6.7. The
machine used for running the experiments is an Intel R©

Core
TM

i7-7700HQ @ 2.80GHz, 16GB DDR4 RAM. The
operating system is Ubuntu

TM
18.04. The time limit for solv-

ing each instance is 20 minutes. This choice is reasonable
if we consider 1) a booking system that accepts reservation
up to one hour before departure and 2) the seats must be
comunicated before people arrive at platform, e.g. by email,
by printing the seat number at the station gate, or by a
smarthphone application. The proposed algorithm has been
run three times for each instance to avoid potential bias due to
a lucky initialisation. The stopping criteria for Algorithm 1-4
are: bratio = 0.95 (95% of the result of the continuous
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TABLE 3. Experiment group one, comparison with unitary profit, second part.

TABLE 4. Experiment group two, comparison with random profit, part one.

relaxation), max_iterations = 15000, and timelimit =
1200 seconds. In most of the experiments the max_iterations
and the bratio are the triggering stopping criteria, while in the

DEPL class, since the massive number of items considerably
slow down the evaluation procedure, the timelimit becomes
the only stopping criterion.
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TABLE 5. Experiment group two, comparison with random profit, part two.

Table 2 and Table 3 report the experiments of group one.
Table 4 and Table 5 report the experiments of group two.
For CPLEX, the tables report average and standard devia-
tion of the gap, calculated using as baseline the continuous
relaxation, and time (reported in seconds). For the algorithm,
the tables report the average and standard deviation of com-
putational time (seconds), and average, standard deviation,
minimum and maximum. The last column is the difference
between the mean gap achieved by CPLEX and the mean
gap achieved by the algorithm. This column highlights the
degradation of the objective. We highlight any gap degrada-
tion lower than 10% in bold font.

In all the instances solved in Tables 2-3-4-5, our algorithm
achieved a maximum running time of 6.35 seconds and a
minimum of 5.67E-05 seconds. The average running time in
the first group is 1.95 seconds, while in the second group is
2.32 seconds.

The experiments of group one, apart from G40U20,
G50U20 and GCUT13, are relatively easy to solve for
CPLEX: 50% of the experiment classes in the first group have
an average gap difference lower than 10%.

The second group is more difficult to solve for
CPLEX: 57.89% of the classes ran an average of more
than 16 minutes, while the objective degradation was
averagely less than 10% in 26.31% of the experiment
classes.

DEPL experiments with random profit are reported
in Table 6. CPLEX ran out of memory in all the experiment
made. We were not able to provide the solution of the con-
tinuous relaxation, thus we were not able to calculate the gap
between the relaxation and the best solution found. Conse-
quently, we decided to run the instances with the proposed
algorithm only at different time limits, one minute, three
minutes and one hour. Table 6 reports the average number of
iterations made, maximum, minimum and average objective
with standard deviation value found with three different time
limits for the heuristic. The result shows that considering
a much large number of items, the algorithm’s chances to
improve an already good solution by remixing part of the
best solution or part of the actual solution are less. The eval-
uation process becomes much slower. For example, with the
instance DEPL_0, tripling the time from 60 to 180 seconds
only produced a gain in the average objective of 1.64%, and
when we increase the time limit from 1 minute to 60 minutes,
the gain in the objective was only 5.07%. A similar pattern
can be seen in the other cases, where the best gain after
an hour of computation was 12.17% in the objective value.
To sum it up, the experimental results have shown that the
proposed heuristic is a useful tool to provide good, feasible
and quick solutions for the challenging instances that CPLEX
fails. However, letting the heuristic run for an extended period
will not improve performance significantly.
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TABLE 6. Experiment group two, DEPL, with different time limits.

VII. CONCLUSION
In this paper we have developed a mixed integer program-
ming model for the Group Seat Reservation Knapsack Prob-
lemwith Profit on Seat. It is an extension of the Offline Group
Seat Reservation Knapsack Problem that introduces a profit
evaluation dependant on reservation profit, journey lenght,
group size, and the profit of reserved seats. The proposed
extension covers situations where the ideal position of an
item is affected by how long the item must be kept in its
allocated position.

We have developed a new GRASP based algorithm that
solves the original problem version and the newly proposed
one.

We have improved the instances considered in the original
paper with five new problems that better represent challeng-
ing real world scenarios andwe have evaluated the limitations
of the proposed algorithm.

In the experimental section we have shown that the pro-
posed algorithm can be useful to provide a first lower bound
very rapidly, which can be used as a startup for a successive
branch and bound procedure. It can also be very useful in the
cases where achieving a solution within a short time limit is
more important than achieving an absolute optimality.
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