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ABSTRACT Background subtraction is one of the key pre-processing steps necessary for obtaining relevant
information from a video sequence. The selection of a background subtraction algorithm and its parameters is
also important for achieving optimal detection performance, especially in night environments. The research
contribution presented in this paper is the identification of the optimal background subtractor algorithm in
indoor night-time environments, with a focus on the detection of human falls. 30 background subtraction
algorithms are analyzed to determine which has the best performance in indoor night-time environments.
Genetic algorithms have been applied to identify the best background subtraction algorithm, to optimize
the background subtractor parameters and to calculate the optimal number of pre- and post-processing
operations. The results show that the best algorithm for fall-detection in indoor, night-time environments
is the LBAdaptativeSOM, optimal parameters and processing operations for this algorithm are reported.

INDEX TERMS Fall detection, camera-based, background-subtraction.

I. INTRODUCTION
The risk of falling is one of the most prevalent problems faced
by elderly individuals. A study published by theWorld Health
Organization [1] estimates that between 28% and 35%of peo-
ple over the age of 65 suffer at least one fall each year, and this
figure increases to 42% for people over 70. According to the
World Health Organization, falls represent greater than 50%
of elderly hospitalizations and approximately 40% of non-
natural mortalities for this segment of the population. Falls
are a significant source of mortality for elderly individuals
in developed countries. Falls are particularly dangerous for
people that live alone because of the amount of time that
can pass before they receive assistance. Approximately one-
third of the elderly (those over the age of 65) in Europe live
alone [2], and the elderly population is expected to increase
significantly over the next twenty years.

The fall detection system proposed by Fallert [3] is based
on a low-cost device comprising an embedded computer
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and a camera. Installed into walls or ceilings, this device
monitors a room without human intervention. Thus, people
monitored at home are not required to wear devices, and the
system is capable of 24 h monitoring. Fallert’s fall detection
system works relatively well (over 96% accuracy) during
daylight, but performs poorly at night because of the lack
of light. To solve this problem, the inclusion of an infra-
red emitter and a camera without an IR filter were required.
Improvements to the background subtractor algorithm used
previously [3] were required because of poor performance
under night-time conditions.

Background subtraction is important for many image
processing problems and has been extensively studied [4].
Several different background subtraction approaches are
compared in [5]; however, the methods studied in this com-
prehensive review fall short when applied to infra-red video
images. This paper analyses the performance of the back-
ground subtraction algorithms presented in [5] on night
images taken with infra-red light, with the aim of select-
ing algorithms able to work with infra-red video. Pre- and
post-processing improvements to background subtraction
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accuracy were considered, and a genetic algorithm was
implemented for optimal parameter selection. The authors
of [5] applied hand-fitted parameters for each of the algo-
rithms, a technique that is relevant for many applications,
from traffic cameras to fall-detection of elderly people.
In contrast, in this paper, background subtraction parameters
of several algorithms are optimized using a genetic algorithm,
in order to compare them and select the best background
subtraction algorithm for detecting falls in night-time video
images.

This article is structured as follows: previous work and
state of the art in background subtractor algorithms are dis-
cussed in sections II and III. The description of the Fallert sys-
tem is presented in section IV. The methodology is described
in section V, and the results and discussion in section VI.
Finally the conclusions are summarized in section VII.

II. PREVIOUS WORK
Fall detection technologies can be divided into three cate-
gories, as explained by [6]: wearable sensors, ambient sen-
sors, and vision-based technologies.

Most wearable sensors are based on accelerometers and
gyroscopes that a person must wear or carry [7]–[11]. Some
sensors use a mobile phone as a primary [12] or accessory
device [13] to detect falls. These systems have a fundamental
problem: they are based entirely on the person carrying the
device. On the contrary, ambient sensors and vision-based
technologies work independently from any user action. Most
currently available commercial devices for fall detection are
portable. In fact, the top 10 fall detectors listed on the website
‘‘toptenreviews’’ 1 are based on portable devices.

Ambient sensors monitor the environment continuously to
detect falls. There are several approaches: technologies based
on the interruption of some type of beam or set of beams
of infra-red light (laser or not) [14], [15], 3D cameras [16],
WiFi signal strength analysis [17], and sound [18], [19] and
vibration [20], [21] detection.

Because of their applicability, vision-based systems are
one of the most interesting approaches. They rely on artificial
intelligence algorithms to analyze images or video taken from
cameras. Following the discussion presented in [6], vision-
based approaches are focused on real-time execution of a
detection algorithm using standard computing platforms and
low-cost cameras. There are several methods used to obtain
semantic information through video analysis. Many such
methods make use of a 2D or 3D model, while others are
based on the extraction of some features after video image
segmentation of the body. A more detailed explanation of
those approaches can be found in [6] where they are classified
into the following categories: body and shape change, posture
detection, inactivity, spatiotemporal, and 3D head change.

In addition, two types of cameras are mainly used for fall
detection: 2D cameras (like the one used in this paper or

1https://www.toptenreviews.com/health/senior-care/best-fall-detection-
sensors/

in [22], and 3D time of flight (ToF) cameras as discussed
in [23] and [24]. Although ToF cameras provide more infor-
mation, they have worse resolution and are more expensive;
as a result, traditional cameras remain particularly attractive.

A common feature of most vision-based systems is the
use of a background-subtractor algorithm. The segmentation
of relevant scene information is a common first step for
many computer vision algorithms. The most basic techniques
involve subtraction of a background image or registration of
scene changes between frames. More advanced algorithms,
such as the background subtraction algorithm developed
by [25], register the most common colors of each pixel and
update learned data over time, consequently exhibiting adap-
tive capabilities responsive to scene changes over time.

The recognition of specific features can also be used to
extract relevant information from a scene. Feature descriptor
algorithms, such as histograms of oriented gradients, can be
trained to identify certain features of the human body. One
example of this application can be found in [26], [27], where
a subject’s head and body are independently followed, and
accurate readings of their relative trajectories over time are
found.

Due to their importance, many background-subtractor
algorithms (included in the background-subtractor library
BGSLIbrary) were studied in [5] under daytime conditions.
The current article presents an analysis of background sub-
tractors on indoor, night-time images. Furthermore, the use of
background subtractors is focused on a specific application
(the detection of falls), while in [5], analysis is performed
for more general applications. A more detailed review of
background-subtractor algorithms can be found in section III.

III. REVIEW OF THE BACKGROUND-SUBTRACTION
ALGORITHMS UNDER ANALYSIS
In the previous section, the importance of the background
subtractor algorithms was explained. The background sub-
tractor library (BGSLIbrary) includes many algorithms,
some of which were analyzed and compared in [5]. The
purpose of this paper is to reanalyze these algorithms (as well
as some more recent algorithms), to find the most suitable
background-subtractor algorithm to detect human falls under
night-time conditions. All background-subtractor algorithms
can be found in https://github.com/andrewssobral/bgslibrary.
The complete list of the algorithms is shown in Table 1.
Most of the algorithms listed in Table 1 require one or more

input parameters. Parameter choice is critical to algorithm
performance; thus, we used a genetic algorithm to find opti-
mal parameters in order to obtain the best results with each
of the algorithms.

In this section, we present an overview and brief analysis
of the algorithms.

A. BASIC METHODS, MEAN AND VARIANCE WITH TIME
Methods based on basic functions usually rely on a single
parameter. Briefly, in these methods each frame is com-
pared with a frame selected as the true background, and the
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TABLE 1. Algorithms compared.

difference computed. The true frame is usually selected as the
first frame, or the mean of the frames to that point.

B. STATISTICAL METHODS USING A SINGLE GAUSSIAN
In algorithms based on a single Gaussian model, each pixel is
modelled with a probability function defined by its mean and
standard deviation. With this Gaussian model, the probability
of a pixel being background or foreground can be obtained.
This method is more robust when illumination changes occur.

The DPWren GA algorithm, which models people in the
image and the background, and the LB Simple Gaussian
algorithm, which updates the mean and standard deviation
with time belong to this category.

C. STATISTICAL METHODS USING MULTIPLE GAUSSIANS
One of the most popular background detection techniques is
based on a parametric adaptivemixture ofmodels. Thismodel
was first presented in [31], and improved in [48]. In this
algorithm, the values of each pixel are modeled by a mixture
of Gaussians. These distributions are generally updated using

an algorithm of mean minimization that improves the use of
the Gaussian distribution (see [30] an [4]). Every time a new
frame is processed, the mixtures of Gaussians for each frame
are updated.

D. METHODS BASED ON EIGENVALUES AND
EIGENVECTORS
The only algorithm considered here that is based on
eigenvalues and eigenvectors is the DPEigenbackgroundBGS
method ([33]). This method builds an eigenspace that models
the background. The method includes characteristics of sur-
rounding pixels to obtain a more precise description of each
pixel.

E. LOCAL BINARY PATTERN (LBP)
The Local Binary Pattern method is a gray-scale invariant
presented in the early 1990s. In the original case (see [49]),
the original 3 x 3 pixel neighborhood is thresholded by the
value of the central pixel. The values of the pixels in the
thresholded neighborhood are multiplied by weights given to
the corresponding pixels. Finally, the values of the surround-
ing pixels are summed to obtain the value of this texture unit.

F. LOCAL BINARY SIMILARITY PATTERN (LBSP)
The LBSP is based on the definition of a new characteristic
index defined by the following equations:

LBSPR(xc, yc) =
P−1∑
p=0

d(ip − ic) · 2p (1)

with

d(x) =

{
1 if |x| ≤ Td ,
0 if |x| > Td ,

(2)

where Td is a similarity threshold and ic corresponds to the
intensity of the central pixel (xc, yc), and ip, the intensity of
the pth pixel in the set of neighboring pixels P (see [50]).

G. METHODS BASED ON FUZZY LOGIC
Themethods in this category use fuzzy logic in three different
ways as described below.

First, the Fuzzy Sugeno Integral uses a fuzzy integral to
fuse texture and color features for background subtraction
(see [38]).

Second, in the Fuzzy Choquet Integral method (see [39]),
background initialization is made by using the average of
the first N video frames containing objects. An update rule
applied to the background image is necessary for the algo-
rithm to adapt well to the system over time. For this, a selec-
tive maintenance scheme is adopted.

Finally, the LBFuzzy Gaussian method (see [40]) uses
a saturating linear function instead of a hard limiter
(in the fuzzy background subtraction) to determine if the pixel
belongs to the background or to the foreground.
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H. METHODS BASED IN TYPE-2 FUZZY LOGIC
The first detector in this category is presented in [51] (see
also [41], [52]) in two modes, T2-FGMM-UM and
T2-FGMM-UV. Although both modes can be used to model
the background, the T2-FGMM-UM is expected to be more
robust than the T2-FGMM-UV.

In [42], the authors introduced spatial-temporal constraints
into the T2-FGMM using the MRF (Markov Random Field),
a framework to achieve superior modeling performance for
dynamic backgrounds.

I. NEURAL AND FUZZY-NEURAL METHODS
Neural and fuzzy-neural methods use SOM (Self Orga-
nizing Maps) to detect the background and foreground
(see [43], [44]. Each node of the SOM has an associated
weight vector of the same dimension as the input data vector
and a position in the map space. The nodes are usually orga-
nized in a hexagonal or quadrangular regular 2-dimensional
grid. The SOM describes a mapping between the higher
dimensional input state and the lower dimensional map. The
process of placing an input vector in the map requires finding
the node with the most similar weight (the closest one).

J. OTHERS
Algorithms that could not be placed in any of the previous
categories are described in this section.

The Independent Multimodal Background Subtraction
(IMBS) method discussed by [45] seeks fast and efficient
background subtraction. The background model is computed
through per-pixel on-line statistical analysis of a set L of N
frames in order to achieve high computational speed. Accord-
ing to a sampling period P, the current frame I is added to L,
thus becoming a background sample Sn, where 1 ≤ n ≤ N .
The non-parametric model called Vu Meter [46] is based

on a discrete estimation of the probability distribution. The
key aspects of this method are the probabilistic model and
the temporal update.

In [47] (see also [4]), a parzen-window estimator for each
background pixel is proposed:

P(Is,t ) =
1
N

t−1∑
i=t−N

K (I js,t − I
j
s,i), (3)

where K is the kernel (usually a Gaussian kernel), and
N is the number of previous frames used to estimate P.
A pixel is classified as an object when P(It ) is higher than
a predefined threshold, i.e. when the probability it belongs to
the background is low.

K. FINAL CONSIDERATIONS ABOUT THE
BACKGROUND-SUBTRACTORS
As pointed out at the beginning of the section, most of the
algorithms discussed above were studied in [5] comparing
real and computer-generated videos. In that extensive work,
a broad comparison including detector accuracy, execution
time, and CPU andmemory requirements showed that there is

FIGURE 1. Fall detection system prototype.

not a perfect algorithm, and performance is highly dependant
on the application.

The algorithms studied by [5] were evaluated based on car
detection in outdoor, daytime scenes, with different weather
conditions. In contrast, our algorithm comparison is based on
the detection and tracking of people inside a house. In addi-
tion, we are interested in night vision, which is not considered
in [5].

In order to focus tests of background subtractors (available
in the library) on night-time videos taken inside a house,
a metric was designed by removing the D-score index used
by [5]. This D-score index weighs the importance of a pixel
depending on its location in relation to the contour of the
object. However, in our case the shape of the object is not
critical to indoor, night-time conditions, and the D-score
index could lead to misleading results.

In [5], the parameters of the algorithms were adjusted by
manually searching for the best results. In our work, we sys-
tematically compare algorithms using a set of test cases and
optimize parameters using a genetic algorithm.

IV. DESCRIPTION OF THE FALLERT SYSTEM
The detection system used in this paper (called ‘‘Fallert’’ and
shown in Fig. 1) was originally developed to be executed on
a low-cost embedded computer. Several options were taken
into account, and the Raspberry Pi board was chosen due
to its sound technical characteristics, widespread adoption,
and low price. In addition to the board (version 3B+ cur-
rently), the camera module designed for Raspberry Pi was
used, which connects to the Raspberry Pi board via the CSI
(Camera Serial Interface) port, thereby requiring significantly
fewer CPU (Central Processing Unit) resources than a regular
USB camera. An IR-LED ring is placed around the cam-
era to provide IR illumination at night. The Fallert system
also includes a case (designed specifically and printed with
a 3D printer), an SD card, and a power supply. The electronic
diagram can be found in Fig. 2.

This prototype is a fully capable, independent fall detection
system with an estimated cost of less than 80e. The system
connects to the internet using the built-in WiFi adapter of the
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FIGURE 2. Electronic sketch of the fall detector.

FIGURE 3. Example of a telegram alarm message.

Raspberry Pi and sends a message (email or Telegram) when
a fall has been detected (as in Fig. 3). The message includes
an image of the fall. If the person recovers, another message
is sent.

Most currently available commercial devices for fall detec-
tion are portable. Regarding vision-based systems, simi-
lar products to Fallert exist, for example, ‘‘Carecams’’2,
an online system based on IP cameras. However, these prod-
ucts employ fall detection algorithms run in a server outside
the camera, where powerful computers can be used. In con-
trast, all image processing and fall detection in the Fallert
system are performed in the Raspberry Pi.

V. METHODOLOGY
After reviewing the background subtraction algorithms in
section III, the methodology used to evaluate each algorithm
and to tune its parameters is presented in this section.

2https://www.carecams.co.uk/peace-of-mind-cameras

FIGURE 4. Steps of the detection process including the pre and
post-operations applied to each frame.

The effectiveness of a background subtraction algorithm
depends on the tuning of its parameters. Each algorithm
has different parameters and to test all combinations can
be a time-consuming task. To simplify this task we have
developed a genetic algorithm to select the best combination
of parameters for each algorithm and to compare the per-
formance of the different algorithms for night conditions in
home environments.

The genetic algorithm uses a fitness function that objec-
tively measures algorithm performance for our task. This
function is also used to choose the best parameter combi-
nations for each algorithm. In addition, to get the best per-
formance of each algorithm, we have also included a series
of pre- and post-processing operations to the input frames
and the algorithm output in order to improve the background
subtraction operation. All these computer operations require
significant amounts of time, therefore, the hardware used
for computation is an important factor in this process. It is
important to take into account that not all the algorithms take
the same amount of time to process the video, and this can be
a limitation in some applications.

Summarising, the methodology includes the following
steps: (1) for each video, a set of pre-processing operations
are performed; (2) the background subtraction algorithm is
executed with the chosen parameters; and (3) some post-
processing operations are performed. The genetic algorithm
optimizes the number of pre- and post-processing operations
and the values of the parameters of the background subtrac-
tors.

A. IMAGE PRE- AND POST-PROCESSING
In order to maximize the results of the background subtrac-
tion, a set of common operations were performed in each
frame. The image processing cycle can be seen in Fig. 4.
These operations, which are simple pixel transformations that
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FIGURE 5. Gene codification for each background detection algorithm.

help to remove possible noise or increase the efficiency of the
method, are as follows:
• Contrast: Used to adjust the image contrast.
• Dilation: This operation consists of convoluting an
image Awith some kernel (B). The shape of the kernel is
set to be a circle. This operation makes the white object
bigger and is used to make the foreground (usually
clearer than the background) bigger and thus easier to
analyze.

• Erosion: This operation computes a local minimum over
the area of the kernel in order to reduce noise.

• Open: This operation consists of erosion followed by
dilation and is used to remove noise from the image after
background detection.

• Close: This operation consists of a dilation followed by
an erosion and is used to fill holes in the foreground fig-
ures that may have appeared after background detection.

The experiments and results presented in the next section
clarify the role that these basic image operations play in
increasing the effectiveness of the background subtractors.
Each operation is done with the default parameters, but the
number of times each operation is performed is optimized
using a genetic algorithm designed for speed and simplicity.

B. GENETIC ALGORITHM
There are several alternatives for dealing with the optimiza-
tion of the proposed algorithms. Other optimization algo-
rithms such as Differential Evolution or Particle Swarm Opti-
mization, could have also worked. However, considering the
similarity between the parameters to be optimised and the
genetic algorithm genes, the genetic algorithm was consid-
ered as the most appropriate.

The genetic algorithm was implemented using MatLab,
and its ga (genetic algorithm) function. To codify the infor-
mation to optimize, the following genetic sequence (Fig. 5)
was used. The number of genes depend on the algorithm
to optimize, as the gene codification includes the intrinsic
parameters of the algorithm. Here, N represents the number
of specific parameters of the algorithm minus 5 (the number
of parameters used for the pre- and post-processing steps.)

The range for the pre- and post-processing parameters for
all algorithms was set as shown in Table 2.

Each algorithm has a specific set of parameters (or, in some
cases no parameters). Explanations of each parameter is
beyond the scope of this paper. Optimization was initialized
using either the default parameter values (set by the algorithm
authors), or those selected in the review paper [5].

For the selection of the internal genetic algorithm parame-
ters, we followed the method used in [53]. The objective is to

TABLE 2. Range for the pre- and post-processing operations.

FIGURE 6. Comparison of the evolution of the genetic algorithm with a
different number of generations for the Frame Difference algorithm with
0.7 crossover value.

obtain acceptable results with a reasonable simulation time.
A set of experiments were carried out in order to determine
these parameters. The experiments were done simultaneously
using different computers to reduce the impact of the ran-
domness present in the genetic algorithm. The simplest algo-
rithm, Frame Difference, was used in order to save time in
this process. An example of these experiments can be seen
in Figure 6.

Finally, the genetic algorithm parameters selected for the
optimization were as follows:

• FitnessLimit: If the optimization function reaches this
value (−1), the optimization will stop. It is the perfect
value.

• FunctionTolerance: The algorithm will stop when the
relative change in the fitness function of the last gener-
ations is equal or less than this value (1e−1).

• PopulationSize:The number of individuals in each gen-
eration. After trials it was chosen 30.

• CrossoverFraction: The fraction of individuals in the
next generation created with the crossover function. This
value does not change during the execution of the opti-
mization process. After trials it was chosen 0.6.

Apart from these parameters, the default genetic algorithm
fromMatLab was used, including the crossover and mutation
functions.

C. FITNESS FUNCTION
The fitness function used is based on the one used in [5]. This
metric is based on the comparison of the result obtained in a
set of frames by the algorithm and the ‘‘ground truth’’. The
ground truth is obtained manually for each frame we want to
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TABLE 3. Comparison of pixels.

FIGURE 7. Comparison between the ground truth and the algorithm
output for a certain frame. The color code of the result is explained in
the Table 3.

compare. A first comparison is done pixel by pixel, obtaining
4 classes (see Table 3). An example of this is shown in Fig. 7.

With this pixel information, we use the following indexes:
• precision (Pr): TP/(TP + FP), results between
[0,1].

• Recall (Re): TP/(TP+FN ), results between[0,1].
• F-Measure (Fm): 2 · (Pr · Re)/(Pr + Re), results
between [0,1].

The fitness function also takes into account other indexes
that treat the images as a whole, and not just the pixels alone
(see [54]):
• SSIM: The Structural Similarity Index (SSIM) is used
for measuring the similarity between two images, pro-
viding results in the range [0,1].

• PSNR: The Peak Signal-to-Noise Ratio is the ratio of
the maximum possible power of a signal to the power of
corrupting noise that affects the fidelity of its represen-
tation. An additional transformation is needed to change
the dB results to the range [0,1].

Finally, the fitness function is the following:

Ffitness = −

N∑
i=0

Pr(i)
N +

N∑
i=0

Re(i)
N +

N∑
i=0

Fm(i)
N

5

+

N∑
i=0

SSIM (i)
N +

N∑
i=0

PSNR(i)
N

5
(4)

where N is the number of frames to analyze in the video.

FIGURE 8. Example photograms from the different videos used in the
genetic algorithm.

D. HARDWARE USED
To execute the experiments and simulations, several comput-
ers were used, and their main features are listed in Table 4.

The videos were taken with a Raspberry Pi model 3B and
a camera Pi NoIR. This camera does not have an infra-red
filter, allowing us to record videos without visible light (night
videos). An infra-red LED ring was used to emit infra-red
light as explained in Section IV. The videos were recorded in
very different scenarios in order to have as general results as
possible. Some examples of photograms used in the algorithm
can be seen in Fig. 8.

VI. RESULTS AND DISCUSSION
All results are given in Table 9. In this section, we explain and
analyze the results.
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TABLE 4. Computers used to execute the simulations.

TABLE 5. Top 5 algorithms with default parameters.

FIGURE 9. Best 3 results without optimization. The color code is
explained in the table 3.

To determine the limits of the detection cost value,
we obtain results when the algorithm detects everything as
either foreground or background:
• Everything detected as foreground: 0.3082
• Everything detected as background: 0.5683
Therefore, the value 0.5683 is considered as the lowest

valid value for the algorithms.
A first test was made using the default parameters (the ones

set in the paper [5] or in the code description), and results
from the best-performing algorithms are shown in Table 5.
An example of the detection in two particular frames is shown
in the Figure 9.

TABLE 6. Top 2 algorithms after the optimization of the internal
parameters.

TABLE 7. Default parameters and optimized for LBAdaptativeSOM.

TABLE 8. Final parameters for LBAdaptativeSOM.

Consequently, the intrinsic algorithm parameters were
optimized using the genetic algorithm (pre- and post-
parameters were not optimised at this stage). The best results
with this optimization are shown in Table 6. The results after
the optimization are never worse than those obtained with
the default parameters, as expected. We found that accurately
tuning the intrinsic parameters of each algorithm is critical
to performance, as clearly shown by the results presented
in Fig. 10. The default and optimized intrinsic parameters are
given in Table 7. Tests showed that after several executions
the genetic optimization for this type of algorithms yielded
similar results with small, non-significant variations in the
adjustments. Therefore, the results were considered robust
enough to draw conclusions.

Finally, pre- and post-parameters were optimised for the
best algorithm of the previous phase (LBAdaptativeSOM),
obtaining a fitness value of 0.8877. The result is shown
in Fig. 11. From the initial result of the algorithm without
optimization (0.7321) to the final result, the optimization has
improved the result in a 21%.

The parameters obtained after adding the pre- and post-
parameters in the genetic algorithm are shown in Table 8,
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TABLE 9. Results of the optimization of the background-subtractors.
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TABLE 9. (Continued.) Results of the optimization of the background-subtractors.
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TABLE 9. (Continued.) Results of the optimization of the
background-subtractors.

FIGURE 10. Best result obtained with the parameters obtained with the
genetic algorithm, using LBAdaptativeSOM algorithm and the parameters
shown in Table 7. The color code is explained in the table 3.

FIGURE 11. Best result obtained with the parameters optimized using the
genetic algorithm (shown in Table 7) and additional processing, for the
LBAdaptativeSOM algorithm. The color code is explained in the Table 3.

FIGURE 12. Comparison between the results using the original
background-subtractor algorithm Mixture Of Gaussians V2 and the
completely optimized LBAdaptativoSOM algorithm. The color code is
explained in the table 3.

along with the range used in the optimization process.
Comparing the results in Tables 7 and 8 shows that the
parameters of the algorithm change with and without the
additional pre- and post-processing. We can conclude that
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the parameters need to be re-optimized when additional pre-
and post-processing is performed. The parameters optimized
in the LBAdaptativeSOMalgorithm are related to the learning
process of the SOM and its sensibility.

To see how the evolution process helped the detection of
background and foreground, the results obtained using the
original background detector used in the Fallert System with
those obtained using the optimized algorithm are compared
in Figure 12. The original background subtractor selected,
theOpenCv default background subtractorMixture Of Gaus-
sians V2, performs well in daylight conditions but fails in
the night videos. Improvement to background/foreground
detection with the optimized algorithm is clearly shown
in Figure 12. From the initial result of the Mixture Of
Gaussians V2 algorithm without optimization (0.4790) to the
final result with the LBAdaptativeSOM algorithm (0.8877),
the optimization and a different algorithm choice has
improved the result in a 85.3%. Thus, the optimization pro-
cess greatly improves results, even in night-time conditions,
for a variety of scenarios.

Finally, to see the improvement of the GA in the algorithm,
image 9 c), showing the initial algorithm without optimisa-
tion, can be compared with image 12 a), showing the result
after the whole GA optimisation.

VII. CONCLUSION AND FUTURE WORK
In this paper, we analyze several background-subtractor algo-
rithms to determine which has the best performance in detect-
ing human falls in indoor, night-time environments.

The starting point of this research was the analysis of
several background-subtractor algorithms (from the library
BGSLIbrary) performed by [5]. These algorithms have
been reanalyzed (adding recent algorithms), to find the most
suitable background-subtractor algorithm to detect human
falls in night-time conditions. In order to improve the
detection process, a genetic algorithm was used to optimize
background subtractor parameters and to select the optimal
number of pre- and post-processing operations performed on
images. Our results show that the use of a genetic algorithms
can help to optimize artificial vision algorithms.

In conclusion, the best background subtractor for detecting
falls in indoor, night-time environments is the LBAdaptative-
SOM with the parameters shown in Table 8.
Future work will focus on testing the application in other

home environments with a larger set of videos and falls.
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