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ABSTRACT This study evaluates various Mixed Integer Programming (MIP) formulations for solving
single-machine and parallel-machine scheduling problems, with the objective of minimizing the total
completion time and themakespan of jobs. Through extensive numerical study, theMIP formulation, which is
suitable for dealing with each specific single-machine or parallel-machine scheduling problem, is identified.
Benchmarks are also provided for the development of other algorithms for future research.

INDEX TERMS Scheduling, total completion time, makespan, single-machine, parallel-machine.

I. INTRODUCTION
The single-machine scheduling problem (SMSP), which
is one of the most studied issues relating to manufactur-
ing systems, can be found in numerous real-world pro-
duction systems that require the effective scheduling of
jobs performed on a unique machine. In the past sev-
eral decades, a wide variety of studies have focused on
SMSPs, in order to consider different scheduling criteria and
explore efficient and effective methods to find optimal and
near-optimal schedules [1], [2]. As a generalization of the
SMSP, the parallel-machine scheduling problem (PMSP) has
also received considerable attention from researchers [3], [4].
According to the similarity of the machines used for pro-
cessing, PMSP issues can be further classified as iden-
tical PMSPs (IPMSPs), non-identical PMSPs (NIPMSPs),
and unrelated PMSPs (UPMSPs). In recent years, many
PMSP-related studies have endeavored to develop efficient
heuristics (e.g., [5] and [6]).

For many NP-hard problems, Mixed Integer Program-
ming (MIP) is one of the exact methods commonly used to

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Gawanmeh .

find optimal solutions for small- andmedium-sized problems,
as well as lower and/or upper bounds in larger problems,
and to benchmark the quality of the solutions and efficiency
of the compared methods [7]–[9]. The advantages of using
MIP rather than other approaches (e.g. heuristics and meta-
heuristics) for solving small- to medium-size NP-hard prob-
lems include but are not limited to the following. First, MIP
is a common language that uniquely describes a problem in
strictly mathematical terms. Second, there are many types of
commercially available software that can be used to solve
such problems out-of-the-box without further knowledge in
scheduling or coding from the user. Third, most solvers
allow the integration of external heuristics into their solution
process (via starting solutions or callback functionalities) to
speed up the solution process. Fourth, if real instances are
too big to be solved to optimality by a solver, then MIP can
be used to compute lower and/or upper bounds that certify
the quality of other approaches. Moreover, unlike heuristics
and meta-heuristics, the solution of MIP is the optimum with
reasonable computational time for small- and medium-sized
problems.

Consequently, the performance of MIP formulations indi-
cates, to a certain degree, the ability to improve and apply the
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solution methods to be developed. For SMSPs, the MIP for-
mulations can be classified into the different types of decision
variables, including completion time variables (CTV), time
index variables (TIV), linear ordering variables (LOV), and
assignment and positional date variables (APDV). A survey
has been provided by Queyranne and Schulz [10].

The MIP formulation with CTVs, as initiated by
Balas [11], addressed the SMSP to minimize the total
weighted completion time. Queyranne [12] considered
SMSPs with a view to minimizing the total weighted com-
pletion time and total weighted tardiness, respectively. That
study defined feasible schedules using the vector of job
completion times, and gave a complete description of the
face lattice of the scheduling polyhedron. Regarding the MIP
formulation with TIV, Sousa and Wolsey [13] investigated
the SMSP and found that such an MIP formulation can yield
better lower bounds than other types of MIP formulations.
Van den Akker et al. [14] proposed a time-indexed formu-
lation for the SMSP in order to minimize the total weighted
completion time, and presented the complete characterization
of all facet-inducing inequalities in the MIP formulation.
Dyer and Wolsey [15] formulated an MIP model using LOV
in an effort to solve the SMSP aiming at minimizing the total
weighted job completion time. Lasserre and Queyranne [16]
proposed an MIP formulation using APDV to determine the
optimal SMSP solution, again aimed at minimizing the total
weighted job completion time. Dauzère-Pérès [17] presented
an MIP model formulated by APDV to minimize the number
of late jobs on the SMSP, and showed that the MIP formu-
lation not only allowed the lower bound to be determined
quickly, but that it could also readily be extended to the
weighted case.

For the purpose of the comparison of different MIP formu-
lations, Khowala et al. [18] investigated the above-mentioned
four types of MIP formulations for SMSPs, which aimed
at minimizing total weighted tardiness. The experimental
results showed that the most promising MIP formulation for
this SMSP depended on the sum of the job processing times.
However, the optimal solutions for most of the test instances
were not found. After that, Keha et al. [19] conducted a com-
parative analysis of MIP formulations for SMSPs with differ-
ent criteria, including total weighted completion time, total
weighted tardiness, maximum lateness, and number of tardy
jobs for all jobs, and the computational results revealed that
the performances of these formulations were highly depen-
dent on the objective function, number of jobs, and the sum
of the processing times of all the jobs. For certain problems,
the MIP model formulated with APDV was more efficient in
computation than other commonly used MIP formulations.
Subsequently, Baker and Keller [20] concentrated on differ-
ent integer programming formulations, as based on binary
precedence variables, for solving the SMSP with the total tar-
diness objective. They also found that one formulation, based
on ‘‘sequence-position’’ variables, performed much more
effectively than the others. Following these investigations of
mathematical programming for SMSPs, some optimization

and heuristic algorithms have been successfully developed in
recent years.

Extending the research line to PMSPs, Rabadi et al. [21]
presented anMIP formulationwith LOV for solvingUPMSPs
to minimize the makespan. Rocha et al. [22] constructed an
MIP formulation with CTV, which aimed at finding the
optimal job sequence in UPMSPs, and the resulting solu-
tions were used to contrast with those of their proposed
algorithm. Kedad-Sidhoum et al. [23] formulated an MIP
model using TIV, and obtained efficient lower bounds for
PMSPs with the aim of minimizing earliness and tardiness
costs. Li and Yang [24] further proposed an MIP formulation
with APDV for solving the NIPMSP, in order to minimize
the total and mean weighted completion times. Recently,
Unlu and Mason [25] analyzed various MIP formulations for
PMSPs, with the objective of minimizing the total weighted
completion time and maximum completion time of jobs. The
experimental results showed that the most promising MIP
formulations depended on the small/large processing times
of the jobs.

Some researchers, such as Khowala et al. [18],
Keha et al. [19], Baker and Keller [20], and Unlu and
Mason [25], have conducted comparative analyses of dif-
ferent types of MIP formulations on SMSPs and IPMSPs,
respectively. However, to the best of our knowledge, there is
no research in literature that conducted comparative analyses
of different MIP formulations between SMSPs and IPMSPs.
This work investigated four types of MIP formulations for
simultaneously solving SMSPs and IPMSPs. The scheduling
criteria are to minimize the total completion time and the
maximum completion time for all jobs, which are adapted
by the most traditional scheduling in the single-machine and
parallel machine settings [26].

To the best of our knowledge, no new formulation has been
proposed up until 2019 that is suitable for both the SMSPs
and PMSPs considered in this study. The performances of
these formulations usually depend on shop types, objective
functions, number of jobs, and total processing times of jobs.
Therefore, the contribution of this paper is to give a wider
understanding of the computational efficiencies between dif-
ferent MIP formulations, as well as between SMSPs and
IPMSPs. Based on the experimental results, this study offers a
discussion and recommendations on which MIP formulation
might perform best for the addressed SMSPs and IPMSPs,
respectively.

The remainder of this paper is organized, as follows:
Sections 2 and 3 present eight MIP formulations regarding
SMSPs and IPMSPs, respectively; Section 4 details the com-
putational experiments; Section 5 gives the conclusions of
this study.

II. MIP FORMULATIONS FOR SMSPS
A. ASSUMPTIONS
The SMSP involves a set of n jobs/works/demands, J =
{1, . . . , n}, which must be processed independently on a
single machine/facility/person (see Fig. 1), with pj and Cj
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FIGURE 1. Single machine scheduling setup.

(j = 1, 2, . . . , n) as the processing time and completion time
of the jth job, respectively, and Cmax ≥ Cj as the maximum
completion time (makespan) for all jobs. The considered
objectives are the minimization of the total completion time
and the makespan, respectively, as well as the determination
of the production sequence of all jobs. Using the three-field
classification scheme [27], the two SMSPs under study can
be expressed as the triplets 1||

∑
Cj and 1||Cmax, and defined

with critical assumptions, as follows:
• All jobs are independent and assumed to be ready at time
zero.

• All machines have autonomy, and there is no collabora-
tion between machines.

• The machine can only process one job at a time, and
it must process all jobs without interruption, from the
start of processing the first job to the completion of
processing the last job.

• The setup time of the machine is not taken into account.
• The breakdown of the machine is ignored.
For the purposes of comparison, the MIP formulations

using the four different decision variables, named CTV-MIP,
TIV-MIP, LOV-MIP, and APDV-MIP [19], are revised and
described in the following subsections, as based on the above
notations and assumptions.

B. CTV-MIP FORMULATION
The concept of the CTV-MIP formulation involves the com-
pletion times of jobs with different processing priorities.
To this end, we introduce the binary decision variable Yj`,
j ∈ J , ` ∈ J , j 6= `. If job j is processed before job `, then
Yj` = 1; otherwise, Yj` = 0. The necessary constraint sets
of the CTV-MIP formulation for the 1||

∑
Cj and 1||Cmax

problems can thus be represented, as follows:

Cj + p` ≤ C` +M (1− Yj`), ∀j ∈ J , ` ∈ J , j 6= ` (1)

C` + pj ≤ Cj +MYj`, ∀j ∈ J , ` ∈ J , j 6= ` (2)

Cj ≥ pj, ∀j ∈ J (3)

Yj` ∈ {0, 1}, ∀j ∈ J , ` ∈ J , j 6= ` (4)

where M is the arbitrarily large value. Constraint sets (1)
and (2) restrict the relations of the completion times of jobs
with different processing priorities. Constraint set (3) ensures
that the completion time of a job is greater than its processing
time, and also implies non-negative CTV. Constraint set (4)
defines the binary decision variable.

C. TIV-MIP FORMULATION
The concept of TIV is constituted on the planning horizon
that is partitioned as a finite number of discrete periods,
t = 1, 2, . . . ,T , where period t represents the time interval
from (t − 1) to t . Here, we define xjt as the binary TIV,
in which job j starts at time t , then xjt = 1; otherwise, xjt = 0.
The necessary constraint sets of the TIV-MIP formulation can
be represented as the following equations:

Cj =
T−pj+1∑
t=1

(t − 1+ pj)xjt , ∀j = 1, 2, . . . , n (5)

T−pj+1∑
t=1

xjt = 1, ∀j = 1, 2, . . . , n (6)

n∑
j=1

t∑
s=max{0,t−pj+1}

xjs ≤ 1, ∀t = 1, 2, . . . ,T (7)

xjt ∈ {0, 1}, ∀j = 1, 2, . . . , n, ∀t = 1, 2, . . . ,T (8)

Constraint set (5) calculates the completion time of each job,
where (T − pj + 1) represents the last starting period of the
processing of job j. Constraint set (6) imposes the restriction
that each job can be assigned for only one processing time,
and constraint set (7) indicates that, at most, one job can be
processed for each time period. Constraint set (8) defines the
binary TIV.

D. LOV-MIP FORMULATION
The concept of LOV is based on the processing priorities of
different jobs. Let δj`, j ∈ J , ` ∈ J , j 6= ` be the binary
LOV. If job j has a higher processing priority than job `, then
δj` = 1; otherwise, δj` = 0. The necessary constraint sets of
the LOV-MIP formulation can be represented as:

δj` + δ`j = 1, ∀j ∈ J , ` ∈ J , j 6= ` (9)

δj` + δ`θ + δθ j ≤ 2, ∀j ∈ J , ` ∈ J , θ ∈ J , j 6= ` 6= θ

(10)

Cj =
p∑̀

`∈J ,`6=j

δ`j + pj, ∀j ∈ J (11)

δjt ∈ {0, 1}, ∀j ∈ J , ` ∈ J (12)

Constraint set (9) allows only one ordering result between two
different jobs. Constraint set (10) imposes the restriction that,
at most, two ordering results among three different jobs are
valid. Constraint set (11) computes the completion time of
each job. Constraint set (12) defines the binary LOV.
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E. APDV-MIP FORMULATION
The main concept of APDV is to assign n jobs to n positional
dates. Let ujd , j = 1, 2, . . . , n, d = 1, 2, . . . , n be the
binary APDV. If job j is assigned to positional date d , then
ujd = 1; otherwise, ujd = 0. The necessary constraint sets of
the APDV-MIP formulation can be constructed, as follows:

n∑
j=1

ujd = 1, ∀d = 1, 2, . . . , n (13)

n∑
d=1

ujd = 1, ∀j = 1, 2, . . . , n (14)

Cd =
n∑
j=1

pjujd , ∀d = 1 (15)

Cd ≥ Cd−1 +
n∑
j=1

pjujd , ∀d = 2, 3, . . . , n (16)

ujd ∈ {0, 1}, ∀j=1, 2, . . . , n, ∀d=1, 2, . . . , n

(17)

Constraint sets (13) and (14) ensure that the job assignments
to different positional dates are feasible. Constraint sets (15)
and (16) calculate the completion time of each job on each
position, where Cd is the completion time of the job in the
d th position. Constraint set (17) defines the binary APDV.

III. MIP FORMULATIONS FOR IPMSPS
A. ASSUMPTIONS
This section extends the assumptions of SMSPs (as described
in Section II-A) to IPMSPs. Some additional assumptions that
must be considered are described, as follows:
• A set of identical machines is available for processing
jobs.

• Each job should be processed on one machine until
completed.

• The processing times of a job on different machines are
equal.

Due to the fact that the m machines (K = {1, 2, . . . ,m})
are identical (see Fig. 2), we naturally continue the previ-
ous assumptions of processing time pj, completion time Cj
and makespan Cmax ≥ Cj, j = {1, 2, . . . , n} for the n
jobs. We might visualize these as being machines in parallel
because they are identical to each other, and thereby, perform
the same services. However, these machines do not have to
be physically parallel.

For the IPMSPs, we also consider the scheduling crite-
ria to minimize the total completion time and makespan,
respectively. Using the three-field classification scheme [27],
the two IPMSPs under study can be expressed as the triplets
Pm||

∑
Cj and Pm||Cmax, respectively. For solving these two

IPMSPs, we modify the MIP formulations with CTV of
Rocha et al. [22], with TIV of Kedad-Sidhoum et al. [23],
with LOV of Rabadi et al. [21], and with APDV of
Li and Yang [24], and present fourMIP formulations, namely

FIGURE 2. Parallel-machine scheduling setup.

CTV-MIP, TIV-MIP, LOV-MIP, and APDV-MIP, in the fol-
lowing subsections.

B. CTV-MIP FORMULATION
Consider that the two binary decision variables of αjk , j ∈
J , k ∈ K and βjj′k , (j, j′) ∈ J , j < j′, k ∈ K need to be
defined. If job j is processed on machine k , then αjk = 1;
otherwise, αjk = 0. And, if job j is processed before job j′

on machine k , then βjj′k = 1; otherwise, βjj′k = 0. Let Sj be
the starting time of job j, andM be the arbitrarily large value;
the CTV-MIP formulation can then be constructed with the
following constraints:∑
k∈K

αjk = 1, ∀j ∈ J (18)

Cj ≥ Sj + pj − (1− αjk )M , ∀j ∈ J , k ∈ K (19)

(1− αjk )M + (1− αj′k )M + (1− βjj′k )M + Sj′ ≥ Sj + pj,

∀(j, j′) ∈ J , j < j′, k ∈ K (20)

(1− αjk )M + (1− αj′k )M + βjj′kM + Sj ≥ Sj′ + pj′ ,

∀(j, j′) ∈ J , j < j′, k ∈ K (21)

αjk ∈ {0, 1}, ∀j ∈ J , k ∈ K (22)

βjj′k ∈ {0, 1}, ∀(j, j
′) ∈ J , j < j′, k ∈ K (23)

Constraint set (18) restricts each job to being processed on
only one machine. Constraint set (19) calculates the comple-
tion time of each job on each machine. Constraint sets (20)
and (21) state that, on each machine, the starting times of
jobs with lower priorities must be posterior to the comple-
tion times of jobs with higher priorities. Constraint sets (22)
and (23) define the binary decision variables.

C. TIV-MIP FORMULATION
Regarding the TIV-MIP formulation, we continue to use the
binary decision variable xjt , j = 1, 2 . . . ., n, t = 1, 2, . . . ,T ,
as defined in Section II-C. If job j starts at time t , then
xjt = 1; otherwise, xjt = 0. The constraint sets of the

VOLUME 7, 2019 153001



K.-C. Ying et al.: Comparative Analysis of Mixed Integer Programming Formulations

TIV-MIP formulation can be stated, as follows:

Cj=
T−pj+1∑
t=1

(t − 1+ pj)Xjt = 1, ∀j = 1, 2, . . . , n (24)

T−pj+1∑
t=1

xjt = 1, ∀j = 1, 2, . . . , n (25)

n∑
j=1

t∑
s=max{0,t−pj+1}

xjs ≤ m, ∀t = 1, 2, . . . ,T (26)

xjt ∈ {0, 1}, ∀j = 1, 2, . . . , n, ∀t = 1, 2, . . . ,T (27)

where Constraint sets (24), (25), and (27) are equivalent to
Constraint sets (5), (6), and (8) of the TIV-MIP formulation
in the case of SMSPs (see the definitions in Section II-C).
Constraint set (26), which is different from Constraint set (7),
states that, at most, m machines can be handled at any one
time.

D. LOV-MIP FORMULATION
Here, we define the binary LOV, δijk , i = 0, 1, . . . , n, j =
1, 2, . . . , n, k = 1, 2, . . . ,m. If job i is processed directly
before job j on machine k , then δijk = 1; otherwise, δijk = 0,
in which, the LOV δijk for i = 0 represents that job j is
the first job to be processed on machine k . Based on this,
the LOV-MIP formulation can be formulated using the con-
straints, as follows:

n∑
i = 0
i 6= j

m∑
k=1

δijk = 1, ∀j = 1, 2, . . . , n (28)

n∑
i = 0
i 6= `

δilk−

n∑
j = 1
j 6= `

δljk = 0,

∀` = 1, 2, . . . , n, k = 1, 2, . . . ,m (29)

Cj ≥ Ci+
m∑
k=1

pjδijk+M .
m∑
k=1

(δijk − 1), ∀i = 0, 1, . . . , n,

j = 1, 2, . . . , n (30)

δijk ∈ {0, 1}, ∀i, j=1, 2, . . . , n, k=1, 2, . . . , m (31)

Constraint set (28) restricts that one job can be processed on
only one machine. Constraint set (29) states the processing
priorities of each job on each machine. Constraint set (30)
bounds the completion time for each job, whereM is an arbi-
trarily large value. Constraint set (31) defines the binary LOV.

E. APDV-MIP FORMULATION
Let ujdk , j = 1, 2, . . . , n, d = 1, 2, . . . , n, k = 1, 2, . . . ,m
be the binary APDV. If job j is processed in position d
regarding machine k , then ujdk = 1; otherwise, ujdk = 0.
The APDV-MIP formulation can be constructed with the

following constraints:
n∑

d=1

m∑
k=1

ujdk = 1, ∀j = 1, 2, . . . , n (32)

n∑
j=1

ujdk ≤ 1, ∀d=1, 2, . . . , n, k=1, 2, . . . ,m (33)

Cdk=
d−1∑
s=1

psujsk+pd , ∀d = 1, 2, . . . , n, k=1, 2, . . . ,m

(34)
ujdk ∈ {0, 1}, ∀j, d = 1, 2, . . . , n, k = 1, 2, . . . , m

(35)

Constraint set (32) restricts that each job can only be pro-
cessed by one machine on a positional date. Constraint
set (33) ensures that, at most, one job is assigned to a posi-
tional date for eachmachine. Constraint set (34) calculates the
completion time of the job, as based on the certain processing
position of each machine. Constraint set (35) defines the
binary APDV.

IV. COMPARATIVE ANALYSIS
To evaluate the presented MIP formulations in solving
the 1||

∑
Cj, 1||Cmax,Pm||

∑
Cj, and Pm||Cmax problems,

computational experiments were conducted involving test
instances with different problem sizes. All the MIP formu-
lations were solved by the commercial software Lingo 12.0,
and run on a PC with an Intel R©Core(TM) i7-980X processor
and 6 GB of RAM. The computational results of the MIP
formulations were mutually contrasted, in order to identify
the superior MIP formulation for dealing with a specific
scheduling problem.

A. EXPERIMENT DESIGN
The computational experiments were conducted using a set
of test instances, and classified with three problem sizes by
considering the numbers of jobs, n = {15, 30, 50}. For each
number of jobs, there were 5 test instances. For the SMSPs
with different objectives, namely 1||

∑
Cj and 1||Cmax, there

was a total of 30 test instances for the associated four MIP
formulations. Based on these definitions of the problem’s
scale, this study further considered three numbers of identical
machines, m = {2, 4, 8}. Thus, there were 90 test instances
in total for the four MIP formulations of the Pm||

∑
Cj and

Pm||Cmax problems, respectively. For all the test instances,
the job processing times were randomly yielded in uniform
distribution, U(1,50).

To evaluate the performance of the MIP formulations,
we considered the degree of deviation of the objective values
from the best ones (DOVB), as follows:

DOVB =
OBJ − OBJbest

OBJbest
× 100% (36)

where OBJ is the objective value obtained by applying a
certain MIP formulation to solve an instance, while OBJbest

is the best (or optimal) objective value among the compared
MIP formulations.
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TABLE 1. Computational results of MIP formulations for SMSPs.
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TABLE 2. Computational results of MIP formulations for IPMSPs with two machines.
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TABLE 3. Computational results of MIP Formulations for IPMSPs with four machines.

VOLUME 7, 2019 153005



K.-C. Ying et al.: Comparative Analysis of Mixed Integer Programming Formulations

TABLE 4. Computational Results of MIP Formulations for IPMSPs with eight machines.
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For each test instance of SMSPs and IPMSPs, 1 hour
(3600 s) was set as the maximum computational time. When
the optimal solution cannot be found in an hour, the lower
bound reached is substituted and used for performance mea-
suring. Note that, in some cases, an MIP formulation may
not finish the solution search within 3600 s; however, the
currently found lower bound can be validated to be optimal if
this lower bound is the same as the optimal objective value,
as obtained by other formulations.

B. COMPUTATIONAL RESULTS OF MIP
FORMULATIONS FOR SMSPS
Regarding the 30 test instances with respect to the 1||

∑
Cj

and 1||Cmax problems, the computational results of the four
MIP formulations are shown in Table 1. For the instances
with n = 15, with the exception of the CTV-MIP formula-
tion, all other MIP formulations always found the optimal
solutions with a zero DOVB, in which the TIV-MIP for-
mulation required the average completion time of 77.9 s,
while the LOV-MIP formulation was efficient enough to only
address the 1||

∑
Cj instances. In contrast, the APDV-MIP

formulation is completely efficient in solving all the instances
within 1 s on average. Regarding the instances with n = 30,
with the exception of the CTV-MIP formulation which failed
to reach the optimality of instances 11 to 15 within 3600 s,
most of the MIP formulations found the optimal solutions,
where the TIV-MIP formulation needed 1227.80 s on aver-
age, while the LOV-MIP formulation still presented a signif-
icant difference of computational efficiency under different
objectives. In contrast, the APDV-MIP formulation exhib-
ited its superior efficiency in finding the optimal solutions
within 1 s. In solving the instances with n = 50, the CTV-MIP
formulation could not finish the solution search in 3600 s,
although the found lower bounds; for example, 26 to 30,
can be validated to be optimal. The worst situation occurred
with the TIV-MIP formulation, which failed to find a feasible
solution within 3600 s, and reflects its known drawback
regarding model size, as resulted from the planning horizon
definition T =

∑
pj. On the other hand, while the LOV-MIP

formulation showed its efficiency in minimizing the 1||
∑
Cj

instances; it still fell behind the APDV-MIP formulation with
less than 1 s spent.

Clearly, with the increased number of jobs, the DOVB
values of the CTV-MIP formulation increased significantly,
which increased the computational times of the LOV-MIP
and TIV-MIP formulations. In contrast, the APDV-MIP for-
mulation outperformed the others in solving the 1||

∑
Cj and

1||Cmax instances.

C. COMPUTATIONAL RESULTS OF MIP
FORMULATIONS FOR IPMSPS
The computational results of the MIP formulations in solv-
ing 30 test instances with two parallel machines are shown
in Table 2. For the test instances with n = 15, the TIV-MIP
formulation obtains the optimal solutions with zero DOVB
on average of 22.30 s, while all other MIP formulations

either cannot reach the optimality by 3600 s or cannot finish
the solution search even though the optimal lower bounds
have been found via contrasts. This weakness is reflected in
the average DOVB of 1.05% for the CTV-MIP, 2.57% for
the LOV-MIP, and 0.56% for the APDV-MIP formulation.
A similar circumstance arises in solving the instances with
n = 30 and n = 50, in that only the TIV-MIP formulation
consistently found the optimal solutions and yielded, on aver-
age, a zero DOVB, thus, its performance surpassed those of
the other MIP formulations. This outstanding performance
comes from the two parallel machines that reduced planning
horizon T =

⌈∑
pj/2

⌉
, as well as the computational effort.

Table 3 summarizes the computational results of the MIP
formulations in solving 30 test instances with four parallel
machines, and the solution results are similar to those of
the previous case of two parallel machines. The TIV-MIP
formulation exhibits excellent performance with an average
zero DOVB, with the average computational times of 7.90,
66.20, and 521.10 s in solving the instances with n = 15, 30
and 50, respectively. Although the computational time of
the TIV-MIP formulation increases with the increment of
jobs, its effectiveness and efficiency give it a significant
advantage over the other formulations, which could not find
the optimal solutions in most instances or found no feasible
solutions within 3600 s. Table 4 shows the computational
results of the MIP formulations in solving 30 test instances
with eight parallel machines. The TIV-MIP formulation still
outperformed the others, which found the optimal solutions
with zero DOVB on average 3.20, 45.40 and 134.80 s for the
test instances with n = 15, 30, and 50, respectively.While the
other MIP formulations reached optimality in a few instances
with n = 15 ; they failed to find the optimal solutions in
most instances. In addition, with the exception of TIV-MIP,
the other formulations yielded significant DOVBs, as com-
paredwith the zeroDOVBof the TIV-MIP formulation. In the
cases considering 50 jobs, the APDV-MIP formulation could
not find even one feasible solution.

Focusing on the top-performing TIV-MIP formulation,
the average computational times (ACTs) computed over
15 test instances with different numbers of parallel machines
and performance criteria, as summarized in Table 5

TABLE 5. Total average computational time of the TIV-MIP formulation.
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FIGURE 3. Average computational times of the TIV-MIP formulation.

FIGURE 4. Average DOVB values of different MIP formulations with varying numbers of jobs and performance measures.

(see Fig. 3), which shows that the time spent decreases with
the increase in the number of parallel machines. Although
only the objectives of total completion time and makespan
were considered in this study, it is apparent that the number
of parallel machines can effectively reduce planning horizon
T =

⌈∑
pj/m

⌉
and the computational time for the TIV-MIP

formulation.

D. COMPARATIVE ANALYSIS OF DIFFERENT MIP
FORMULATIONS BETWEEN SMSPS AND IPMSPS
In order to compare the effectiveness of different MIP for-
mulations between SMSPs and IPMSPs, the average DOVB
values computed over 5 test instances with varying numbers
of jobs and performance criteria are depicted in Figure 4.
As shown in Figure 4, with respect to the performance
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FIGURE 5. Average DOVB values of different MIP formulations with varying numbers of machines and performance measures.

FIGURE 6. Average computational times (ACTs) of different MIP formulations.

criterion of
∑
Cj, the effectiveness of TIV-MIP, LOV-MIP,

and APDV-MIP formulations is higher than that of the
CTV-MIP formulation in solving SMSPs; while the effec-
tiveness of the TIV-MIP formulation is higher than that
of APDV-MIP, CTV-MIP, and LOV-MIP formulations in

solving IPMSPs. However, regarding the performance crite-
rion of Cmax, the effectiveness of the TIV-MIP formulation
is lower than that of APDV-MIP, CTV-MIP, and LOV-MIP
formulations in solving SMSPs with n = 50; while the
effectiveness of the TIV-MIP formulation is higher than that
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of APDV-MIP, CTV-MIP, and LOV-MIP formulations in
solving IPMSPs.

To further compare the effectiveness of different MIP for-
mulations between SMSPs and IPMSPs, Figure 5 depicts
the average DOVB values computed over 30 test instances
with varying numbers of machines and performance crite-
ria. The TIV-MIP formulation is unable to achieve optimal
solutions for all test instances with n = 30 in solving
SMSPs. As shown in Figure 5, the average DOVB values
obtained by the TIV-MIP formulation are very robust in
solving both SMSPs and IPMSPs with respect to different
numbers of machines and performance measures. In regards
to the performance criterion of

∑
Cj, the greater the num-

ber of machines is, the larger are the DOVB values of the
LOV-MIP, APDV-MIP, and CTV-MIP formulations in solv-
ing the addressed problems.

Khowala et al. [18], Keha et al. [19], and Baker and
Keller [20] found that the performances of MIP formulations
are depend on the sum of the processing times of all the
jobs in solving SMSPs, when looking at the performance
measures of total tardiness, total weighted tardiness, total
weighted completion time, maximum lateness, and number of
tardy jobs. However, in this study the performances of MIP
formulations are independent of the sum of the processing
times of all the jobs in solving SMSPs, when looking at the
performance criterion of Cmax. On the other hand, Unlu and
Mason [25] noted that the performances of MIP formulations
depend on the sum of the processing times of the jobs in
solving IPMSPs with respect to total weighted completion
time and maximum completion time performance measures,
respectively. In this present study, the performances of the
TIV-MIP formulation are independent of the sum of the
processing times of all the jobs in solving IPMSPs, in regards
to the performance criteria of Cmax and

∑
Cj.

In order to compare the efficiency of different MIP for-
mulations between SMSPs and IPMSPs, the ACTs of test
instances with different numbers of jobs and performance
criteria are depicted in Figure 6. The ACTs of the SMSPs
and IPMSPs are computed over five and 15 test instances,
respectively. As shown in Figure 6, with respect to the per-
formance criterion of

∑
Cj, the efficiency of APDV-MIP

and LOV-MIP formulations is higher than that of TIV-MIP
and CTV-MIP formulations in solving SMSPs; while the
efficiency of the TIV-MIP formulation is higher than that of
APDV-MIP, CTV-MIP, and LOV-MIP formulations in solv-
ing IPMSPs. However, regarding the performance criterion of
Cmax, the efficiency of the APDV-MIP formulation is higher
than that of TIV-MIP, LOV-MIP, and CTV-MIP formulations
in solving SMSPs and IPMSPs.

V. CONCLUSION
This study analyzed and presented four types of MIP formu-
lations on SMSPs and IPMSPs, simultaneously, where the
aim is to minimize the total completion time and makespan
of jobs. The MIP formulations of CTV-MIP, TIV-MIP,
LOV-MIP, and APDV-MIP, as based on four different types of

decision variables, are used to establish eight MIP mathemat-
ical formulations with respect to SMSPs or IPMSPs. Through
a series of experiments regarding computational time and the
ability to reach optimality, it is found that the APDV-MIP
formulation outperforms all other MIP formulations in solv-
ing SMSPs. Regarding the instances of IPMSPs, the per-
formance of the TIV-MIP formulation for all problem sizes
surpass that of the other MIP formulations, with an increase
in the numbers of parallel machines effectively reducing the
key factor of computational effort, i.e., the planning hori-
zon. Clearly, these experimental results will provide potential
researchers with identified and top-performing MIP formu-
lations for dealing with specific scheduling problems to be
solved, as well as providing benchmarks for the development
of potential solution algorithms. In future research, other
scheduling criteria and various conditions, such as learning
effect and sequence-dependent setup time, will be taken into
consideration, in order to extend the evaluation ability of
mathematical programming models.
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