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ABSTRACT Unknown biases or perturbations in the INS/GNSS integrated navigation system may produce
unforeseeable negative effects when the navigation states are estimated by using the Kalman filtering and
its variants. To mitigate these undesirable effects in the INS/GNSS integrated navigation, a novel partially
strong tracking extended consider Kalman filtering (PSTECKF) is proposed. In the presented PSTECKF
algorithm, the biases are not estimated, but their covariance and co-covariance are incorporated into the state
estimation covariance by using a nonlinear ‘‘consider’’ approach. Based on the above, the PSTECKF also
partially introduces an adaptive fading factor into the predicted covariance of the states, which excludes
the co-covariance between the states and biases, to compensate the nonlinear approximation errors and
navigation system covariance uncertainties. Simulation results demonstrate the performance of the proposed
PSTECKF for INS/GNSS integrated navigation is superior to that of the EKF and ECKF when the biases or
perturbations happen in a navigation system.

INDEX TERMS INS/GNSS integrated navigation, consider Kalman filter, adaptive filtering, bias, strong
tracking.

I. INTRODUCTION
The inertial navigation system (INS) and global navigation
satellite system (GNSS) integrated navigation system organ-
ically merge advantages of two sensors, which are the high
short-term navigation accuracy of INS and high long-term
navigation accuracy of GNSS, and have a widely application
in navigation and positioning field [1]–[5]. The INS/GNSS
integrated navigation system overcomes the limitations of
using INS or GNSS navigation systems alone and can work
well in all weather conditions around the world. When the
states of the INS/GNSS integrated navigation system are
estimated by using the Kalman filtering and its variants, there
are two methods can be selected, which are the direct method
and the indirect method [6]. The indirect method obtains the
optimal estimations of the navigation errors of the INS and
GNSS by utilizing the navigation errors as the system states.
The direct method directly gives the optimal estimations of
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the integrated navigation parameters by using filtering algo-
rithm, and its states are the output navigation parameters of
the navigation system. Comparing to the indirect method, the
direct method has two advantages: one is more accurately
propagating the navigation states and another is avoiding
double counting by using mechanical calibration equation of
the INS [7]–[9].

To utilize the direct method for the INS/GNSS integrated
navigation system needs to solve some key technology prob-
lems, such as model nonlinearity, drifts of the inertial mea-
surement unit (IMU), biases of the system and perturbations
of the whole navigation system [6], [10]. Many methods are
proposed to solve above problems for the directly integrated
navigation system. One strategy is using more accuracy non-
linear algorithm to take place of the extended Kalman filter
(EKF) [3], [5], [11]. Crassidis utilized the unscented Kalman
filter (UKF) to estimate the position /attitude of the INS and
global positioning system (GPS) by approximating a Gaus-
sian distribution, and obtained more precise navigation states
than the EKF [4]. Sun and Tang combined cubature Kalman
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filter and particle filter to deal with the large initial condition
errors in the INS/GPS integrated navigation system [12].
Another strategy is adaptive or robust strategy for the uncer-
tainties in the navigation system. For the uncertain noises,
many filtering algorithms have been proposed to mitigate
their negative effects in INS/GNSS integration, such as strong
tracking filtering [9], [10], covariance matching UKF [8],
fuzzy adaptive filtering [13]–[15]. For the drifts of the IMU,
they are always augmented into the system states to estimate
together for the INS/GNSS integrated navigation system.
Kim et al. proposed an adaptive two-stage EKF to deal
with the unknown fault biases in INS/GPS loosely coupled
system [16]. George and Sukkarieh augmented the biases
of the IMU and the clock biases of the GPS into the state
vector to estimate and improved the navigation accuracy for
the tightly coupled INS/GPS integration of unmanned aerial
vehicle (UAV) [17]. Zhao et al. designed a robust Kalman
filter to solve the exogenous disturbances, device damage
and inaccurate sensor noise statistics in the loosely coupled
INS/GPS navigation system [18]. So, mitigating the negative
effects of the nonlinearity, drifts, biases and perturbations of
the navigation system to improve the navigation accuracy
becomes necessary.

To compensate the biases, a consider Kalman filtering
(CKF), which is also called Schmidt-Kalman filtering, have
been proposed [19] and used in Mars entry navigation [20],
[21], target tracking [22], [23], spacecraft attitude estimation
[24], [25], and so on. The CKF incorporates the covariance
of the biases into the state estimation covariance, and not
directly estimate them. This handlingmethod about the biases
could consider the effects of the biases and reduce the com-
putation cost by not estimating them. Then, many modified
CKF are proposed to improve estimation accuracy, such as
unscented CKF [26], norm-constrained CKF [24], multiple
adaptive fading CKF [27], ensemble CKF [25], Gaussian
mixture CKF [28].

This paper proposed a partially strong tracking extended
consider Kalman filtering (PSTECKF) to overcome the nav-
igation system model uncertainties and mitigate the nega-
tive effects of the biases in INS/GNSS integrated navigation
system. Based on the extended consider Kalman filtering
(ECKF), the PSTECKF does not estimate the biases, and only
incorporates their covariance and co-covariance into the state
estimation covariance by using the ‘‘consider’’ approach pro-
posed by Schmidt [19]. Then, the PSTECKF partially intro-
duces a suboptimal adaptive fading factor into the predicted
covariance to compensate themodel nonlinear approximation
errors and navigation system covariance uncertainties.

The remainder of this paper is organized as follows.
In Section 2, the mathematical model for INS/GNSS inte-
grated navigation system is introduced. The extended con-
sider Kalman filter algorithm is introduced in Section 3.
Section 4 derives the partially strong tracking extended con-
sider Kalman filtering algorithm. In Section 5, simulations
are carried out to evaluate the performance of the proposed
approach. Finally, conclusions are shown in the end.

II. INS/GNSS INTEGRATION NAVIGATION SYSTEM
The basic principle of the INS/GNSS integration is to use
the position and velocity information of the GNSS to correct
the position and velocity of INS [2], [29]. In the direct filter-
ing method, the dynamic model of INS/GNSS integration is
established by using the inertial navigation equations and the
IMU error equations. The measurement model is constructed
by using the output information of velocity and position from
GNSS [7], [10], [30].

A. KINEMATIC MODEL
The INS/GNSS integrated navigation scheme consists of the
IMU, which provides specific forces of three axes, and the
GNSS, which provides the position and velocity informa-
tion in the East-North-Up (E-N-U) geographic coordinate
frame. The direct integrated navigation system is modeled
to directly describe the navigation parameters by using the
information of the IMU. Considering the constant drifts of
the gyroscope and accelerometer, the navigation system state
vector is defined as

x =
[
φe φn φu ve vn vu ϕ λ h εe εn εu 1e 1n 1u

]T (1)

and the dynamic equation of the INS/GNSS integrated navi-
gation system is given by [7], [10]

φ̇e =
vnδh

(RM + h)2
−

δvn
(RM + h)

+ (ωie sinϕ +
ve tanϕ
RN + h

)φn

−(ωie cosϕ +
ve

RN + h
)φu + εe

φ̇n = −
δh

(RN + h)2
ve − ωie sinϕδϕ +

δve
(RN + h)

−(ωie sinϕ +
ve tanϕ
RN + h

)φe −
vn

RM + h
φu + εn

φ̇u = −(
tanϕδh

(RN + h)2
−

sec2ϕδϕ
RN + h

)ve + ωie cosϕδϕ

+
δve tanϕ
(RN + h)
+(ωie cosϕ +

ve
RN + h

)φe +
vn

RM + h
φn + εu

v̇e = (
ve tanϕ
RN + h

+ 2ωie sinϕ)vn

−(2ωie cosϕ +
ve

RN + h
)vu

−fuφn + fnφu + fe +1e

v̇n = −(2ωie sinϕ +
ve tanϕ
RN + h

)ve −
vnvu

RM + h
+fuφe − feφu + fn +1n

v̇u = (2ωie cosϕ+
ve

RN + h
)ve +

v2n
RM + h

−fnφe + feφn + fu−g+1u

ϕ̇ =
vn

RM + h
λ̇ =

ve
(RN + h) cosϕ

ḣ = vu
ε̇e = ωεe , ε̇n = ωεn , ε̇u = ωεu

1̇e = ω1e , 1̇n = ω1n , 1̇u = ω1u

(2)
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where φe, φn and φu are attitude error angles of mathemat-
ics platform; ve, vn and vu are the velocities in the E-N-U
directions; ϕ, λ and h are respectively latitude, longitude and
altitude; [εe, εn, εu]T and [1e,1n,1u]T are the constant drift
of the gyroscope and acceleration, respectively. δve and δvn
are the velocity differences between the INS and the GNSS
in the east and north directions, respectively; δϕ and δh are
the latitude and height difference between the INS and the
GNSS, respectively; fe, fn and fu are the specific forces of
the accelerometer in the E-N-U directions. The noise vector
[εe, εn, εu,1e,1n,1u]T is random errors coming from the
gyroscope and the accelerometer.

Considering the state perturbations of the UAV, such as
model uncertainties or gust, the integrated navigation system
model is following as [9], [10]

ẋ = f (x, p1)+ w (3)

where f (·) is a nonlinear function, p1 is the perturbation vector
or bias vector and w = [01×9, [εe, εn, εu], [1e,1n,1u]]T is
the process noise vector.

B. MEASUREMENT MODEL
The GNSS receiver can provide the velocity and position of
the UAV, and this information is taken as the measurements
[7], [10]. However, the measurements of the GNSS have
many system biases, such as satellite dock biases, ephemeris
biases, receiver clock offset, ionospheric delay biases, tro-
pospheric delay biases and multi-path biases. These biases
determine the accuracy of the GNSS and then will affect the
navigation accuracy [1], [6].

Considering the above biases of the GNSS, the measure-
ment model of the INS/GNSS integrated navigation system
is given by:

z = h(x)+ p2 + v (4)

where the linear function h(x) = [vge, vgn, vgu, ϕg, λg, hg]T

is the carrier velocity and position measured by the GNSS;
p2 = [bvge, bvgn, bvgu, bpge, bpgn, bpgu]T is the measurement
bias vector; v = [vvge, vvgn, vvgu, vpge, vpgn, vpgu]T is the
measurement noise vector, in which [vvge, vvgn, vvgu]T and
[vpge, vpgn, vpgu]T are the random errors of the GNSS velocity
measurement values and the GNSS position in the E-N-U
directions, respectivly.

C. DISCRETE-TIME INTEGRATED NAVIGATION SYSTEM
Combing the process perturbation vector p1 and the measure-
ment bias vector p2 as a vector p = [p1, p2]T , the above
continuous navigation system (3) and (4) are modified as

ẋ = f (x, p)+ w (5)

z = h(x, p)+ v (6)

Discretizing the above continuous INS/GNSS integration
navigation system obtains the discrete-time equation as fol-
lows

xk = f (xk−1, p)+ wk−1 (7)

zk = h(xk , p)+ vk (8)

where wk and vk are assumed to be independent process
and measurement Gaussian white noise sequences with zero
means and variances Qk and Rk , respectively. These two
parameters satisfy:

E[wkwTj ] =

{
Qk , j = k
0, j 6= k

;

E[vkvTj ] =

{
Rk , j = k
0, j 6= k

;

E[wkvTj ] = 0 for all j and k (9)

III. EXTENDED CONSIDER KALMAN FILTER
In this section, the derivation process and formula of the
extended consider Kalman filter are briefly summarized to
conveniently introduce the partially strong tracking ECKF.

In the above discrete-time INS/GNSS integration naviga-
tion system model (7) and (8), there are process perturba-
tions and the measurement biases, which can be considered
as uncertain parameters or biases. To mitigate the negative
effects of the biases or uncertain parameters, a ‘‘consider’’
approach is presented to account for these uncertainties by
incorporating their statistics property into the state estimate
covariance and not estimating them [19], [20]. Based on the
above idea, the ECKF is summarized by the expanding state
method and a mandatory zero setting for the gain matrix.

To make the best of the uncertain biases in the Kalman
filtering, some statistic assumptions and correlations between
the biases and the state are set as

Ppp = Cov {δp} (10)

Ck = E
{
x̃kδpT

}
(11)

where Ppp is the covariance matrix of the biases; δp = p−p̄ is
the error between the bias vector p and its reference value p̄;
Ck is the cross-covariancematrix of the state estimation errors
and the biases; x̃k = xk − x̂k is the state estimation error.

As the EKF, the ECKF also uses the first-order Tay-
lor series expansion method to approximate the nonlinear
function. So, the nonlinear function f (xk−1, p) in Eq. (7) is
expanded around the nominal state estimate x̂k−1 and the
reference value p̄, and simplified as follows:

δxk = 8k/k−1δxk−1 +9k/k−1δp+ wk−1 (12)

where δxk = xk − x̂k/k−1 and δxk−1 = xk−1 − x̂k−1.
The linearized coefficient matrices 8k/k−1and 9k/k−1 are
respectively given by

8k/k−1 =
∂f (xk−1, p̄)
∂xk−1

∣∣
xk−1=x̂k−1 (13)

9k/k−1 =
∂f (xk−1, p̄)
∂pk−1

∣∣p=p̄ (14)

Similarly, the nonlinear measurement function h(xk , p) in
Eq. (8) can be linearized around x̂k/k−1 and p̄ as follows:

δzk = Hkδxk + Nkδp+ vk (15)
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where δzk = zk − ẑk/k−1, and ẑk/k−1 = h(x̂k/k−1, p̄). The
linearized coefficient matrices Hk and Nk are respectively
given by

Hk =
∂h(xk , p̄)
∂xk

∣∣∣xk=x̂k/k−1 (16)

Nk =
∂h(x̂k/k−1, p̄)

∂p

∣∣p=p̄ (17)

Considering the linearized discrete-time model in Eqs (12)
and (15), the following results are obtained by extending the
bias error vector δp to the state error vector δxk following by[

δxk
δp

]
=

[
8k/k−1 9k/k−1

0 I

] [
δxk−1
δp

]
+

[
wk−1
0

]
(18)

δzk = [Hk ,Nk ]
[
δxk
δp

]
+ vk (19)

Based on the augmented system model Eqs. (18) and (19),
the ECKF algorithm can be obtained as the standard Kalman
filtering. The time update of the ECKF algorithm is follows
by

δx̂k/k−1 = 8k/k−1δx̂k−1 +9k/k−1δp̂ (20)[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

]
=

[
8k/k−1 9k/k−1

0 I

]
[
Pk−1 Ck−1
CT
k−1 Ppp

] [
8k/k−1 9k/k−1

0 I

]T
+

[
Qk−1 0
0 0

]
(21)

and the measurement update is

K̄k =
[
Kk
0

]
=

[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

] [
HT
k N

T
k

]
{
[Hk ,Nk ]

[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

] [
HT
k

NT
k

]
+Rk

}−1
(22)

δx̂k = δx̂k/k−1 + Kk (δzk − Hkδx̂k/k−1 − Nkδp̂) (23)[
Pk Ck
CT
k Ppp

]
=

{
I −

[
Kk
0

]
[Hk ,Nk ]

}
[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

]
(24)

where the gain matrix of the bias in K̄k is forced to
zero, because the ECKF only considers the variance sta-
tistical characteristics of the bias and does not estimate
parameter δp.

Consider the error δp̂ = 0 and δx̂k−1 = 0 in Eq. (20),
8k/k−1δx̂k−1 + 9k/k−1δp̂ = 0 leads to δx̂k/k−1 = 0, and
simplify the ECKF algorithm in Eqs. (20)∼(24). The whole
algorithm of the ECKF is summarized as following:

Step 1: Initialize the state x̂0, the state covariance
matrix P0 and the cross-covariance variance C0.
Step 2: Time update

x̂k/k−1 = f (x̂k−1, p̄) (25)

Pk/k−1 = 8k/k−1Pk−18T
k/k−1 +8k/k−1Ck−19T

k/k−1

+9k/k−1CT
k−18

T
k/k−1

+9k/k−1Ppp9T
k/k−1 + Qk−1 (26)

Ck/k−1 = 8k/k−1Ck−1 +9k/k−1Ppp (27)

Step 3:Measurement update

Kk = (Pk/k−1HT
k + Ck/k−1N

T
k )(HkPk/k−1H

T
k

+NkCT
k/k−1H

T
k + HkCk/k−1N

T
k + NkPppN

T
k + Rk )

−1

(28)

x̂k = x̂k/k−1 + Kk{zk − h(x̂k/k−1, p̄)} (29)

Pk = (I − KkHk )Pk/k−1 − KkNkCT
k/k−1 (30)

Ck = (I − KkHk )Ck/k−1 − KkNkPpp (31)

Note that the standard EKF algorithm can be obtained by
setting Ppp = 0.

IV. PSTECKF ALGORITHM
To overcome the uncertainties in state-space system model
and satisfy the accuracy and adaptability of the filtering,
amutually orthogonal principle of the predictedmeasurement
residual sequences is proposed by Zhou and Frank [31] and
Zhou et al. [32]. Based on the mutually orthogonal prin-
ciple, a time-varying suboptimal adaptive fading factor is
introduced into the predicted state error covariance matrix to
adjust the gain matrix Kk in real time, and then improve the
filtering precision [27], [32]. Here, to improve the robustness
and adaptability of the ECKF, a suboptimal adaptive fading
factor is partially introduced into in Eq. (26), which is differ-
ent from the reference [27]. In the reference [27], a multiple
fading factor is set on the whole augmented state, and the
predicted state error covariance and the cross-covariance are
adjusted at the same time. Here, only the predicted state
error covariance is modified by a suboptimal adaptive fading
factor, and the formula is

Pk/k−1 = λkP∗k/k−1 + Qk−1 (32)

where P∗k/k−1 = 8k/k−1Pk−18T
k/k−1 +8k/k−1Ck−19T

k/k−1
+9k/k−1CT

k−18
T
k/k−1+9k/k−1Ppp9T

k/k−1, λk is the subop-
timal adaptive fading factor to be calculated.
Substituting Eq. (32) into Eq.(21) yields a new augmented

prediction variance matrix[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

]
=

[
λkP∗k/k−1

(8k/k−1Ck−1 +9k/k−1Ppp)T

(8k/k−1Ck−1 +9k/k−1Ppp)
Ppp

]
+

[
Qk−1 0
0 0

]
(33)

According to the mutually orthogonal principle, the pre-
dictedmeasurement residual sequences z̃k = zk − h(x̂k/k−1, p)
must be kept orthogonal to each other. The residual sequences
satisfy the following equation

E[z̃k+jz̃Tk ] = 0, k = 0, 1, 2 . . . . . . , j=1, 2, 3 . . . . . . (34)
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Substituting z̃k = zk − h(x̂k/k−1, p) into Eq. (34) to obtain:

E[z̃k+jz̃Tk ]

= [Hk+j,Nk+j]
[
8k+j−1/k+j−2 9k+j−1/k+j−2

0 I

]
{
I − K̄k+j−1[Hk+j−1,Nk+j−1]

}
· · ·

[
8k+1/k 9k+1/k

0 I

]
×
{
I − K̄k+1[Hk+1,Nk+1]

} [8k/k−1 9k/k−1
0 I

]
3k ,

j = 1, 2, 3, · · · (35)

where 3k is

3k =

[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

] [
HT
k

NT
k

]
− K̄kVk (36)

Substituting the optimal gain K̄k into Eq. (36) to make
3k = 0, and also E[z̃k+jz̃Tk ] in Eq. (34). Then, the following
formula can be obtained:[

Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

] [
HT
k

NT
k

]
− K̄kVk = 0 (37)

Substituting the Eq. (22) into the Eq. (37) can be obtained:

[Hk ,Nk ]
[
Pk/k−1 Ck/k−1
CT
k/k−1 Ppp

] [
HT
k

NT
k

]
= Vk − Rk (38)

Expanding the above augmented formula

[Hk ,Nk ]
(
Sk/k−1 +

[
Qk−1 0
0 0

])[
HT
k

NT
k

]
= Vk−Rk (39)

where

Sk/k−1 =
[

λkP∗k/k−1
(8k/k−1Ck−1 +9k/k−1Ppp)T

(8k/k−1Ck−1 +9k/k−1Ppp)
Ppp

]
(40)

Substituting and transposing the formula

[Hk ,Nk ]Sk/k−1

[
HT
k

NT
k

]
= Vk − HkQk−1HT

k − Rk (41)

and then

λkHkP∗k/k−1H
T
k

= Vk − HkQk−1HT
k − NkPppN

T
k − Rk

−Nk
(
8k/k−1Ck−1 +9k/k−1Ppp

)THT
k

−Hk
(
8k/k−1Ck−1 +9k/k−1Ppp

)
NT
k (42)

Taking traces on both sides of Eq. (42), and simplifying the
formula

λkTr(Mk ) = Tr(Ok ) (43)

where,

Ok = Vk − Nk (8k/k−1Ck−1 +9k/k−1Ppp)THT
k

−Hk (8k/k−1Ck−1 +9k/k−1Ppp)NT
k

−HkQk−1HT
k − NkPppN

T
k − Rk (44)

Mk = HkP∗k/k−1H
T
k (45)

FIGURE 1. Vehicle trajectory.

Then, the suboptimal adaptive fading factor can be deter-
mined by the following formula:

ck =
Tr(Ok )
Tr(Mk )

(46)

λk =

 ck , c
k
≥ 1

1, c
k
< 1

(47)

where the residual sequence Vk in Eq. (44) can be obtained:

Vk =


z̃1z̃T1 , k = 1
ρVk−1 + z̃k z̃Tk

1+ ρ
, k > 1

(48)

where 0 < ρ ≤ 1 is a forgetting factor, and usually
ρ = 0.95.
By using the above fading factor λk , the predicted

state error covariance Pk/k−1 is modified, the gain matrix
Kk is adjusted, and the predicted measurement resid-
ual sequences satisfies the mutually orthogonal principle.
From the above derivation, the procedure of the proposed
PSTECKF algorithm is summarized in Table 1.

V. NUMERICAL SIMULATION
To evaluate the performance of the proposed PSTECKF
for the INS/GNSS integrated navigation system of a UAV,
a numerical simulation has been carried out. The ECKF and
EKF algorithms for the navigation system are selected to
compare with the proposed PSTECKF.

In simulation, the trajectory of the UAV is shown in Fig.1,
in which climb, fall, turn and shifting motions are imple-
mented in the flight path. The simulation parameters are
shown in Table 2, and the data for the INS and GNSS
error specifications are listed in Table 3. The sampling
period of INS is 0.01s, the sampling period and filter-
ing period of GNSS are 1s, and the total simulation time
is 1932s.

In order to evaluate the performance of the EKF, ECKF
and PSTECKF algorithms under model uncertainties, the
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TABLE 1. Implementation algorithm for PSTECKF.

TABLE 2. Simulation parameters in the EKF, ECKF and PSTECKF.

process noises, the measurement noises, the state per-
turbations and the measurement biases are added into
the simulations. The measurement biases distributed to a
normal distribution, which has mean zeros and covari-
ance diag

[
0.1m/s, 0.1m/s, 0.9m/s, (10−6)◦, (10−8)◦, 5m

]
.

TABLE 3. INS and GNSS error specifications.

The dynamic model is added into the state perturbations
during two time intervals, which are from 400s to 700s and
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FIGURE 2. Latitude error.

FIGURE 3. Longitude error.

from 1000s to 1500s, and the values are given by

1x

=



[01×15]T ,
0 < t < 400or700 < t < 1000ort > 1500
[01×3, 0.5, 0.5, 0.5, 50/Re, 50/Re, 50, 01×6]T ,
400 ≤ t ≤ 700
[01×3,−[0.8, 0.8, 0.8],−10/Re,−10/Re,−10, 01×6]T ,
1000 ≤ t ≤ 1500

(61)

under the above condition, the EKF, ECKF and PSTECKF
algorithms are used in the INS/GNSS integrated navigation
simulations of the UAV. The position errors and velocity
errors of the above three filters are listed in Figures 2-7,
respectively.

From Figs. 2-4, it can be seen that the position estimation
errors of the EKF is off zeros because of the biases in the
INS/GNSS integrated navigation system, in which the alti-
tude errors are the biggest. The position errors of the ECKF
fluctuate around zeros, because the ECKF combines the
statistics of biases into the state estimation formula by using
the ‘‘consider’’ method and mitigates the negative effects of
the biases. But, when the UAV is maneuvering, these errors

FIGURE 4. Altitude error.

FIGURE 5. East velocity error.

FIGURE 6. North velocity error.

of the ECKF are bigger than the errors of the EKF on account
of the nonlinear approximation errors coming from the Taylor
expansion and Jacobi matrices, and the overcompensation of
the bias covariance. The position errors of the PSTECKF are
smallest in three results by introducing the adaptive factor to
reduce the nonlinear approximation errors and the perturba-
tions of navigation system.

Similar results emerged in the state estimation of the
velocity of the integrated navigation in Figs. 5-7. For the up
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FIGURE 7. Up velocity error.

velocity in Fig. 7, the errors of the EKF have a bias about
2m/s, the errors of the ECKF have big fluctuation and also
have a bias of dynamic state disturbance during 400s to 700s
and 1000s to 1500s, and the errors of the PSTECKF fluctuate
around zeros with a bigger covariance respected with the
EKF and ECKF. For the east velocity in Fig. 5 and the north
velocity in Fig. 6, the errors of the PSTECKF are the smallest,
and the errors of the ECKF are the biggest for the same reason
in the position.

The above simulations and analyses demonstrate that the
proposed PSTECKF can effectively mitigate the negative
effects of the biases and perturbations of the integrated navi-
gation system, and has a better navigation performance than
the EKF and the ECKF in totally.

VI. CONCLUSION
By considering the biases and perturbations in the INS/GNSS
integrated navigation system, the novel partially strong
tracking extended consider Kalman filtering (PSTECKF) is
proposed to mitigate the negative effects of these uncertain-
ties. Comparing with the extended Kalman filtering (EKF),
the proposed PSTECKF makes two main changes. One
change is considering the biases and incorporating their
covariance into the state error covariance and the Kalman
gain matrices to balance the state estimation and the mea-
surements, but not estimates these biases. Another is par-
tially introducing the adaptive fading factor into the predicted
covariance of the states, which are not all the augmented
states, to compensate the nonlinear approximation errors
and some covariance uncertainties. Numerical simulations
for the INS/GNSS integrated navigation of the unmanned
aerial vehicle demonstrate the effectiveness of the proposed
PSTECKF in terms of mitigating the biases and perturbations
in navigation system compared to the EKF and the extended
consider Kalman filtering.
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