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ABSTRACT This paper aims at scheduling bag-of-tasks (BoT) applications under budget constraints on
hybrid clouds for minimizing the makespan. To solve this NP-hard problem, we propose a novel firefly
algorithm (NFA) in which the evaluation of a firefly consists of two steps: (1) mapping a firefly to a
scheduling solution (a task sequence); (2) calculating the solution’s objective (its corresponding makespan).
In the first step, different from the well-known ranked-order value (ROV) rule, we propose a distance-
based mapping operator that relies on the distance between a firefly and the brightest one to determine
the mapping relationship between a firefly and a solution. We use a probability model in which solutions
corresponding to fireflies closer to the brightest one would have higher probabilities to inherit tasks from
the current best solution. In this manner, these solutions can inherit more ‘‘good genes’’ hidden inside the
current best solution to evolve into more high-quality solutions. In the second step, we employ an effective
heuristic to evaluate solution objectives. We further develop a composite heuristic to generate the initial best
solution, providing the proposed NFAwith a good start. We also establish a newmovement scheme such that
fireflies distant from the brightest one can explore a wide range in the search space, whereas fireflies nearby
the brightest one can search in a small neighborhood. Experimental results show that, by employing the
above-mentioned strategies, NFA outperforms the standard firefly algorithm and the existing best algorithm,
in terms of scheduling effectiveness and computational efficiency. Specifically, the distance-based mapping
operator is verified to be both more effective andmore efficient than the ROV rule. The composite heuristic is
capable of generating a good initial solution, leading to the high quality of the final schedule. The movement
scheme can further reduce the makespan of BoT applications.

INDEX TERMS Bag-of-tasks applications, hybrid clouds, makespan, firefly algorithms.

I. INTRODUCTION
Cloud computing is a popular distributed computing
paradigm that can deliver a massive amount of computing
resources in a pay-as-you-go manner. In other words, users
only need to pay what they have actually used. As a result,
users can temporally use computing resources of public
clouds while the private cloud cannot provide sufficient
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resources. In order to achieve this target, cloud vendors offer
hybrid cloud solutions that integrates a private cloud with
public clouds seamlessly. As illustrated in Figure 1, with the
aid of hybrid cloud solutions, administrators or programs of
the private cloud can manage the computing resources of the
hybrid cloud (i.e., the private cloud and public clouds) via
unified interfaces. For example, in case that the available
computing resources of the private cloud cannot afford an
instance of a ‘‘large’’ virtual machine (VM) type for process-
ing a specific task, an instance of the same VM type can be
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FIGURE 1. An illustrative example of hybrid cloud environment.

created on a public cloud to tackle this task. In addition, many
cloud providers now can deliver and charge VM instances
in seconds (e.g., QingCloud1 and TecentCloud2) instead of
in hours. This new charging mechanism makes hybrid clouds
more popular for cloud customers, since they would not waste
a certain fraction of the last hour that has to be paid entirely
in traditional charging mechanisms.

Bag-of-tasks (BoT) applications consist of many
independent tasks that can be processed in parallel with-
out synchronization [1]. BoT applications are widespread
in a variety of fields,such as computer imaging, parameter
sweeps, and big data applications [2]–[4]. For instance,
in parameter sweep application, a program have to be exe-
cuted repeatedly and independently with different input
configurations. Cloud computing represents a natural solu-
tion for executing BoT applications, considering its high-
performance computing capability as well as flexible pricing
policy. In hybrid cloud environments, if the private cloud
cannot provide sufficient resources to accomplish all appli-
cations, it is a wise choice for users to outsource certain
BoT applications and process them on public clouds. Under
this circumstance, the key challenge is how to optimally
schedule BoT applications’ tasks given a user-specified bud-
get for public cloud usage, such that the completion time of
all tasks (a.k.a. makespan) can be minimized.

The focus of this paper is to address the above-mentioned
BoT scheduling problem under budget constraints on hybrid
clouds tominimize themakespan, which can be formulated as
a NP-hard integer programm (IP) [5], [6]. We propose a novel
firefly algorithm (NFA) to solve the considered problem,
in which a task sequence is used to represent a scheduling
solution. The standard firefly algorithms (SFA) is an evolu-
tionary algorithm originally developed for solving continuous
optimization problems [7]. The proposed NFA adopts the
representation of SFA, i.e., each firefly is represented by
a fixed-dimensional tuple, in which each element is a real
number. Accordingly, we propose a two-step procedure to

1https://www.qingcloud.com/
2https://www.qcloud.com/

evaluate a firefly. In the first step, each firefly is mapped
onto a scheduling solution (i.e. a task sequence). Different
from the well-known ranked-order value (ROV) rule [8],3 we
propose a distance-based mapping operator that relies on the
distance between a firefly and the brightest one to determine
the mapping relationship between a firefly and a solution.
During the evolving procedure, each firefly moves toward
the brightest firefly which indicates the best solution. For
this reason, the proposed mapping operator uses a probability
model in which solutions corresponding to fireflies closer to
the brightest one would have higher probabilities to inherit
tasks from the current best solution. In this manner, these
solutions can inherit more ‘‘good genes’’ hidden inside the
current best solution to evolve into more high-quality solu-
tions. The second step is to calculate the solution’s objective
(i.e., its corresponding makespan) by an existing effective
heuristic. Meanwhile, we develop a composite heuristic to
generate the initial best solution, providing the proposed NFA
with a good start. We also establish a new movement scheme
such that fireflies distant from the brightest one can explore
a wide range in the search space, whereas fireflies nearby
the brightest one can search in a small neighborhood. This
scheme is for the purpose of maintaining a high probability in
themapping operator to inherit most good genes in the current
best solution when they are close to the brightest one. Experi-
mental results show that, by employing the above-mentioned
strategies, the proposed NFA outperforms the standard firefly
algorithm and the existing best algorithm [5] when solving
the considered problem, in terms of scheduling effective-
ness and computational efficiency. Specifically, the distance-
based mapping operator is verified to be both more effective
andmore efficient compared with the ROV rule. The compos-
ite heuristic is capable of generating a good initial solution,
leading to the high quality of the final scheduling solution.
The movement scheme can further improve the effectiveness
of NFA in scheduling BoT applications.

The rest of this paper is organized as follows. Section II
investigates existing approaches related to this work.
Section III formulates the optimization model for the
considered BoT scheduling problem. Section IV detailed
the proposed NFA for solving the formulated problem.
Section V presents our experimental setup and simulation
results. Finally, the concluding remarks are summarized
in Section VI.

II. RELATED WORK
In the literature, a considerable number of efforts have been
made to study BoT scheduling on clouds [2], [5], [9]–[31].
Since the attention of this paper is paid to scheduling
BoT application in hybrid cloud environments, in this section
we briefly discuss existing scheduling methods related to
hybrid clouds.

3ROV rule is also referred to as smallest position value (SPV) rule in the
literature.
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In [22], the authors addressed a deadline-constrained BoT
scheduling problem and formulated it as an IP. Two effective
heuristics were constructed in [23] to solve the schedul-
ing problem considering the cost in both computation and
data transmission, whereas similar heuristics were intro-
duced in [24]. Different from other works regarding private
clouds as resources pools, Wang et al. [26] considered private
clouds as multiple discrete physical machines, and designed
a greedy heuristic to schedule tasks among these physi-
cal machines. The problem of scheduling BoT applications
with varying tasks’ runtimes was studied in [27]. A method
for estimating tasks’ runtimes was developed to update the
scheduling results according to the estimated task durations.
Abdi et al. [28] considered BoT scheduling on a hybrid cloud
platform and employed CPLEX solver to solve the problem.
The authors in [29] and [30] employed particle swarm opti-
mization algorithms to schedule BoT applications on hybrid
clouds under deadline constraints.

Different from the cost-minimization deadline-constrained
approaches summarized above, our previous work [5] studied
makespan-minimization budget-constrained BoT scheduling
problem on hybrid clouds. This scheduling problem was
formulated as an IP and was solved by a fast iterated local
search (FILS) algorithm. This work addresses BoT schedul-
ing problem in the same scenario. However, we propose a
novel scheduling algorithm NFA that outperforms FILS in
terms of both effectiveness and efficiency.

A firefly algorithm (FA) is a novel metaheuristic inspired
by the social behaviors of fireflies. FA was originally
designed to solve continuous optimization problems [7],
[32]–[34], and can be extended to cope with discrete opti-
mization problems. In [35] and [36], two discrete FAs were
proposed to solve the well-known traveling salesman prob-
lem (TSP). In these two FAs, fireflies are represented as
permutations of city names, and are regarded as solutions.
Two movement schemes were proposed based on the firefly
representation to modify the permutations. Distance between
two fireflies is defined as the number of different edges
between them. Li et al. [37] used similar representation
and distance definition to construct a new FA for solving
asymmetric multi-depot vehicle routing problem. In [38],
an improved FA was presented to solve the unrelated par-
allel machines scheduling problem with sequence-dependent
setup times. A special movement scheme was proposed for
updating fireflies by employing adjusted processing times
matrix. In these FAs, each firefly represents a solution to
the problem and can thus be evaluated directly. However,
it is necessary to design specific movement schemes that are
applicable for the corresponding firefly representations.

Two FAs were proposed in [39] and [40] to address the
placement problem of active power conditioners. In these
two FAs, fireflies were encoded in real numbers and then
mapped onto solutions represented in binary notations. Two
mapping operators were proposed to achieve this target.
In [8], a FA encoded in real numbers was proposed to han-
dle multi-objective hybrid flowshop scheduling problems.

The ROV rule was used to map a firefly to a permutation
of jobs, which can be regarded as a solution to the problem.
In these real-encoded FAs, mapping operators are required
for evaluating fireflies. For these problems whose solutions
are represented in permutations, ROV is widely accepted and
used. However, sorting-based ROV is time-consuming when
solving large-scale problems. In this paper, we propose a
distance-based mapping operator, in which the current best
solution is taken into account and its ‘‘good genes’’ can be
inherited by subsequent solutions. As a result, more high-
quality solutions can be explored during the search procedure.
Moreover, the proposed mapping operator is not sorting-
based, and therefore has a lower complexity than ROV does.

III. SCHEDULING MODEL
In this section, we present in detail the optimization model
for the considered BoT scheduling problem, in which sev-
eral variable definitions are similar to those in [41], [42].
We consider a hybrid cloud environment that includes a pri-
vate cloud CP0 andm public clouds CP1,CP2, · · ·,CPm. The
private cloud and all public clouds can provide k VM types
VM1,VM2, · · ·,VMk . EachVM type is associatedwith a CPU
capacity CPUq and a memory capacityMemq. Users can use
the resources of the private cloud for free. However, if tasks
are outsourced to be processed on public clouds, an extra
cost would be incurred. We use pqh (q = 1, 2, · · ·, k; h =
0, 1, · · ·,m) to represent the unit price for using a VMq
instance on a cloud provider CPh. We have pq0 = 0 for the
private cloud since its resources are free to use.

There are n applications to be scheduled on hybrid clouds,
and each application consists of Ti tasks. The total number
of tasks is T =

∑n
i=1 Ti. Similar to the scheduling model

in [29], each application ai requires a VM type specified by
the user. In other words, all tasks belonging to this application
require a same VM type. For each task tj (j = 1, 2, · · ·,T ),
we define a binary variable xjq to denote themapping relation-
ship between this task and the VM type it demands. xjq = 1
indicates tj demands VMq, and xjq = 0 otherwise. Note that
all tasks in an application share the same value of xjq. For
each task tj, we define rj to denote its execution duration.
Following previous studies [22]–[24], [29], we assume that
each task can be executed in only one VM instance and
each VM instance can only process one task at any time
slot, in order to avoid interference or resource contention.
We further assume that the tasks are executed continuously
without any preemption. The setup times for VM instances
are assumed to be zero. As mentioned previously, cloud
providers nowadays can deliver VM instances in seconds.
Therefore, the time overhead for creating a VM instance can
be neglected when compared with task runtimes (generally
in hours). In addition, considering that public cloud providers
can charge resources in seconds as well, the entire time frame
for the scheduling problem is divided into time slots with the
granularity of one second. Specifically for the private cloud,
the amount of resources consumed by BoT applications can-
not exceed the upper-bound limit CPU∗ and Mem∗.
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With all above-mentioned definitions, the completion time
of all tasks (i.e., the makespan) cmax can be determined as the
largest value among all the tasks’ completion times, i.e.,

cmax = max
{
cj; j=1, 2, · · ·,T

}
, (1)

where cj denotes the completion time of task tj, and can be
calculated by

cj = stj + rj. (2)

In this equation, stj indicates the start time of task tj.
We further use S = cmax to denote the maximum number of
time slots for all tasks.

Two decision variables are required to formulate the
scheduling model. Binary variable yjh = 1 means that task tj
is dispatched to CPh, and yjh = 0 otherwise. Binary variable
zjs = 1 denotes that tj is in execution at time slot s on the
private cloud, and zjs = 0 otherwise. Based on these two
binary variables, tj’s start time stj can be determined as

stj =

{
argmin

{
s|zjs=1

}
, if yj0 = 1.

0, otherwise.
(3)

Obviously, if task tj is dispatched to the private cloud
(i.e., yj0 = 1), its start time stj would be
argmin{s|zjs = 1}. To be specific, assume that task tj is in
execution on a VM instance at time slots 3, 4, and 5. Its start
time stj is therefore argmin{3, 4, 5} = 3. On the other hand,
if task tj is outsourced to a public cloud, it can start execution
at time slot 0 since the setup times for VM instances are
negligible and are assumed to be 0.

The total cost for executing all BoT applications can be
then determined as

Cost =
T∑
j=1

m∑
h=0

k∑
q=1

xjqyjhrjpqh. (4)

This cost cannot exceed a user-specified budget limit B.
Putting it all together, we can formulate the considered

scheduling problem as the following IP.
Minimize the makespan:

cmax = max
{
cj; j=1, 2, · · ·,T

}
(5)

Subject to:

cj = stj + rj, j = 1, 2, · · ·,T (6)
T∑
j=1

m∑
h=0

k∑
q=1

xjqyjhrjpqh ≤ B (7)

m∑
h=0

yjh = 1, j = 1, 2, · · ·,T (8)

k∑
q=1

T∑
j=1

zjsxjqCPUq ≤ CPU∗, s = 0, 1, · · ·, S (9)

k∑
q=1

T∑
j=1

zjsxjqMemq ≤ Mem∗, s = 0, 1, · · ·, S (10)

The scheduling objective in Equation (5) is to minimize
the makespan. Equation (6) ensures that tasks are executed
consecutively. Equation (7) imposes the budget constraint.
Equation (8) is to guarantee the uniqueness of mapping from
tasks to clouds. Equations (9) and (10) impose a set of con-
straints that the amount of consumed resources cannot exceed
the corresponding resource limit. For ease of reference, all
associated parameters are listed in Table 1.

IV. PROPOSED NOVEL FIREFLY ALGORITHM (NFA)
The proposed NFA follows the evolutionary mechanism
of SFAs, inspired by social behaviors of fireflies. A firefly
uses flash to attract other fireflies. According to [7], [32],
[33], for any two fireflies, the firefly’s attractiveness is pro-
portional to its brightness (or called light intensity). The less
bright one will be attracted by the brighter one and will move
toward the brighter one. Also, the brightness of a firefly
is associated with the objective of the considered problem.
In other words, less bright fireflies with worse objective
values are attracted by other brighter fireflies with better
objective values. All fireflies will be eventually around the
brightest firefly with the best objective value.

Different from SFAs that were originally proposed for
solving continuous optimization problems, in order to map
real-encoded fireflies to solutions (i.e., task sequences), our
proposed NFA employs a distance-based mapping operator,
which not only considers the distance between a firefly and
the brightest one, but also takes into account the current best
solution. The mapped solutions can then be evaluated by an
efficient task assignment strategy FTA [5]. For the purpose
of giving NFA a good start, we construct an effective com-
posite heuristic to generate a highly-qualified solution that
is regarded to be the initial best solution. More importantly,
we develop a new movement scheme that can maintain a
high probability in the proposed mapping operator to inherit
most ‘‘good genes’’ in the current best solution to gener-
ated solutions when they are close to the brightest one. The
flowchart of the proposed NFA is illustrated in Figure 2.
In what follows, we discuss in detail the proposed mapping
operator, composite heuristic and movement scheme, which
are all fundamental procedures in NFA.

A. SOLUTION REPRESENTATION AND EVALUATION
Task sequences are permutations of all tasks and considered
as solutions in this paper. For example, given four tasks t1, t2,
t3, and t4 in total, the following three permutations of tasks
π1 − π3 are all valid solutions: π1 = (t1, t2, t3, t4), π2 =
(t3, t1, t2, t4) and π3 = (t2, t1, t4, t3). Meanwhile, given a
solutionπ with the total number of tasks T , we defineπ[j](j =
1, 2, · · ·,T ) to be the j-th task in it. For instance, π1[1] = t1,
π2[2] = t1 and π3[3] = t4.
For a firefly i (i = 1, 2, · · ·, |�|) where� is the population,

its location Xi can be represented as a T -dimensional tuple,
i.e., Xi = {Xi1,Xi2, · · · ,XiT } where Xil(l = 1, 2, · · ·,T ) is a
real number. Each firefly can be mapped onto a solution by
our proposed mapping operator. In addition, the brightness
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TABLE 1. Notations for problem formulation.

FIGURE 2. The flowchart of the proposed NFA.

of a firefly is associated with the optimization objective [7],
[32], [33]. As the objective of our considered problem is to
minimize of the makespan, the brightness (or light intensity)
Ii of a firefly i is defined as the reciprocal of its corresponding

solution’s objective, i.e., Ii = 1/f (πi) where f is the objec-
tive function, and πi is the firefly’s corresponding solution
obtained by the proposed mapping operator. We employ the
fast task assignment (FTA) strategy presented in our previous
work [5] to evaluate scheduling solutions (i.e., to calculate
solutions’ objective values), due to its good effectiveness and
efficiency. In other words, we have f (πi) = FTA(πi).

B. DISTANCE-BASED MAPPING OPERATOR
Fireflies are mapped onto solutions by a distance-based map-
ping operator that takes into account the distance between
the mapped firefly and the brightest one, and the current best
solution. This feature is distinct from the existing mapping
operators (e.g., ROV) that only depend on mapped fireflies’
positions. The proposed mapping operator is inspired by the
evolving principle of FAs, i.e., during the evolving procedure,
each firefly moves close to the brightest one corresponding to
the best solution. In other words, fireflies that are closer to the
brightest one (i.e., having shorter distances) may be mapped
to better solutions in larger possibilities. Thus, the mapping
operator uses a probability model, in which solutions corre-
sponding to fireflies closer to the brightest one have bigger
probabilities to inherit tasks from the current best solution,
directly. As a result, more ‘‘good genes’’ hidden inside of the
current best solution could be inherited by these solutions,
beneficial for exploring more high-quality solutions.

Let π∗ and r∗i be the current best solution and the distance
between the firefly i and the brightest one, respectively. For
a firefly i, the mapping operator first creates an empty solu-
tion πi and then constructs πi to be a complete solution by
two steps. In Step 1, each task in π∗ is appended to πi with
the probability p = e−r

∗
i . As r∗i ≥ 0, we have p ∈ (0, 1].

Afterwards, all the tasks that have been appended into πi are
removed from π∗. Accordingly, the smaller r∗i is, the bigger p
is. In other words, solutions corresponding to fireflies closer
to the brightest one have bigger probabilities to inherit tasks
from the current best solution, directly. Consequently, more
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Algorithm 1 Distance-Based Mapping Operator
Input: r∗i and π∗;
Output: A solution πi;

1 Create an empty solution πi;
2 for j = 1 to T do
3 Generate a uniform random number λ ∈ [0, 1];
4 if λ ≤ e−r

∗
i then

5 Append π∗[j] to πi;

6 Remove all the tasks that have been appended into π∗

from π∗temp;
7 for j = 1 to |π∗| do
8 Add π∗ into πi in a uniform distribution;

9 return πi;

‘‘good genes’’ hidden inside of the current best solution could
be inherited by these solutions. This is the reason for the good
effectiveness of the proposed mapping operator. In Step 2,
each left task in π∗ is added into πi in a uniform distribution.
In other words, each task j in π∗ is added to each position in
πi with the identical probability of 1

|πi|
. Finally, πi becomes

a complete solution and is returned. The algorithmic proce-
dure of the mapping operator is presented in Algorithm 1.
Lines 2-5 denote Step 1, while Lines 7-8 correspond
to Step 2.

The complexity of the proposed mapping operator isO(T ).
In comparison, the ROV rule is sorting-based and has a
complexity ofO(T · logT ) in the best case. We draw the con-
clusion that our mapping operator is more computationally
efficient. Since solutions are constructed from the current best
solutionπ∗ based on the probability p, if all the obtained solu-
tions are identical to π∗, NFA loses its exploration capability
and traps into the local optimum. Therefore, it is necessary to
discuss the probability that the obtained solution is identical
to π∗. We prove that the following theorem is true.
Theorem 1: For a firefly i that is not identical to the

brightest firefly, when it is mapped onto a solution πi by
the proposed mapping operator based on the current best
solution π∗, we have lim

T→∞
P(πi = π∗) = 0.

Proof: There are two independent cases which could
lead to πi = π∗. (1) All the tasks in π∗ are inherited by
πi in Step 1. (2) Part of tasks in π∗ are inherited by πi
and removed from π∗ in Step 1, and the other left tasks are
inserted into πi at their original positions in Step 2. Let the
probabilities of these two cases be P1 and P2, respectively.
Then P(πi = π∗) = P1 + P2.
(1) In the first case, since all the tasks in π∗ are inherited

by πi in Step 1, we have P1 = pT .
(2) Assume L to be the number of tasks that are inherited

from π∗ by πi. The expectation of L E(L) should be T ·p. Let
µ be the probability that all left tasks in π∗ are occasionally
inserted at their original positions. Then, µ = 1/AT−LT ,
where AT−LT be the number of (T − L)-length permutations

of T tasks. So, we have P2 = µpL(1 − p)T−L . Therefore,
we have P(πi = π∗) = P1+P2 = pT +µpL(1−p)T−L . Due
to E(L) = T · p, the following equation is true.

P(πi = π∗) = pT + µpT ·p(1− p)T ·(1−p) (11)

Accordingly, we have lim
T→∞

P(πi = π∗) = lim
T→∞

pT +

lim
T→∞

µpT ·p(1 − p)T ·(1−p). As this firefly i is not identical

to the brightest firefly, we have r∗i 6= 0. In other words,
0 < p < 1, 0 < pp < 1, and 0 < (1 − p)(1−p) < 1. Thus,
lim
T→∞

pT = 0, lim
T→∞

µ= 0, lim
T→∞

pT ·p = lim
T→∞

(pp)T = 0, and

lim
T→∞

(1 − p)T ·(1−p) = lim
T→∞

((1 − p)(1−p))T = 0. Therefore,

we have lim
T→∞

P(πi=π∗)=0. �

Theorem 1 justifies that for large-scale problems, the prob-
ability of generating solutions identical to π∗ is substantially
small (close to zero) regardless of p value. However, for
small-scale problems, if fireflies are extremely close to the
brightest one (leading to a large p value), the probability can-
not be regardless according to Equation (11). In other words,
these firefliesmay bemapped to solutions that are remarkably
similar (even identical) to π∗, and the diversification would
be reduced. In order to avoid this terrible situation, we set the
maximum of p as 0.95.

C. COMPOSITE HEURISTIC
As mentioned previously, the mapping operator relies on the
current best solution. In order to give NFA a good start,
we employ a composite heuristic to initialize a highly quali-
fied best solution. The proposed composite heuristic consists
of three steps. In the first step, an initial solution is generated
by the well-known longest task first rule (LTF), in which the
tasks to be scheduled are arranged by their durations in a non-
ascending order.

In the second step, we use an insertion-based reconstruc-
tion method (IRM) to generate a new solution by recon-
structing the obtained LTF result (denoted by πLTF ). We first
create an empty solution πIRM . The j-th task in πLTF is then
inserted into πIRM at each possible position to generate j
candidate partial solutions, among which the best one is used
to update πIRM . Then, IRM handles the (j+ 1)-th task in
the same manner. When all the tasks in πLTF have been
inserted into πIRM and πIRM becomes a complete solution,
IRM returns πIRM and terminates.

To be specific, we provide an example to explain the
IRM procedure. Assume that πLTF has four tasks. In the
first round, πIRM is set to empty, and πLTF[1] is inserted
into πIRM with only one candidate partial solution obtained
(i.e., π1

IRM = (πLTF[1])), which is naturally adopted to update
πIRM (i.e., πIRM ← π1

IRM ). In the second round,
πIRM = (πLTF[1]) and πLTF[2] is inserted into πIRM with
two candidate partial solutions achieved (i.e. π1

IRM =

(πLTF[2], πLTF[1]) and π2
IRM = (πLTF[1], πLTF[2])).

We assume that π1
IRM is better than π2

IRM and π1
IRM is

adopted to update πIRM (i.e. πIRM ← π1
IRM ), accord-

ingly. In the third round, πIRM = (πLTF[2], πLTF[1]) and
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πLTF[3] is inserted into πIRM with three candidate partial
solution obtained (i.e. π1

IRM = (πLTF[3], πLTF[2], πLTF[1]),
π2
IRM = (πLTF[2], πLTF[3], πLTF[1]) and π3

IRM = (πLTF[2],
πLTF[1], πLTF[3])). We assume that π3

IRM is the best and π3
IRM

is adopted to update πIRM (i.e., πIRM ← π3
IRM ), accordingly.

Finally, since all the tasks in πLTF has been processed and
πIRM now becomes a complete solution, IRM returns πIRM
and stops.

In the third step, we iterate a swap-based search method
(SSM) to improve the result of IRM πIRM until no improve-
ment can be obtained. In SSM, two new solutions πSSM
and πtem are first created and are both set as πIRM . Then,
SSM swaps the j-th task in πtem with all its subsequent tasks
and generates (T − j) candidate solutions. If the best one
among them is better than πSSM , it will be used to update both
πtem and πSSM . Otherwise, πtem and πSSM remain unchanged.
Then, SSMproceeds to handle the (j+1)-th task inπSSM . Once
the processing of the (T−1)-th task is completed, SSM returns
πSSM as the result and terminates.

Likewise, we also use an example to clarify the
SSM procedure. We assume that T = 4. Both πtem and
πSSM are set as πIRM = (πIRM [1], πIRM [2], πIRM [3], πIRM [4]),
initially. In the first round, πtem[1] (i.e. πIRM [1]) is swapped
with πtem[2], πtem[3] and πtem[4], respectively. The following
three candidate solutions are generated:

π1
tem = (πIRM [2], πIRM [1], πIRM [3], πIRM [4]),

π2
tem = (πIRM [3], πIRM [2], πIRM [1], πIRM [4]),

π3
tem = (πIRM [4], πIRM [2], πIRM [3], πIRM [1]).

Assume that π3
tem is the best one among these three solutions,

and is also better than πSSM . We set πSSM ← πtem ←

π3
tem. In the second round, πtem = (πIRM [4], πIRM [2], πIRM [3],
πIRM [1]) and πtem[2] is swapped with πtem[3] and πtem[4],
respectively. We can further obtain the following two candi-
date solutions:

π1
tem = (πIRM [4], πIRM [3], πIRM [2], πIRM [1]),

π2
tem = (πIRM [4], πIRM [1], πIRM [3], πIRM [2]).

Assume that π2
tem is the better one, but is worse than πSSM .

In this case, πSSM remains unchanged and πtem is reset to
πSSM (i.e., πtem←πSSM ). In the third round, πtem=πSSM =
(πIRM [4], πIRM [2], πIRM [3], πIRM [1]), πtem[3] is swapped with
πtem[4] with one candidate solution obtained, i.e., π1

tem =

(πIRM [4], πIRM [2], πIRM [1], πIRM [3]). Assume that π1
tem out-

performsπSSM .πSSM is set asπ1
tem, i.e.,πSSM←π1

tem. Finally,
since the (T−1)-th task has been processed, SSM returnsπSSM
as the result and terminates.

The procedure of the composite heuristic is given in
Algorithm 2. Line 1 denotes the first step, i.e., using LTF to
generate a solution πLTF , whereas Line 2 means the second
step, i.e., employing IRM to reconstruct πLTF to obtain πIRM .
The loop in Lines 5-13 is the third step, i.e., iterating SSM to
further improve πIRM . πCH is used to record the best found
solution and returned in Line 14 finally.

Algorithm 2 Composite Heuristic
Input: A task set 9 including all applications’ tasks;
Output: A solution πCH ;

1 πLTF ←LTF(9) ; /* The first step */
2 πIRM ←IRM(πLTF ) ; /* The second step */
3 Set Improved ← TRUE ;
4 Set πCH ← πtem← πIRM ;
/* The “while” loop is the third step

*/
5 while (Improved) do
6 Set Improved ← FALSE ;
7 πSSM ←SSM(πtem);
8 if (πSSM outperforms πCH ) then
9 πtem← πSSM ;

10 πCH ← πSSM ;
11 Set Improved ← TRUE ;

12 else
13 πtem← πCH ;

14 return πCH ;

We perform a brief complexity analysis as follows.
As aforementioned, we employ FTA to evaluate all solu-
tions. However, the complexity of FTA is difficult to
determine explicitly (refer to [5] for details), and is
denoted as O(FTA). The complexities of LTF, IRM and
SSM are O (T · logT · O(FTA)), O (T · (T+1) ·O(FTA))
and O (T · (T−1) ·O(FTA)), respectively. The complexity
of the composite heuristic is hard to determine, since we do
not know the actual number of iterations in the ‘‘while’’ loop.

D. NOVEL MOVEMENT SCHEME
The proposed novel movement scheme is constructed based
on the standard movement scheme of SFA, which is intro-
duced below. In the standard movement scheme, when a
firefly i moves toward a brighter firefly j, its positions are
updated by the following equation.

Xi = Xi + β0e
−γ r2ij (Xj − Xi)+ α

(
ε −

1
2

)
. (12)

where the first term denotes the current location of the firefly
i, and the second one represents the movement of the fire-
fly i from its current location to a new one because of the
attraction. β0e

−γ r2ij is defined as the attractiveness function,
and its value indicates the level that the firefly j attracts the
firefly i. The parameter β0 represents the original attractive-
ness of fireflies, while γ is the light absorption coefficient.
rij is the Euclidean distance between the two fireflies, and
can be calculated by Equation (13). Generally, β0 ∈ [0, 1]
as reported in [7], [32]–[34]. When β0 = 0, only random
search is employed and fireflies would not move toward the
brightest one representing the best solution. On the other
hand, while β0=1, cooperative search is applied such that the
brightest firefly uses its large light intensity for the purpose
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of attracting other fireflies to move toward it. In other words,
the brightest firefly affects the positions of other fireflies
significantly. γ reflects the variation of attractiveness corre-
sponding to the variation of distance between the twofireflies.
γ = 0 indicates constant attractiveness, whereas γ = ∞
means negligible attractiveness (close to zero), leading to a
random search. According to the conclusion given in [7],
[32], [33], in general, γ ∈ [0.01, 100]. The conclusion drawn
in [34] shows that γ ∈ [0, 10]. As a result, we have γ ∈
[0.01, 10]. The third term is the randomization representing
the random search, which allows a firefly to move randomly.
α is a randomization parameter and ε is a random number
with the value uniformly distributed in [0, 1].

rij =

√√√√ d∑
l=1

(Xil − Xjl)2. (13)

It is obvious that in the standard movement scheme,
the value domain of the randomization is [− 1

2α,
1
2α]. Accord-

ingly, once the value of α is initialized, the range of the
random search is constant, without respect to the distance
between the firefly and the brightest one. In fact, when a
firefly is distant from the brightest one, we need to allow the
firefly to search in a wide range. On the other hand, when
a firefly is close to the brightest one, we need to allow the
firefly to search in a little neighborhood around the brightest
firefly in order to maintain a high probability p in the pro-
posed mapping operator. As a result, most good genes hidden
inside of the current best solution can be inherited by the
solutions generated by the mapping operator, benefiting the
high qualities of the obtained solutions and improving NFA’s
effectiveness. According to this conclusion, we propose a new
movement scheme, in which a firefly’s position is updated
by Equation (14) when this firefly moves toward a brighter
firefly j.

Xi = Xi + β0e
−γ r2ij (Xj − Xi)+ r∗i

(
ε −

1
2

)
. (14)

Equation (14) indicates that the value domain of the ran-
domization is [− 1

2 r
∗
i ,

1
2 r
∗
i ], relying on the value of r∗i . Thus,

when a firefly is far away from the brightest one (i.e., a great
r∗i value), a wide searching range can be obtained. On the
other hand, when a firefly is close to the brightest one
(i.e., a small r∗i value), a small neighborhood around the
brightest firefly can also be achieved.

E. DESCRIPTION OF NFA
In the proposed NFA, the evaluation of fireflies is a two-
step procedure that first maps fireflies onto solutions, and
then employs FTA to calculate the corresponding makespan
of mapped solutions. However, the mapping operator in NFA
depends on the distance between the mapped firefly and the
brightest one. In other words, the initialization of the brightest
firefly relies on the mapping operator, which is in turn depen-
dent on the determination of the brightest firefly. We employ
a simple strategy to address this issue, by randomly selecting

the brightest firefly from the initial population. Although
this strategy cannot find the real brightest firefly, it can be
discovered after all the fireflies in the initial population have
been evaluated.

The overall flow of NFA is summarized in Algorithm 3.
Line 2 is the population initialization. Line 3 defines the light
intensity of the firefly i as 1/f (πi). Line 4 is the initializa-
tion of the best solution. In Line 5, the brightest firefly is
selected from the initial population, randomly. The evaluation
procedure of all the fireflies in the initial population is given
in Lines 6-13, where we can see that the brightest firefly is
updated if a new best solution is found. Lines 14-27 represent
the evolving procedure. If firefly j is brighter than firefly
i (i.e., Ij > Ii in Line 17), firefly i is required to move
toward the firefly j and its location Xi will be updated by
Equation (14). Note that Ij > Ii indicates that the solution
corresponding to firefly j is better than that corresponding to
firefly i, i.e., f (πj) < f (πi).

V. EXPERIMENTAL RESULTS
In this section, the performance of scheduling algorithms is
evaluated and impacts of important factors are investigated
by exhaustive simulation experiments.

A. TESTING INSTANCES
The hybrid cloud environment used in experiments consists
of a private cloud and four public clouds. Table 2 describes
the resource capabilities and unit prices for various VM types
provided by public clouds. It is worth mentioning that,
the prices in Table 2 are charged in hours. When calculating
the total cost in the scheduling algorithm, we need to convert
them into unit prices charged in seconds. The two testing
instance sets for parameter determination and performance
evaluation were constructed in the same way as in our previ-
ous works [5]. The testing instances are organized into three
groups in which the number of tasks to be scheduled are
20, 50, and 100, respectively. Each group is further com-
posed of three subgroups representing small-size problem,
medium-size problem, and large-size problem, respectively.
The details about the construction of testing instances can be
referred to [5].

The total cost of using cloud resources must satisfy a
budget constraint. We use VMb to denote the best VM type
among all available types, and pb is its price. The budget limit
is accordingly specified by

B = T × pb × λ, (15)

where λ is tuning parameter for adjusting the budget value
and is referred to as budget factor in this work. T denotes
the number of tasks to be scheduled. Testing instances of
larger sizes (i.e., with greater numbers of tasks) would be
assigned higher budget values. For the private cloud with lim-
ited resources, its CPU and memory capacities are specified
in a similar manner:

CPU∗ = T × CPUb × ρ, (16)

Mem∗ = T ×Memb × ρ, (17)
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TABLE 2. VM types provided by GoGrid and Amazon EC2.

where ρ is another tuning parameter referred to as capacity
factor. For testing instances of larger sizes, they would have
more resources available on the private cloud.

B. PARAMETER DETERMINATION
In the proposed NFA, there are two parameters β0 and γ ,
both of which are used to update fireflies’ positions in
Equation (14). As indicated in Section IV-D, β0 ∈ [0, 1]
in general. Meanwhile, β0 = 1 indicates that the brightest
firefly uses its large light intensity to attract other fireflies to
move toward it. As NFA regards fireflies that are closer to
the brightest one may be mapped to better solutions in higher
possibilities, the brightest firefly is required to try its best to
attract other fireflies to move toward it. Accordingly, we set
β0=1. Also, γ cannot be set as a large value, since a greater
γ value denotes lower attractiveness. Due to γ ∈ [0.01, 10] in
general, we select 10 candidate values in the first half of this
value domain, i.e., γ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.
Considering the use of randomness in the scheduling algo-

rithms, we use the well-known multi-factor analysis of vari-
ance (ANOVA) method to evaluate the scheduling perfor-
mance in a statistical sense. For this reason, we use different
values of the two tuning factors, λ ∈ {1, 5, 10} and ρ ∈
{0.05, 0.1, 0.15} to create nine different parameter configu-
rations. NFA is evaluated on all possible configurations. The
population size in NFA (i.e., the number of fireflies) is set
as |�| = 30. For each firefly, its position value in each
dimension is randomly selected within the interval [−2, 2].
We terminate the NFA procedure if the number of iterations
reaches 1000. For each testing instance, the scheduling algo-
rithm is performed with multiple rounds. We record the
makespan corresponding to the scheduling solution in each
round, and use relative error (RE) to assess the scheduling
quality, which is defined as

RE =

(
R∑
r=1

cr − cLB
cLB

)/
R× 100%, (18)

where R is the number of rounds that the scheduling algo-
rithm is repeated, cr denotes the obtained makespan in the
r-th round, and cLB is the lower-bound limit for makespan,
which can be determined by assuming that the private cloud
has infinite resources and there is a unlimited budget for
public cloud usage. Referring to Equation (18), a smaller

FIGURE 3. Mean REs and LSD Intervals for different γ values.

RE indicates a higher scheduling quality as the makespan
is closer to the lower-bound limit. We then use ANOVA
method to analyze the statistical significance of the observed
average REs. Figure 3 presents the mean REs and 95%
confidence least-significant difference (LSD) intervals with
different γ values ranging from 0.5 to 5. We can observe that
the REs of NFA with γ =1, 1.5, 2, 2.5, 3 are similar, and are
lower than those of NFA with other γ values. We set γ= 2
since this value leads to the lowest RE.

C. ALGORITHM EVALUATION
For comparison purposes, we use FILS [5], which is the
existing best algorithm for solving the considered problem,
as the baseline in performance evaluation. The standard fire-
fly algorithm (SFA) [7] is also taken into account. However,
SFA was originally introduced to solve continuous optimiza-
tion problems. In order to make SFA capable of solving
the considered problem in this paper, ROV is employed
by SFA to map fireflies to solutions. Same as NFA, SFA uses
FTA to evaluate the obtained solutions. All the parameters of
SFA and FILS are set as the same in [5], [7], respectively.
For fair comparison, the termination criteria of all the three
compared algorithms are set as 1000 generations. Same as
those in Section V-B, the two factors are set as λ ∈ {1, 5, 10}
and ρ ∈ {0.05, 0.1, 0.15}, respectively. All three scheduling
algorithms used in comparative experiments are repeated
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Algorithm 3 Novel Firefly Algorithm (NFA)
Input: A task set 9 including all applications’ tasks;
Output: The objective of the best solution f (π∗);

1 Set the values of MaxGeneration, α, β0 and γ ,
respectively;

2 Initialize the population of fireflies
� = {X1,X2, · · · ,X|�|}, randomly;

3 Define the light intensity Ii of the firefly i as 1/f (πi);
4 Employ the composite heuristic to generate the initial
best solution π∗;

5 Select a random firefly from the population as the
brightest one and assume its index as b;

6 for i = 1 to |�| do
7 Calculate r∗i ;
8 Generate a solution πi corresponding to the firefly i

by the proposed mapping operator with r∗i and π∗;
9 Calculate the objective f (πi) of the obtained solution

by performing FTA on πi;
10 if f (πi) < f (π∗) then
11 b← i;
12 π∗← πi;
13 f (π∗)← f (πi);

14 while t < MaxGeneration do
15 for i = 1 to |�| do
16 for j = 1 to |�| do
17 if Ij > Ii then
18 Calculate distance rij by Equation (13);
19 Move the firefly i toward the firefly j by

Equation (14);

20 Calculate r∗i ;
21 Generate a solution πi corresponding to the

firefly i by the proposed mapping operator
with r∗i and π∗;

22 Calculate the objective f (πi) of the obtained
solution by performing FTA on πi;

23 Update Ii;
24 if f (πi) < f (π∗) then
25 b← i;
26 π∗← πi;
27 f (π∗)← f (πi);

28 return f (π∗);

with 5 rounds (i.e. R=5). Figure 4 illustrates the comparison
results of mean REs and LSD intervals at a 95% confidence
level by different algorithms.

We can observe from Figure 4 that, the mean REs of FILS,
NFA and SFA are 0.96, 0.66 and 1.03, respectively. We con-
clude that NFA outperforms both FILS and SFA. The reasons
for NFA’s good effectiveness are explained as follows. First,
NFA employs an effective composite heuristic to initialize a
high-quality best solution. Moreover, NFA uses the distance-
based mapping operator to map fireflies onto scheduling

FIGURE 4. Comparison of mean REs and LSD Intervals among different
algorithms.

solutions. The good genes hidden inside the current best solu-
tion are inherited to the resultant solutions. Finally, NFA uti-
lizes the proposed movement scheme, in which fireflies can
explore a wide range while they are distant from the brightest
one, whereas fireflies can search in a small neighborhood
around the brightest one for the purpose of maintaining a
high probability in the mapping operator to inherit most good
genes in the current best solution to generated solutions when
they are nearby the brightest one. All these conclusions will
be verified in Section V-E.

In order to evaluate the efficiency, we use normalized effi-
ciency (NE) to denote scheduling algorithm’s computational
efficiency, which is defined as the ratio of its computation
time to the computation time of a baseline algorithm. The
lower NE value is, the higher computational efficiency the
scheduling algorithm achieves. In this set of experiments,
FILS is used as the baseline algorithm. All scheduling algo-
rithms are performed with R rounds, and computation times
are averaged to calculate NE. Figure 5 provides the mean NEs
achieved by different algorithms for evaluation. The NE val-
ues by FILS, NFA and SFA are 1, 0.32, and 0.69, respectively,
indicating that NFA achieves the highest efficiency. More
importantly, NFA is more efficient than SFA. The reason is
that the complexity of the proposed distance-based mapping
operator employed by NFA is O(T ), lower than that of ROV
used by SFA O(T · logT ).

D. IMPACTS OF KEY FACTORS
We perform another set of experiments to analyze the impacts
of several key factors, including the budget factor λ, capacity
factor ρ, and the number of tasks T , upon the scheduling
results. As in previous experiments, we observe themean REs
and LSD intervals by different algorithm when the factors
increases their values. We can make several observations
from the evaluation results presented in Figures 6-8. As the
λ value increases, the mean REs by scheduling algorithms
decrease with a higher budget limit. On the other hand, with
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FIGURE 5. Mean NEs achieved by different algorithms.

FIGURE 6. Mean REs and LSD intervals w.r.t λ value.

a larger ρ value, we can also observe a decrease in the
mean REs, since the parallelism of task execution has been
enhanced with more resources provided by the private cloud.
On the side of the total task number T , Figure 8 shows that
the proposed NFA achieves the lowest REs with regardless of
the value of T . In other words, NFA maintains stably good
effectiveness for all scales of problems.

E. IMPACTS OF KEY OPERATORS
We now investigate the impacts of several main procedures
of NFA, including the mapping operator, composite heuristic
and movement scheme upon scheduling results. The compos-
ite heuristic consisting of LTF, IRM, and SSM. The effec-
tiveness of LTF has been verified in our previous work [5].
We now evaluate the effectiveness of IRM, SSM and the
overall composite heuristic. For this reason, we construct
three new NFAs, NFA_RAN, NFA_H1 and NFA_H2 for
evaluation. RAN uses a randommethod to generate the initial
best solution. H1 is a heuristic that uses LTF to generate
the initial best solution and utilizes IRM to improve the
obtained solution. H2 also employs LTF to produce the ini-
tial best solution, but uses SSM to improve it. Obviously,
the effectiveness of IRM, SSM, and the overall composite

FIGURE 7. Mean REs and LSD intervals w.r.t ρ value.

FIGURE 8. Mean REs and LSD intervals w.r.t T value.

heuristic can be shown by comparing NFA with NFA_H2,
NFA_H1 and NFA_RAN, respectively. In order to evaluate
the distance-based mapping operator, we design NFA_ROV
by replacing the mapping operator with the ROV rlue in
NFA. To verify the proposed movement scheme, we estab-
lish NFA_SM, in which the standard movement scheme is
employed instead of our proposed movement scheme. These
algorithms are compared with NFA. Parameters of those new
constructed algorithms are set the same as those of NFA. Note
that NFA_SM has another parameter α, whose value is set
as 0.8 by an experiment in which α ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
andNFA_SMwithα=0.8 achieves the best effectiveness. All
the compared algorithms are run with the maximal number
of generations 1000 and R = 5. The results of mean REs
and LSD intervals (at a 95% confidence level) by different
algorithms are given in Figure 9.

We can observe from Figure 9 that NFA is more effec-
tive than NFA_ROV in terms of scheduling quality. The
results show that the proposed mapping operator is supe-
rior to the ROV rule. The reason is that in the proposed
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FIGURE 9. Plot of mean REs and LSD intervals for the compared
algorithms.

FIGURE 10. Plot of mean NEs for NFA and NFA_ROV.

distance-based mapping operator, good genes hidden inside
of the current best solution can be inherited to those generated
solutions probabilistically, which is beneficial for the high
quality of the obtained solutions. In addition, as aforemen-
tioned, the complexity of the mapping operator is lower than
that of ROV. This conclusion can be verified by the resutls
in Figure 10. The mean NEs of NFA and NFA_ROV are
0.42 and 1.00, respectively.

Figure 9 also shows that NFA significantly outperforms
NFA_RAN, indicating that composite heuristic has good
effectiveness and makes a substantial contribution to the high
performance of NFA. Although NFA leads to a lower RE
than NFA_H1 and NFA_H2 do, we notice that NFA does
not outperform NFA_H1 and NFA_H2 significantly. Thus,
we draw the conclusion that both IRM and SSM are effec-
tive but do not make significant contributions. Nevertheless,
IRM and SSM both play important roles, which can be
verified by the fact that NFA_H1 and NFA_H2 are better
than NFA_RAN in an insignificant way but NFA outperforms
NFA_RAN significantly. The only difference between NFA
and NFA_H1/NFA_H2 is that, NFA employs both IRM and
SSM but NFA_H1/NFA_H2 solely uses IRM/SSM. Judging

by this point, the good effectiveness of NFA depends on both
IRM and SSM.

One more observation can be made from Figure 9 that
NFA significantly outperforms NFA_SM, denoting that the
proposed movement scheme is advantageous over the stan-
dard movement scheme. The reason is that we allow fireflies
to move randomly in a wide/narrow range when they have
long/short distances to the brightest firefly. As a result, when
fireflies are distant from the brightest one, a wide range in
the search space can be explored. When fireflies are close
to the brightest one, they search in a small neighborhood
around of the brightest firefly. In other words, these fireflies
can maintain a short distance to the brightest one, leading to
a high probability p of inheriting most good genes from the
current best solution to generated solutions. Therefore, high-
quality solutions can be obtained by the mapping operator,
and the effectiveness of NFA can be improved.

VI. CONCLUSION
This paper addressed the problem of scheduling bag-of-tasks
(BoT) applications with budget constraints on hybrid clouds
for the purpose of minimizing the makespan. We proposed a
novel firefly algorithm (NFA) to solve it. In NFA, fireflies
are evaluated by two steps: (1) use a distance-based map-
ping operator for mapping fireflies to solutions; (2) employ
an existing heuristic FTA to calculate solutions’ objectives.
We also proposed a composite heuristic to generate the initial
best solution and a newmovement scheme to update fireflies’
positions. Experimental results showed that NFAoutperforms
the standard firefly algorithm and the existing best algorithm
for the considered problem FILS, in terms of scheduling
effectiveness and computational efficiency.
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