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ABSTRACT We propose a novel sequence-to-sequence model for multi-label text classification, based on
a ‘‘parallel encoding, serial decoding’’ strategy. The model combines a convolutional neural network and
self-attention in parallel as the encoder to extract fine-grained local neighborhood information and global
interaction information from the source text. We design a hierarchical decoder to decode and generate the
label sequence. Our method not only gives full consideration to the interpretable fine-gained information in
the source text but also effectively utilizes the information to generate the label sequence. We conducted a
large number of comparative experiments on three datasets. The results show that the proposed model has
significant advantages over the state-of-the-art baseline model. In addition, our analysis demonstrates that
our model is competitive with the RNN-based Seq2Seq models and that it is more robust at handling datasets
with a high label/sample ratio.

INDEX TERMS Sequence-to-sequence, multi-label text classification, self-attention, hierarchical decoder,
attention mechanism.

I. INTRODUCTION
Multi-label text classification [1], [2] is an important and
challenging task in natural language processing (NLP), that
is more complicated than single-label classification because
labels often exhibit complex dependencies. A real life, typi-
cal example is that terms such as ‘‘politics’’, ‘‘economics’’,
‘‘culture’’ and other labels often appear on the front pages of
news websites. The goal is to aid users in selecting the infor-
mation they desire without being presented with irrelevant
information.

As a significant NLP task, many methods have been
proposed and have gradually achieved satisfactory perfor-
mances. Binary relevance (BR) [3] is one of the earliest
methods; it models the task as consisting of multiple single-
label classification problems by actively ignoring the label
dependencies to achieve a certain level of performance. To
capture the label dependencies, a classifier chain (CC) [4]
is used to convert the task into a series of binary classifi-
cation problems and model the dependencies. Conditional
random fields (CRF) [5] and conditional Bernoulli mixtures
(CBM) [6] have also been utilized to handle label depen-
dencies. However, the above methods are applicable only for
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small or medium-scale datasets, which makes them difficult
to apply to large-scale datasets.

With the development of neural networks, some neural
models have been applied to solve this task that have achieved
improvements. The model proposed in [7] utilizes word
embedding and a convolutional neural network (CNN) to
capture the label dependencies and address this task, while
the model proposed in [8] extracts global and local semantic
information from the text through a CNN and a recurrent neu-
ral network (RNN). The authors of [9] proposed a deep neural
network (DNN)-based model, called a Canonical Correlated
AutoEncoder (C2AE). However, thesemethods insufficiently
consider the problem of capturing label dependencies and
extracting interpretable information to perform classification
from source text.

To better solve the multi-label text classification prob-
lem, [10] skillfully uses the sequence-to-sequence (Seq2Seq)
model, which shines on neural machine translation (NMT)
tasks [11]–[14]. As applications involving long short-term
memory (LSTM) networks became more widespread [15],
the LSTM-based Seq2Seq [16] model with an attention
mechanismwas proposed to further improve the performance
on this task. For multi-label text classification, Seq2Seq can
encode a given source text and decode the representation to
form a new sequence that approximates the label sequence.
Using the attention mechanism, the decoder effectively
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extracts important source text information, thereby improving
the decoding quality. The decoder utilizes the RNN to gener-
ate labels sequentially and to predict the next label based on
the previously predicted labels. Therefore, the dependencies
between labels must be modeled accurately. However, [17]
proved that the attention mechanism does not play a signifi-
cant role in this task.We perform a deep analysis and find that
the word-level information extracted by an LSTM is not well
suited for the multi-label text classification task, which leads
to inefficiency in the attention mechanism, causing it to have
difficulty. In Subsection VI-A, we validate this idea using an
attention experiment.

Therefore, it is especially important to obtain the most
useful information from the source text for classification. For
multi-label text classification, the usual labeling approach of
humans can be divided into two steps: First, a person strives
to understand the overall meaning of the text; then, they dis-
tribute different labels based on the meanings of the different
parts of the text. For example, consider the sentence ‘‘Global
sea level rise is due to a large amount of greenhouse gas
emissions, and the United States announced its withdrawal
from the Paris Agreement, which may further aggravate this
problem.’’. We can easily extract some word-level informa-
tion from a global perspective, such as ‘‘greenhouse’’, ‘‘emis-
sions’’, ‘‘withdrawal’’, ‘‘agreement’’, and ‘‘aggravate’’. Such
words often play an important role in the overall understand-
ing of the text, so we term such words as :‘‘global interactive
information’’. From a local perspective, the information in
the text can be summarized into the following two aspects:
‘‘emission of greenhouse gases’’ and ‘‘US announced its
withdrawal from the Paris Agreement’’; we call these ‘‘local
neighborhood information’’. These two parts determine that
the text can be classified into two categories, ‘‘environment’’
and ‘‘politics’’.

From the above analysis, the local neighborhood informa-
tion is the key to classifying text and assigning appropriate
text labels. The local neighborhood information functions as
a high-level summary of the local context in text, and it is
obviously more suitable for classification. In contrast, global
interaction information solely plays the role of aiding overall
understanding.

In this paper, we continue the basic form of the Seq2Seq
model in our work by considering a multi-label text classi-
fication task from the perspective of label sequence gener-
ation. We summarize and propose a sequence-to-sequence
learning strategy called ‘‘parallel encoding, serial decoding’’
and design a novel Seq2Seq model. The model consists of
an encoder and a decoder with an attention mechanism.
Instead of using LSTM that is not accurately modeled,
the encoder uses a CNN and self-attention to obtain fine-
grained information from both local and global perspectives.
A CNN [18], [19] can efficiently obtain local neighborhood
information in parallel, such as from phrases or sentences.
Self-attention [20] is an advanced technology that captures
global interactions in parallel and ameliorates the global
dependency problem. For the decoder, to efficiently utilize

the two types information extracted by the encoder described
above, we design a hierarchical decoding structure that con-
sists of two decoding blocks connected in series, using an
LSTM as the base cyclic unit. The attention mechanism is
applied to the respective decoding block and can effectively
extract important information, thereby improving the quality
of the entire decoder output.

In brief, our contributions are described below:
• We analyze the importance of interpretable local and
global information in source text for multi-label text
classification and propose a strategy called ‘‘parallel
encoding, serial decoding’’.

• We design a novel Seq2Seq model that not only accu-
rately extracts the interpretable local and global informa-
tion used for classification, but also effectively utilizes
both types of information while maintaining the inde-
pendence and integrity of each type.

• The experimental results show that the performance of
the proposed model is better than that of the state-of-
the-art methods. The proposed model achieves supe-
rior results on several large-scale datasets. In addition,
the analysis demonstrates that our model with fine-
grained information extracted from source text performs
better on datasets with high label/sample ratio.

The whole paper is organized as follows. We introduce
related work in Section II, and we describe our method
in Section III. In Section IV, we design the experiment.
In Section V and VI, we present a series of experiments
and make analysis and discussions. In final Section VII,
we conclude this paper and explore the future work.

II. RELATED WORK
The current models for solving multi-label text classification
tasks can be classified into three main categories: problem
transformation methods, algorithm adaptation methods and
neural network models.

Problem transformation is the simplest method: it converts
a multi-label text classification task into multiple single-label
learning tasks. BR [3] directly chooses to ignore the label
dependencies and build a separate classifier for each label.
To capture the label dependencies, label powerset (LP) [2]
turns this task into a multi-classification problem for label
combinations by using a unique binary classifier for each
label combination. CC [4] converts the task into a chain of
binary classification problems in which subsequent binary
classifiers are based on previous predictions.

Algorithm adaptive methods address multi-label text clas-
sification tasks by modifying specific algorithms. For exam-
ple, ML-DT [21] performs classification by constructing a
decision tree based on multi-label entropy; Rank-SVM [22]
adopts a support vector machine (SVM) similar to a learning
system to handle multi-label problems; [23] proposed an
ML-KNN model to determine the label set for each sam-
ple using the k-nearest neighbor algorithm and maximal
posterior probability; [24] sorts the collection of labels by
comparing label pairs; [5] and [25] apply CRF for this task;
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FIGURE 1. The overview of our proposed model. PE denotes the position embedding. Conv Block denotes the convolution block.
Self-Attn Block denotes the self-attention block. Local-Attn denotes the local neighborhood information attention. Global-Attn
denotes the global interactive information attention.

and [6] uses a CBM to simplify the task by transforming
it into multiple standard binary and multiclass problems for
classification prediction.

In recent years, neural networks have achieved great suc-
cess in the NLP field. Specifically, for multi-label text classi-
fication tasks, [26] proposed the BP-MLL algorithm, which
utilizes a fully connected neural network and a pairwise
ranking loss function; [27] applies a better cross-entropy
loss function instead of a pairwise ranking loss function;
[8] combined a CNN and an RNN to capture local and
global semantic information and model high-order correla-
tions between labels. The SGM [16] and MDC [17] both
use the LSTM-based Seq2Seq structure: one applies a novel
decoder with global embedding and the other includes an
additional semantic unit with hybrid attention to create an
information-enhanced representation.

III. METHOD
In this section, we introduce our method in detail. First,
we provide an overview of the model in Subsection III-A.
Then, we explain the details of the encoder in
Subsection III-B. Finally, Subsection III-C presents our novel
hierarchical decoder with attention.

A. OVERVIEW
We first define some notations and describe the multi-label
text classification task. Given a label space Y with N labels
Y = {y1, y2, . . . , yN } and a text sequence x, the task is to
assign a set of labels y (quantity ≥ 2) to the text sequence x.
The label sequence generation task can be specifically mod-
eled to find an optimal label sequence y∗ that maximizes the
conditional probability p(y|x), which is calculated as follows:

p(y|x) =
n∏
i=1

p(yi|yi−1, yi−2, . . . , y1, x) (1)

Let (w1,w2, . . . ,wL) be a text sequence with L words,
where wi is the one-hot representation of the i-th word. We
obtain the word representation matrix e = (e1, e2, . . . , eL),
ei ∈ Rd , for this text sequence from the embedding matrix
E ∈ Rd×|V |. Here |V | represents the size of the vocabulary,
and d is the dimension of the embedding vector.

Figure 1 shows an overview of our proposed model. First,
the convolution block and the self-attention block are used
in the encoder to obtain local neighborhood information hL

and global interaction information hG from the text sequence,
respectively. Before x is input into the encoder, we embed the
position vector [20], [28] p = (p1, p2, . . . , pL), pi ∈ Rd to
make use of the positional relationship of words. The final
representation of the text sequence input to the encoder is
x = (e1 + p1, e2 + p2, . . . , eL + pL). Then, the hierarchi-
cal decoder performs two consecutive decodings. The first
decoding takes the context vector ct weighted by the local
neighborhood information hL ; its hidden state st−1 and the
embedding vector g(yt−1) at time-step t − 1 are the inputs
used to produce the hidden state st of the first decoding at
time-step t . The second decoding takes the context vector c′t
weighted by the global interaction information hG; the hidden
state s′t−1 and the embedding vector g′(y′t−1) of the second
decoding at time-step t−1 are the inputs used to produce the
hidden state s′t of the second decoding at time-step t . Here,
yt−1 and y′t−1 are the predicted probability distributions over
the label space Y at time-step t − 1. The functions g and g′

respectively take yt−1 and y′t−1 as input to produce the embed-
ding vector, which is then passed to the decoding block.
Finally, the masked softmax layer is used to output the prob-
ability distribution y′t .

B. ENCODER
A CNN utilizes a fixed-size input and produces a fixed-
size output, which means that the convolution block uses a
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fixed-size convolution kernel to scan the entire text sequence
to obtain local neighborhood information. The self-attention
mechanism considers the interactions between words from
a global perspective and it is good at capturing correlations
within text sequences. In addition, self-attention can solve
the global dependency problem in a parallel fashion. Both the
convolution and self-attention blocks share the same embed-
ding vector of the source text as input. Finally, the encoder
outputs the local neighborhood information representationhL

and the global interaction information representation hG in
parallel.

1) CONVOLUTION BLOCK
according to previous work of CNN in NLP [18], we use a
one-dimensional convolution [19] followed by a nonlinear
activation function. The Nonlinear activation function allows
the convolution block to fully utilize the input sequence by
focusing on less word information if needed and filtering out
redundant and extraneous information.

The convolution kernel has a width of k and uses the input
sequence X ∈ Rk×d , which consists of a sequence of k
consecutive words (such as phrases or sentences). To obtain
the high-level local neighborhood information, we use the
stacked network and add the residual connection [29] to the
block output. We choose a gated linear unit (GLU) [30] as
the nonlinear activation function, which implements a simple
gating mechanism over the output of the convolution:

v([A|B]) = A⊗ σ (B) (2)

where A,B, v([A|B]) ∈ Rd . [A|B] ∈ R2d is the output
of the one-dimensional convolution, and ⊗ is a pointwise
multiplication. The σ (B) control, whose input is A in the
current context, is also relevant.

In addition, to ensure the balanced distribution of input
data, we use layer normalization [31] to control the input
distribution and variance. The output of the l-th convolution
block is calculated as follows:

hli = v(W lhl−1i )+ hl−1i (3)

hL = (hl1, h
l
2, . . . , h

l
L) (4)

where W l
∈ R2d×kd is a weight parameter. For simplicity,

we omit all the bias terms in this paper. Here, hli is the local
neighborhood information around the i-th word.
As the depth of the network increases, the convolution

blocks acquire information that is further away from the
central word; however, what we need is a high-level represen-
tation around the i-th word. For this, we set the convolution
kernel width in all the convolution blocks to a monotonically
decreasing trend. For example, a convolution block with
three layers, the convolution kernel widths are set to [5,3,3].
This approach not only reduces the interference from long-
distance context information and enhances the information
representation of the local context but also reduces the num-
ber of parameters and the computational complexity.

2) SELF-ATTENTION BLOCK
We chose the multi-head self-attention (MHA) [20], which
expands the ability of themodel to focus onmultiple locations
within a sequence and refines the representations of words in
the global interaction information.

We set the number of heads toM . Here, dv, dk and dq refer
to the depths of the values, keys and queries, respectively. We
further denote the depths of values, keys, and queries on the
m-th head to dmv , d

m
k and dmq . For a given input sequence X ∈

RL×d , the MHA output is calculated as follows:

headm = softmax(
(XWq)(XWk )T√

dhk

)(XWv) (5)

MHA(X) = Concat[head1, head2, . . . , headM ]WO (6)

where the projections are parameter matrices Wq ∈ Rd×d
h
q ,

Wk ∈ Rd×d
h
k , Wv ∈ Rd×d

h
v , WO ∈ Rmd

m
v ×d .

Similar to a convolution block, we use a stacked network
to obtain high-level global interaction information and add
residual connection and layer normalization to the network.
The output of the g-th self-attention block is calculated as
follows:

hG = MHA(hg−1)+ hg−1 (7)

C. HIERARCHICAL DECODER WITH ATTENTION
To ensure good use of the two kinds of fine-grained infor-
mation extracted by the encoder, we design a hierarchical
decoder, which consists of two decoding blocks in series
and utilizes LSTM as the basic cyclic unit. Using the sim-
ple and effective ‘‘additive attention’’ [11], [13] mechanism,
the weights of the two types of information are calculated in
their respective decoding blocks.

In the first decoding block, we simply continue the decod-
ing structure of [16]. The ‘‘additive attention’’ block takes the
local neighborhood information hLi of the i-th word, the hid-
den state st−1 and the embedding vector g(yt−1) at time-step
t − 1 as inputs, and weights the label to be predicted at time-
step t . Finally, the output of the first decoding block at time-
step t is yt .

In the second decoding block, we improve the ‘‘additive
attention’’. In addition to the inputs (which are similar to
the first decoding block) we also add an additional input yt ,
which is the output of the first decoding block at time-step t .
The second decoding block assigns the weight αti to the i-th
word at time-step t as follows:

eti = V T
a tanh (Was′t + Zayt + Uah

G
i ) (8)

αti =
exp(eti)
L∑
i=1

exp(eti)

(9)

where Wa, Za, Ua and Va are weight parameters. s′t is the
hidden state of the second decoding block. hGi is the global
interaction information of the i-th word.
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The final context vector c′t , which is passed to the second
decoding block at time-step t , is calculated as follows:

c′t =
L∑
i=1

αtihGi (10)

The hidden state s′t of the second decoding block at time-
step t is computed as follows:

s′t = LSTM(s′t−1, [g
′(y′t−1); yt ; c

′

t−1]) (11)

where [g′(y′t−1; yt ; c
′

t−1)] denotes the concatenation of the
vectors g′(y′t−1), yt and c

′

t−1. Note that g
′(y′t−1) is the embed-

ding of the label that has the highest probability under the
distribution y′t−1, while y

′

t−1 is the probability distribution
over the label space Y at time step t − 1, which is computed
as follows:

o′t = Wof (Wd s′t + Vdc
′
t ) (12)

y′t = softmax(o′t + It ) (13)

where Wo, Wd and Vd are weight parameters, It ∈ RN is
the mask vector used to prevent the second decoding block
from predicting repeated labels, and f is a nonlinear activation
function.

(It )n =

{
−∞ previously predicted labels
0 otherwise

(14)

Above, we provided an overview of the model and its
internal technical details. In addition, for the label sequence,
we use the method of [8] to reorder the label data in descend-
ing order of frequency and add bos and eos symbols to the
head and tail of the label sequence, respectively.

During training, the loss function is cross entropy loss,
and we also use the beam search algorithm [32] to find the
optimal prediction sequence for inference. The prediction
paths ending with eos are added to the candidate path set.

IV. EXPERIMENTAL DESIGN
We present the datasets and preprocessing used in the
experiments in Subsection IV-A. The evaluation met-
rics for the multi-label text classification task are given
in Subsection IV-B. In Subsection IV-C, we report on
the appropriate model parameters for the three datasets,
and Subsection IV-D shows a set of baseline models for
comparison.

A. DATASETS AND PREPROCESSING
1) REUTERS CORPUS VOLUME I (RCV1-V2)1

The dataset [14] consists of more than 800 K newswire
story stories manually compiled by Reuters Ltd. for scien-
tific research purposes. Most reports include two or more
topics; there are 103 topics in total. The training set contains
802,414 samples, and the development and test sets each
have 1,000 samples. We filtered out samples with more than

1http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_
rcv1v2_README.htm

500 words and some anomalies; these operations removed
approximately 0.5% of the original sample data from the
training set. The vocabulary was set to 50 K words, and we
replaced some low-frequency words, abnormal words and
out-of-vocabulary words with ‘‘</>’’ and ‘‘<unk>’’ symbols.

2) ARXIV ACADEMIC PAPER DATASET(AAPD)2

The dataset was collected by the authors of [16], and contains
summaries of 55,840 papers in the computer science field
and related subjects. An academic paper can have multiple
subjects, and there are a total of 54 subjects.We also excluded
samples with more than 500 words and some anomalies,
which removed approximately 0.2% of the samples from
the training set. The development set and test set each have
1,000 samples, and the vocabulary size was set to 30 K. Some
low-frequencywords, abnormal words and out-of-vocabulary
words were handled in the same way as with the RCV1-V2
dataset.

3) ZHIHU QUESTION-TOPIC DATASET (ZHIHU-QT)3

This dataset is the official dataset used in the ‘‘ZhihuMachine
Learning Challenge 2017’’. We collected 101,251 samples
containing 119 topics; the average length of each sample was
140 words. We randomly selected two sets of 1,000 samples
to form development and test sets. The pretrained vocabulary
was set to 36,000 words. Words with frequencies below 5 in
the vocabulary were deleted and replaced with ‘‘<unk>’’ in
the samples.

B. EVALUATION METRICS
Following the previous work [8], [23], we adopt hamming
loss and micro-F1 score as our main evaluation metrics. For
reference, micro-precision and micro-recall are also recorded
for further analysis.

• Hamming loss [33] evaluates the fraction of misclas-
sified instance-label pairs, where a relevant label is
missed or an irrelevant is predicted, which is calculated
as follows:

HL(y, ŷ) =
1
L

L∑
j=1

1(yj 6= ŷj) (15)

where yj is the true value corresponding to the j-th label,
ŷjis the predicted value of the j-th label, L is the number
of labels, and 1(x) is the indication function.

• Micro-F1 [34] can be interpreted as a weighted average
of the precision and recall. It is calculated globally by
counting the total true positives tpj, false negatives fnj,
and false positives fpj, which is calculated as follows:

Micro− F1 =

∑L
j=1 2tpj∑L

j=1
(
2tpj + fpj + fnj

) (16)

2https://arxiv.org/
3https://biendata.com/competition/zhihu/
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C. EXPERIMENT SETTINGS
We implemented our experiments using PyTorch on the
NVIDIA 1080Ti GPU.

For the RCV1-V2, AAPD and Zhihu-QT datasets,
the embedding size and the number of units in the hidden
layers were both 512. The batch size was set to 64. The con-
volution blocks in the encoder were set to 5, 3 and 3, and the
corresponding convolution kernel widths are [7, 5, 5, 3, 3],
[5, 3, 3] and [5, 3, 3], respectively. The number of self-
attention block in the encoder was set to 9, 6, and 9, and the
beam size was set to 9.

We used the Adam optimizer [35] and set the two momen-
tum parameters to β1 = 0.89 and β2 = 0.899. The initial
learning rate was set to 0.0002 based on the model’s perfor-
mance. In addition, we applied dropout regularization [36]
to avoid overfitting and gradient clipping [37] with the range
[−10, 10].

D. BASELINES
We use the following baselines to compare our models on the
RCV1-V2 and AAPD dataset.

• Binary Relevance (BR) [3] converts the multi-label text
classification task into multiple single-label classifica-
tion problems.

• ClassifierChains (CC) [4] converts the task into a chain
of binary classification problems, and uses this to model
the dependencies between labels.

• Label Powerset (LP) [2] turns the task into amulti-class
problem with the label combination, which sets a unique
multi-classifier for each label combination.

• CNN [18] extracts text features using a deep convo-
lutional network, then inputs them into a linear trans-
formation layer, and then uses the sigmoid function to
output a probability distribution over the label space.

• CNN-RNN [8] utilizes CNN and RNN to capture both
global and local textual semantics information and mod-
els the dependencies between labels.

• S2S + Attn [12], [13] is implementation of the
RNN-based Seq2Seq model with the attention
mechanism.

• SGM [16] is a label sequence generation model.
It is implementation of the LSTM-based Seq2Seq
with the attention mechanism. It uses a decoder with
global embedding to capture the dependencies between
labels.

• MDC [17] uses an additional multi-level expansion con-
volution component to extract high-level semantic infor-
mation based on the LSTM-based Seq2Seq and uses the
corresponding hybrid attention.

Following the previous work [8], we implement BR,
CC and LP based on linear SVM classifier on Scikit-
Multilearn [38], which is a open-source library for the task.
In addition to SGM and MDC using their own settings,
we have followed the hyper-parameter settings for CNN,
CNN-RNN and S2S + Attn in MDC [17].

TABLE 1. Performance on the RCV1-V2 test set. HL, P, R and F1 denote
Hamming loss, micro-precision, micro-recall, and micro-F1, respectively.

TABLE 2. Performance on the AAPD test set. HL, P, R and F1 denote
hamming loss, micro-precision, micro-recall, and micro-F1, respectively.

V. RESULTS
In this section, we report the comparison of our model and
baselines on RCV1-V2 and AAPD.

We present the results of our model and all the baselines
on the RCV1-V2 dataset in Table 1. From these experimental
results, it can be found that classical models (such as LP and
CNN) that are based on machine learning and deep learn-
ing, respectively, still have certain advantages even without
using the Seq2Seq structure. The Seq2Seq model achieves
some improvements in the dataset compared with the above
classical models. For instance, the SGM model achieves a
reduction in the Hamming loss of 15.7% and an improvement
of 2.7% on the micro-F1 score over the famous CNN model.
Our model achieved a more significant advantage based on
the primary evaluation metrics. Reducing the Hamming loss
by 21.3% and improving the micro-F1 score by 4.4% over the
CNNmodel. Compared to the state-of-the-art baseline MDC,
our model still garners the leading position with regard to the
evaluation metrics. These results occur because our model
considers bothmore fine-gained local neighborhood informa-
tion and global interaction information, and it leverages them
in a near-lossless manner. Compared to the baseline MDC,
our model reduces the Hamming loss by 2.8% and increases
the micro-F1 score by 1.2%.

We also present the result of comparisons on the AAPD
dataset in Table 2. Similar to the results of RCV1-V2, the clas-
sic methods (except for the Seq2Seq models) have a certain

VOLUME 7, 2019 153017



Z. Yang, G. Liu: Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification

level of competitiveness in the main evaluation metrics.
In particular, the traditional CNN is ahead of all current
baseline models (including ours) on the micro-precision eval-
uation. In response to this, we plan to conduct further exper-
iments and analysis in future research. Moreover, we found
that the primary S2S + Attn model achieves results close to
those of the baseline models above. Comparing the details
between RCV1-V2 and AAPD, we observe that the number
of samples (approximately 16:1) and the number of labels
(approximately 2:1) have an impact on model performance.
We delved into the subtle relationship between the above
parameters and found that the label/sample ratio has a large
influence on the multi-label text classification task. We con-
ducted a series of experiments regarding this ratio and analyze
and discuss it in Subsection VI-C.

Compared with all the above models, our model consid-
ers more of the fine-grained local neighborhood information
and global interaction information in the source text. Using
hierarchical decoding not only maintains the integrity of the
weighting process but also maintains the independence of
each type of information. Our model achieves a Hamming
loss reduction of 1.7% and a micro-F1 score improvement
of 1.4%, compared with the current advanced baseline MDC.
In addition, our proposed model achieves the best perfor-
mance on themain evaluationmetrics, reducing theHamming
loss by 1.7% and improving the micro-F1 score by 1.4%
compared to the current advanced baseline MDC model.

VI. ANALYSIS AND DISCUSSION
We performed some further exploration and analysis of
our model on the Zhihu-QT dataset. In Subsection VI-A,
we explore the impact of the attention mechanism on our
model. In Subsection VI-B, we perform a set of ablation
tests on our model, and in Subsection VI-C, we analyze and
discuss the label/sample ratio.

A. EXPLORATION OF ATTENTION
To explore the impact of the attention mechanism for our
model, we conducted multiple types of attention experiments
and performed an experiment both with and without the
attention mechanism. We choose the popular ‘‘dot-product
attention’’ and ‘‘additive attention’’ mechanisms and also
introduce the ‘‘hybrid attention’’ from the MDC [17] for
comparison. To perform a fair evaluation, for ‘‘dot-product
attention’’ and ‘‘additive attention’’, we modified the MDC
to use our hierarchical decoder for these two decoding types.
For ‘‘hybrid attention’’, we modified our model to use the
original decoder type from MDC, which involves only one
decoding operation.

Table 3 shows a comparison of the two models under
the various attention mechanisms. The MDC without atten-
tion compared to the MDC with the common dot-product
attention or additive attention do not differ substantially on
the evaluation metrics. However, evaluation metrics for the
same comparison shows much greater differences using our
model. For instance, additive attention achieves a Hamming

TABLE 3. Performance the comparison with different attention
mechanisms between our model and MDC. ‘‘w/o attention’’ means
without using attention, and ‘‘dot attention’’ denotes ‘‘dot-product
attention’’.

loss reduction of 11.4% and a micro-F1 score improvement
of 7.7% over our model without attention. From our analysis,
we believe that an LSTM is good at extracting long-distance
word-level semantic information from sequences rather than
at summarizing fine-grained local information; therefore,
it is not suitable for multi-label text classification tasks. Our
method involves modeling sequences by mimicking human
labeling habits, an approach that can extract interpretable
fine-grained information from a sequence. Obviously, such
information is more suitable for label prediction, and it
improves the efficiency of the attention mechanism. There-
fore, our method garners a substantial lead on the evaluation
metrics.

A comparison of additive and hybrid attention in the MDC
shows that the hybrid attention mechanism achieves a Ham-
ming loss reduction of 4.0% and a micro-F1 score improve-
ment of 2.7%. This results confirms that the advanced hybrid
attention method improves the performance of the MDC.
However, the evaluation metrics are not much different in
our model. Our study found that MDC focuses on extracting
semantic word-level information and improves the utilization
of the information by hybrid attention. In contrast, our model
considers two more fine-gained information types in the
source text that tend to better represent the labeled meaning
of the source text and have greater impacts on label sequence
prediction. From a subtler perspective, additive attention
functions slightly better than does hybrid attention in our
model. This result not only shows that the ordinary attention
mechanism remains efficient in our model but also indicates
that a powerful information capture capability is the key
to improving the performance of a multi-label classification
model.

B. ABLATION TEST
To fully evaluate the effects of our proposed model, we per-
formed a set of ablation tests with our model. We controlled
the variables by removing some of the modules from the
model to enable a comparison of their effects. Specifically,
in addition to the additive attention evaluation discussed in
Subsection VI-A, we also conducted three sets of experi-
ments to evaluate the contributions of the convolution block,
the self-attention block and the hierarchical decoder to the
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TABLE 4. Performance of each module on the Zhihu-QT test set.
‘‘C-Block’’ denotes the model without the convolution block. ‘‘SA-Block’’
denotes the model without the self-Attention block. ‘‘H-Decoder’’ denotes
the model without hierarchical decoder.

model. We also use the evaluation metrics corresponding to
the complete model to facilitate this comparison; none of our
proposed modules interact with each other; therefore, they
can be evaluated independently.

Table 4 shows the contribution of eachmodule to the results
on the Zhihu-QT dataset. In addition to the poor performance
when not using additive attention, the local neighborhood
information extracted by the convolution block contributes
greatly to the performance of our model: reducing the Ham-
ming loss by 8.8% and increasing the micro-F1 score by
4.5%. This result demonstrates the importance of considering
the local neighborhood information in the source text when
predicting labels. Moreover, our model further demonstrates
the ability to extract fine-grained label classification informa-
tion from the source text.

The hierarchical decoder we designed also provides a large
contribution and has a strong influence on model perfor-
mance. An ordinary decoder aggregates two kinds of fine-
grained information from the source text by concatenating
vectors. We believe that the method is lossy and does not
make full use of the available information. Our model uti-
lizes two independent serial decoding blocks that receive two
different types of fine-grained information from the encoder,
thus avoiding information loss. Furthermore, any confusion
between the two types of information is avoided by using
them as input to different decoding blocks. Our method not
only preserves the integrity of the two information types but
alsomaintains the weighted independence of label prediction.
The hierarchical decoder achieves a Hamming loss reduction
of 10.6% and improves the micro-F1 score by 6.4%.

C. LABEL/SAMPLE RATIO
During the above experiments, we found an interesting vari-
able that we term the label/sample ratio. Our model is highly
sensitive to this variable is highly sensitive in our model. For
the multi-label text classification task, the label/sample ratio
is the average number of labels for all the samples in the entire
dataset. To further investigate this variable, we reprocessed
the Zhihu-QT dataset. First, we set the label/sample ratio
to values roughly equal to 1.2, 1.5, 2.0, 2.5 and 3.0. Then,
we selected five subdatasets from the Zhihu-QT based on
these fixed values. The number of samples in each subdataset
ranged from 35 K to 40 K. Finally, we used the RNN-based
Seq2Seq model with attention as the baseline for our model
and perform experiments on these five subdatasets.

FIGURE 2. Performance of the two models with different label/sample
ratio. ‘‘S2S + Attn’’ denotes RNN-based Seq2Seq model with attention.

Figure 2 shows the performances of the two models under
different label/sample ratios. Both the RNN-based Seq2Seq
model and our models remain at a high level under the
initial label/sample ratio. As the label/sample ratio increases,
the Hamming loss rises rapidly, and the micro-F1 score drops
sharply. We believe that the performance degradation of the
two models is reasonable, because one intuitive explanation
is that the more labels a sample contains, the higher the
computational complexity of the model are and the higher the
performance requirements of the model become. Therefore,
under the condition that the model parameters are fixed,
the evaluation metrics of the models increase and decrease
with the label/sample ratio to varying degrees.

Comparing the two models, we can see that our model per-
forms better than the baseline at each fixed value. We believe
that our model is more suitable for high label/sample ratio
datasets than the RNN-based Seq2Seq model with atten-
tion. Our model captures and efficiently utilizes the fine-
grained information in the source text; thus, it outperforms
the RNN-based Seq2Seq model on the evaluation metrics.

VII. CONCLUSION AND FUTURE WORK
In this study, we proposed a novel sequence-to-sequence
learning strategy called ‘‘parallel encoding, serial decoding’’
for multi-label text classification tasks and designed a novel
sequence-to-sequence model based on this strategy. The
model extracts both fine-gained local neighborhood informa-
tion and global interaction information from the source text
in parallel and utilizes the designed hierarchical decoder for
near lossless decoding. The experimental results demonstrate
that our proposedmodel significantly outperforms the current
baseline models. Further analysis shows that our model is
even more competitive on dataset with high label/sample
ratio. However, as shown in Figure 2, our model’s per-
formance is still far from ideal on high label/sample ratio
datasets. Thus, how to further improve the performance of
the model requires more exploration in the future.
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