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ABSTRACT The pyramid Lucas-Kanade (LK) optical flow algorithm has been widely used in velocity
measurement applications. However, these applications are limited by some shortcomings of the algorithm,
such as its slow calculation speed and susceptibility to illumination changes. To solve these problems,
a data fusion scheme based on the scale-invariant feature transform (SIFT) and optical flow is proposed to
alleviate the dependence of the optical flow on the illumination conditions. In addition, an improved cubature
Kalman filter (CKF) based on multi-rate residual correction (CKF-MRC) is proposed to solve the problem
of inconsistency between the sampling frequencies of the SIFT and the optical flow, and takes full advantage
of the high sampling frequency of SIFT. The experimental results demonstrate that the proposed CKF-MRC
method can effectively improve the accuracy of velocity measurement under variable illumination conditions
with a high sampling frequency.

INDEX TERMS Cubature Kalman filter, optical flow, residual error correction, scale-invariant feature

transform.

I. INTRODUCTION

In recent years, rapid progress has been made in the develop-
ment of unmanned aerial vehicle (UAV) technology. UAVs
have been widely used in fields such as reconnaissance,
military strikes, aerial photography, mapping and emergency
rescue [1]-[5]. In addition, the optical flow navigation
method inspired by insect motion is playing an increas-
ingly important role in navigation in GPS-signal-denied
environments. Optical flow (OF) can be regarded as the
2D projection movement of the 3D motion of observed
objects [6]-[10]. The bioinspired OF navigation scheme has
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been developed accordingly, with superior properties that
include small device volume, low power requirements, high
autonomy and low cost, which are especially important in
UAV navigation applications [11]-[13].

When OF is used as the sole navigation scheme, it can
easily be disturbed by the surrounding environment, which
leads to reduced navigation accuracy. Many researchers have
made corresponding improvements to make the OF algorithm
conform to a variety of environments. For example, [14]
proposed an information fusion method based on a micro-
electromechanical systems-based inertial measurement unit
(MEMS-IMU) and OF, which was used to correct the MEMS-
IMU?’s attitude when it diverged; simulation results showed
that modification of the vehicle attitude in combination
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with OF provided good performance, with the advantages
of smaller errors, slow divergence and improved robust-
ness. In [15], a vision-based UAV navigation method for
use in urban and canyon environments was proposed; UAV
navigation experiments in linear, L-shaped and T-shaped
canyons were completed using OF as calculated from image
sequences taken by the airborne camera. In [16], OF is used
as a velocity measurement method to estimate the forward
velocity of a quadrotor UAV. A control strategy for UAV hov-
ering and forward motion in different flight modes based on a
visual navigation system was proposed and UAV navigation
based on OF was realized. In the above research, OF was used
as a navigation assistant or a velocity measurement method
to complete the navigation tasks. However, when the UAV
performs fast movements, the traditional OF algorithm is no
longer applicable and it is necessary to use the image pyramid
method, which inevitably reduces the real-time performance
of the OF algorithm. Additionally, while the OF algorithm
offers high velocity measurement accuracy, it is vulnerable
to changes in the illumination, which is one of the most
important problems with the algorithm and must be solved.
As afeature matching algorithm, the scale-invariant feature
transform (SIFT) maintains invariance to rotation, scaling
and illumination variations and thus has wide application
prospects in UAV navigation. Reference [17] used a SIFT
algorithm to recognize landmarks and an extended Kalman
filter to update the position; use of the A-star algorithm for
path planning and the virtual force method for autonomous
navigation of a mobile robot was then proposed, and finally,
the effectiveness and applicability of the proposed method
were demonstrated experimentally using the mobile robot.
Reference [18] proposed a hybrid structure containing a con-
volutional neural network (CNN) and local image features
to achieve first-person vision (FPV) pedestrian navigation,
where a SIFT-based tracking algorithm was used to estimate
motion and track each frame of the FPV image. To obtain
higher homing precision for local robot navigation, a novel
robot visual homing algorithm was proposed that combined
SIFT features with the warping method [19], and the effec-
tiveness of the proposed algorithm was verified experimen-
tally. Reference [20] proposed a matching method based
on SIFT feature saliency analysis to achieve robust feature
matching between images that contained repetitive structures;
feature matching was only to be performed within the region
of interest to reduce the ambiguity caused by the repetitive
structures, and the experimental results demonstrated the effi-
ciency and robustness of the proposed method. While SIFT
has wide application prospects in navigation, its low accuracy
and poor robustness have limited further development.
Motivated by the analysis above, this paper investigates
an OF/SIFT-based integrated velocity measurement system
based on a multi-rate residual correction data fusion algo-
rithm. In our study, OF and SIFT fusion is used as an
improved scheme for UAV velocity measurements to solve
the poor accuracy problem of OF under variable illumination
conditions. In the data fusion process, because the OF
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calculation is dependent on the pyramid Lucas-Kanade (LK)
algorithm, which has poor real-time performance while
SIFT has high real-time performance, lack of synchroniza-
tion between the two data sets will affect fusion accuracy.
An improved cubature Kalman filter (CKF) algorithm based
on residual correction is thus proposed to realize seamless
fusion of the two data sets at different sampling frequencies.
The main contributions of this paper are described as follows:

> To address the problem of the large errors in OF velocity
calculations under the condition where there is varying
illumination or shade, an OF/SIFT integrated velocity
measurement system is proposed. Using the invariance of
SIFT to change the brightness, the OF fault tolerance to
changes in illumination is improved.

> To address the fusion problem caused by the different
sampling frequencies used for OF and SIFT, a multi-
rate fusion algorithm based on residual correction is pro-
posed. In the overlap time period of the OF and the SIFT
data, a CKF based on residual correction is implemented.
At the low-rate OF data interval, only the time update
and the residual correction of SIFT data are performed.
Finally, seamless fusion and output of the two data sets are
realized.

The rest of this paper is organized as follows. The principle
and derivation of the pyramid LK optical flow algorithm and
the SIFT algorithm are introduced in Section 2. In Section 3,
the model and the proposed strategy are given. The experi-
mental equipment is introduced in Section 4 and experimen-
tal results are presented that verify the effectiveness of the
proposed algorithm. The paper ends with a few concluding
remarks in Section 5.

Il. ALGORITHM INTRODUCTION

A. PYRAMID LK OPTICAL FLOW ALGORITHM

OF represents the instantaneous velocity of a moving object.
The LK algorithm involves three assumptions [21]: (i) bright-
ness constancy; (ii) time is continuous or the motion is a small
movement; and (iii) the space is consistent. From hypothesis
(i), we can deduce the optical flow restriction equation as
follows:

I(x,y,t) =I(x+dx,y+dy,t+dr). ey

where I (x, y, t) represents the brightness of the point (x, y)
at time #; in accordance with hypothesis (ii), i.e., assuming
that the pixel movement is small enough, the Taylor formula
can be applied to (1) and the higher order term can be ignored
to give:

al al

al
—d —d —dt =0. 2
o x + oy ly + o 2

Substitution of (2) into (1) gives:
Lvy +1Lyvy +1, = 0. 3)

where v, = ‘é—;‘ and vy = %, which are the optical flow veloc-
ities in the horizontal and vertical directions, respectively, can
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change (3) into the following matrix form.

le IY1 It]
IX2 1)’2 Vx _ 1[2 (4)
...... Vy .
Ixn Iyn I[n

A weight function w is then set to enhance the influence
of the OF value that is closest to the center point and (4) is
solved using the least squares method.

vl [ Xw2  Swhid, ] [—whi, S
[vy] - [Zwlxl, Sowi; } |:—w1y1tj| ©)

The LK algorithm is still deficient in its ability to solve for
rapid motion of the vehicle [22]-[25]; therefore, to solve this
problem, the concept of the Gaussian image pyramid, which
satisfies the small motion hypothesis by constantly dividing
the image OF in half, is introduced to solve the high-precision
OF information. First, the image is semi-segmented from the
bottom up to the top layer of the image pyramid and the OF
is then calculated at the top of the image pyramid; the motion
estimation results are used as the initial values for the next
layer and the above process is repeated to the bottom of the
pyramid. In this way, the possibility of failing to satisfy the
motion hypothesis can be minimized.

OF offers high accuracy as a velocity measurement
method, but the OF algorithm is susceptible to the effects of
changes in the illumination, which causes large errors. It is
thus necessary to find a velocity measurement method that is
not affected by such illumination changes.

B. VELOCITY CALCULATION METHOD BASED ON SIFT

As a feature-based image matching algorithm, SIFT can
calculate the movement distance of pixels based on their
matched feature points, and can then transform the coordinate
system to obtain the velocity of a UAV relative to the ground.
Furthermore, the SIFT algorithm is invariant to illumination
changes and scale transformations, and can be integrated with
the OF algorithm to reduce the effects of illumination changes
on the OF algorithm. The first step in the SIFT algorithm is
to establish the difference of Gaussian (DOG) [26]-[28] scale
space for extremum detection; the scale space can be obtained
by convolution of the Gaussian function and the image:

L(x,y,0)=Gx,y,0)*I(x,y). (6)

where G (x, y, o) is the Gaussian smoothing kernel function:

Gx,y,0)= e~ (P ?)/202 )

202

The value of ¢ in (6) and (7) determines the smoothness
of the image. As the value of ¢ increases, the resolution of
the image decreases in tandem. To detect stable key points
effectively in the scale space, a Gaussian difference scale
space, i.e., an image pyramid, is used:

D(-xﬂyvs) = (G(X,J’»ks) _G(xvyvs))*l(xvy)
=Lx,y,ko)—L(x,y,0). (8)
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To find the extreme points within the scale space, each sam-
pling point should be compared with 26 points that include
8 adjacent points of the same scale and 9 x 2 points corre-
sponding to the upper and lower adjacent scales. If it is the
maximum or minimum of these points, the sampling point
will then be considered to be a key point of the image in the
scale space. After scale space extremum detection, only the
extremum points in discrete space can be obtained. There-
fore, it is necessary to fit the three-dimensional quadratic
function to locate the key points accurately to obtain exact
location information. The extremum points detected in the
discrete space of two-dimensional functions do not usually
overlap with the true extremum points in the continuous
space. In eliminating any unqualified key points, the Taylor
quadratic expansion given in (9) is used to fit the curve.
The principal curvature of the point is then calculated using
the Hessian matrix given in (10) to remove the key points
of the local curvature asymmetry in the Gaussian difference
scale space.

T 1 ;8D
D()C) =D+ 8—x+5x Bx—zx (9)
D,y Dy,
H — XX Xy 10
5] o

Next, the key points of an image can be completely deter-
mined and precisely positioned, and which have scale invari-
ance. On the other hand, in order to make the key points rotate
invariantly, a main direction should be assigned to each key
point. A gradient histogram is used to calculate the gradient
directions of neighboring pixels; then, based on the peak
value of the histogram, the main direction can be determined,
while the remaining 80% of the maximum can be used as an
auxiliary direction.

Based on the needs of later calculation, a feature descriptor
should be established for each key point to make the key
point have good robustness to factors such as illumination
and perspective change. This descriptor contains not only the
key point itself, but also other pixels around the key point
that contribute to it. Moreover, the descriptor needs to be
clearly differentiated to ensure the efficiency of subsequent
registration. Establishment of descriptors: I. Rotate the axes
in the same direction as the key points to ensure that the
feature points have rotation invariance. II. It is necessary to
determine the neighborhood range of the calculated feature
descriptor, and divide the neighborhood near the feature point
into 4 x 4 pixel-regions, each pixel-region as a seed point,
which has 8 directions, as shown in Fig. 3; the gradient
information for the 8 directions is calculated within the region
and is represented by a 128-dimension vector.

The last step of the SIFT algorithm is feature point match-
ing. The similarity between two SIFT descriptors is usually
expressed using the Euclidean distance. By comparing the
threshold with the Euclidean distance, the matching result can
be obtained. After the pixel distance between two matching
points is calculated, the velocity of the UAV relative to the
ground can be obtained through coordinate transformations.
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FIGURE 1. Image pyramid.
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FIGURE 2. Gaussian difference scale space.
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FIGURE 3. 4 x 4 pixel region showing the key points.

Ill. MODEL AND PROPOSED STRATEGY

A. DATA FUSION MODEL INTRODUCTION

The SIFT and OF data are fused to alleviate the effects of
the illumination conditions on the flow accuracy, an algo-
rithm called CKF-MRC (which is described in detail later in
the paper) is used to seamlessly integrate SIFT and the OF
data. The fusion model is shown in Fig. 4 and both the SIFT
and the OF data have been converted into the ground velocity
of the UAV.
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Algorithm 1 Pyramid LK Algorithm
Input: Two frame pictures.
Algorithmic process:
Build the image pyramid.
forl, =0:1:1,
Layer 0 is the original picture.
Scale the width and height of the image to half that of
the original picture to the [,, layer.
end
forl,=10,:1:0
I,y layer optical flow is calculated as the initial value
of the [,, — 1 layer.
Until calculated to the Oth layer.
end
end

Algorithm 2 SIFT Algorithm

Input: Two frame pictures.
Algorithmic process:

> Extremum detection in the scale space.
> Key point generation.

« Key point detection
« Elimination of any unqualified key points

> Establishment of the key point feature information.

o Determination of the main and auxiliary directions
of the key points
« Establishment of descriptors

> Key point matching.

> Obtaining the pixel moving distance.

> Obtaining the UAV velocity relative to the ground via
coordinate system conversion.

B. MULTI-RATE DATA FUSION ALGORITHM BASED ON
RESIDUAL CORRECTION

Because of the inconsistency between the data output rates
of the OF algorithm and the SIFT algorithm, the problem
of how to fuse data efficiently with the aim of guarantee-
ing accuracy has become a subject of considerable study.
At present, the fusion algorithms used to address this problem
are mainly based on the Kalman filter (KF). The cubature
Kalman filter (CKF) algorithm is based on a Gaussian filter
framework and has been used widely to perform precise
fusion of navigation information. The CKF offers certain
advantages in processing of nonlinear data; the specific steps
of the CKF algorithm are described in detail in [29] and will
thus not be repeated here, but the CKF is used as the main data
fusion method this paper. The simplest data fusion strategy
involves construction of a single-rate filter, as shown in Fig. 5.
When the OF data coincides with the SIFT data, the CKF is
used to fuse the data from the two algorithms. The velocity
of the UAV output frequency is consistent with the OF out-
put frequency and no parameter updates or calculations are
carried out at other times.
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FIGURE 6. High-rate filter structure.

To make full use of the high-frequency SIFT data and
ensure high-frequency output of the velocity, the method
described above is modified. In the intervals of the low-
frequency OF data, the high-frequency SIFT algorithm is
used to calculate the velocity directly; the specific process
is illustrated in Fig. 6.

While the output frequency of the velocity is increased to
be the same as the output frequency of the SIFT, the filter
parameters such as the filter gain, the covariance and the
cross-covariance are not updated in time. The next step is

153342

to go further and use a multi-rate filter. The basic idea in
this case is to divide the filtering process into two processes,
i.e., the time update and the observation update, and perform
these processes separately. When there are OF data, the com-
plete filtering steps are performed; otherwise, only the time
update process must be performed, as shown in Fig. 7.

In a conventional multi-rate filter algorithm, the velocity
output frequency is the same as the output frequency of the
high-frequency SIFT data, and the filter parameters can thus
be updated in time. However, the estimation accuracy and
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TDF

OF data

SIFT data

velocity output

FIGURE 7. Multi-rate filter structure.

the convergence of the filter are uncertain when the OF data
interval is not compensated with respect to the filter state.
Therefore, an improved residual correction method for multi-
rate data fusion estimation is proposed to correct the filter
estimator at each instance of high-frequency data output.

The calculation methods for the state estimation errors and
the residual errors are as follows:

e =X — X (11)
Or = Yr — Htfctltfl‘ (12)
Here, (12) is derived as follows and (11) is obtained by
substitution:
Or = Yt — Ht)ACt|t—1
= Hyx; — Htfetltfl
= H®;_1x—1 — H;®_1%-1
= H ®; 1. (13)
Equation (13) can be recorded as o; = f (e;—1), i.e., the
residual can be represented by the state estimation error.
Conversely, the state estimation errors can also be represented
by the residual errors:
€y = Xy — .?ACt
Xt —JACz\tfl —k ()’z - Ht)%tltfl)

= Xt — Xt|t—1 — kioy

-1
(H,T H,) HY o, — ko

((H,TH,>_1 HT - k,> o. (14)

where
~ T -1
oy ~ H, (xz _xtlt—l) (H; Ht)
-1
HITG, = (HtTH;) HtTHz (xt —)Act\t—l)
-1
X — Xejr—1 = (HzTHt) H/oy.

The observation noise is approximately zero and is thus
omitted, while the matrix H is considered to be irreversible.
Equation (14) can be recorded as: e; = g (o;), i.e., the residual
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time
> axis

Time
update

can be expressed using the state estimation error. In addition,
the self-propagation process of the state estimation error is
considered to have the following form:

e =X — X%
=Xt — )ACt|t—1 — ki ()’t - HzJACt|z—1)
= (xz —JACt|tfl) — k; (Htxt|t71 + R, — Htjetltfl)
= (I — k:H,) (xz - )ACtlz—l) — kR,
= —kH) @16, 1 — kR;. (15)

where, ®,_ is State transition matrix, and y; is measurement
variable. When the OF data coincide with the SIFT data, (12)
and (14) can be used to calculate the state estimation error
and the residual error. At the sampling interval of the OF data,
where there are only SIFT data and no OF data, there is no
way to obtain the residual error directly. However, according
to (15), in the optical flow sampling interval where covariance
matrix Ry, — o0 and k;, — 0. Therefore, only the filter
parameters in the time update are meaningful and (15) can
be modified to read:

e~ Dp_jer . (16)

Because the results for R; and k; are unpredictable under
the current circumstances, their product is omitted. In a con-
ventional CKF, the optimization estimate of the state can be
expressed as x; = X;;—1 + k;0; . At the output interval of the
OF data, the filter gain is theoretically very small, so the state
estimation can be adjusted to read:

Xe = Xe|r—1 + K¢ - 67 17

where k; = diag ([/q,,, K2ty - ~K,,J]), which acts as a param-
eter that is used to replace the filter gain in the conven-
tional CKF, is used to determine both the bandwidth and
the response speed of the filter. To get a higher precision
fusion result, the proportional coefficient «; is selected by
experience. o; is the estimated residual.

In general, in the presence of the OF data, a complete
CKEF based on residual correction ((12) and (14)) is used to
filter and fuse the OF and SIFT data and then prepare for the
updating cycle of the estimation error and the residuals in the
next instant. In the absence of the OF data, (16) is then used
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OF data

SIFT data

Time
update+
Residual

correction

velocity output

FIGURE 8. Multi-rate filter based on residual correction.

to update e;, (13) is used to calculate the residual error, and
finally (17) is used to calculate the state variables.

Algorithm 3 Multi-Rate Data Fusion Algorithm Based on
Residual Correction
Algorithmic process:

> Judge whether there are optical flow data

B Yes:
o (12)is used to calculate the state error.
o (14)is used to calculate the residual error.
o The CKEF is used for data fusion.

H No:
o (16)is used to update e;.
o (13)is used to calculate the residual error.
e (17) is used to calculate the state variables.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, to validate the efficiency and superiority of
the proposed OF/SIFT fusion algorithm based on multi-rate
residual correction (CKF-MRC) is tested via UAV experi-
ments in two different places under different illumination
conditions. The experimental locations are in the campus
of the North University of China, Taiyuan. The NovAtel
PW7720 Global Positioning System (GPS) receiver is used
in this experiment as the high-precision velocity reference,
and on the back of the GPS device antenna, there is an OF
camera that is oriented vertically to the horizontal plane and
is calibrated by the method in [30]. The OF camera and ref-
erence parameters are presented in Table 1. The experimental
facilities are shown in Fig 9.

A. PERFORMANCE COMPARISON OF THE

DIFFERENT ALGORITHMS

To demonstrate that the proposed algorithm can improve
accuracy while ensuring the same output rate as that of SIFT,
a series of experiments are carried out; for contrast, five
additional fusion algorithms are added to the experiment (the
classical EKF algorithm (EKF), the EKF fusion algorithm
based on multi-rate filtering (EKF-M), the multi-rate EKF

153344
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TABLE 1. Camera and reference parameters.
Optical flow camera GPS
Sensor brand IMX179
Sensor category CMOS
Lens size 1/3.2inch Brand PW7720
Pixel size 1.4pm Velocity accuracy 0.03m/s
Focal length 10mm Position accuracy  lcm+1ppm
Max Sampling 120Hz Time accuracy 20ns
rate
Max resolution  1280*760

FIGURE 9. Experiment facilities.

fusion algorithm based on residual correction (EKF-M-RC),
the classical CKF algorithm (CKF), and the CKF fusion
algorithm based on multi-rate filtering (CKF-M)). In that,
EKF and CKF are popularly used to data fusion. EKF and its
derivative algorithms have simple algorithmic structure and
advanced processing speed compare to CKF, on the opposite
side, CKF and its derivative algorithms has higher nonlinear
fitting accuracy. In order to explain the superiority in accu-
racy of the proposed algorithm, 4 experiments are carried
out. In the experiments, the SIFT output rate is approxi-
mately 200/min, which is approximately five times that of
the OF.
o Experiment 1: The UAV is in random motion at vari-
able velocity at an altitude of 12 m. The flight time
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FIGURE 10. Velocity error characteristics of experiment 1.

is approximately 6 min and the camera’s sampling fre-
quency is 60 Hz.

o Experiment 2: The UAV is in random motion at variable
velocity at an altitude of 30 m. The flight time is approx-
imately 6 min and the camera’s sampling frequency is
60 Hz.

After the number of moving pixels in the image coordi-
nate system is calculated using OF and the SIFT algorithm,
the ground velocity of the UAV can be obtained by fusing the
three-dimensional attitude and height information provided
by the reference source, and the data from OF and SIFT are
assessed simultaneously according to the system time. The
average reference velocity for experiment 1 is 10.35 m/s,
while that of experiment 2 is 5.14 m/s. MATLAB is employed
to get the velocity error curves for the six algorithms in
the two experiments which are shown in Figs. 10 and 11,
and the number of data of two groups processed are 1200,
the processing time is 5.454589 s and 5.594431 s respectively.

Because the UAV uses a vehicle coordinate system with
the default y axis as the forward direction, the motion com-
ponent in the x direction is smaller and the fusion accuracy is
higher. Figures 10 and 11 show that, because of the velocity
nonlinearities caused by the irregular motion of the UAV, the
EKEF and related algorithms all have poor accuracy. When the
velocity of the motion increases from 5 m/s to 10 m/s,
the accuracy decreases for all the fusion algorithms, but the
proposed CKF-MRC still provides a terrific performance.
Furthermore, as mentioned above, the output speed of the OF
is 40/min, and thus, in two sets of 6 min experiments, there
are approximately 240 optical flow velocity outputs, although
the final UAV velocity outputs are 1200. When compared
with the purely OF system, the velocity output frequency of
this system is higher. To demonstrate the superiority of the
CKF-MRC algorithm more intuitively, the histograms shown
in Figs. 12 and 13 are generated based on the variance and
the root mean square error (RMSE) of the six algorithms.
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Because of the excellent performance of CKF-MRC, this
algorithm will be used in the subsequent experiments.

B. PERFORMANCE COMPARISON OF THE

DIFFERENT METHODS

Another purpose of data fusion between OF and SIFT is
to alleviate the reduction in accuracy of the OF caused by
light and shade changes. To illustrate the robustness of the
fusion algorithm in velocity calculations when dealing with
illumination changes, experiment 3 and experiment 4 are
carried out:

o Experiment 3: The UAV is in random motion at variable
velocity under varying light and shade conditions at an
altitude of 12 m, and the camera’s sampling frequency
is 60 Hz, the running time is 1 min.

o Experiment 4: The UAV is in random motion at variable
velocity under varying light and shade conditions at an
altitude of 30 m, and the camera’s sampling frequency
is 60 Hz, the running time is 1 min.

In these experiments, the changes in the illumination are
mainly caused by the occlusion by buildings and clouds
because of the less distance in the sheltered area; additionally,
the emphasis in this section is not placed on discussion of
the differences in the data output frequency, but rather is
on the accuracy of the velocity calculations under variable
illumination conditions. To provide a better illustration of
the problem, overlapping OF and SIFT data under light
change conditions are acquired separately to perform the
two experiments described above. In experiments 3 and 4,
all of pictures that continuous change of light and shade
are specially selected from normal experimental images. For
example, we can select 60 pairs of images from 1200 pictures,
all of which contain light and shade changes, each selected
pair of pictures can obtain the corresponding reference data
according to its original position and the experiment can be
completed using 60 pairs of pictures. So, the experiments
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assume that the output frequencies of the OF and the SIFT are
equal, i.e., that all collected images with illumination changes
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FIGURE 14. Comparison of velocity errors in experiment 3.

are processed by both SIFT and the OF algorithm, while the
difference in output frequency between these algorithms is
ignored; then, the calculated velocity is fused using the CKF-
MRC algorithm and is compared with the velocity error of
pure OF. The velocity error comparison curves are shown
in Figs. 14 and 15.

The velocity error curves show that different illumination
conditions have different effects on the OF accuracy. While
the accuracy of the fusion algorithm is reduced because of
the influence of the OF, it is still better than that of the pure
OF. To describe the performance of the fusion algorithm in
more detail, Table 2 and Table 3 list the quantified values
of the variance and the RMSE for the two experiments. The
numerical results verify that the performance of the fusion
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TABLE 2. Data variance and RMSE in experiment 3.

Variance RMSE
X Y X y
OF 0.0672 0.5182 0.259 0.7199
CKF-M-RC 0.0057 0.0592 0.0763 0.2436
TABLE 3. Data variance and RMSE in experiment 4.
Variance RMSE
X )4 X y
OF 0.051 0.0292 0.071 0.1711
CKF-M-RC 0.0009 0.0039 0.0293 0.0638

algorithm is better than that of the pure OF algorithm under
changing illumination conditions.

In fact, the influence of illumination with different heights
of changing range on optical flow measurement is a research
topic, which can be further studied in our future work. How-
ever, the comparison between the height of 12m and 30m
in this experiment shows that: 1. the proposed method is
effective at different altitudes. II. The illumination variation
has a greater impact on the accuracy of velocity measurement
at lower flight altitudes.

V. CONCLUSION

This paper has proposed an OF and SIFT data fusion
method called the CKF-MRC for UAV applications to
enhance the velocity accuracy and the data output frequency
of the OF algorithm in variable illumination environments.
The CKF-MRC considers two main cases for data fusion.
On the one hand, when the SIFT data coincide with the OF
data, a complete CKF fusion process is performed to calculate
the UAV velocity information. On the other hand, only a time
update process is carried out and the estimated residual error
is used to correct the filtering state when there are no OF
data; therefore, higher fusion accuracy for the velocity can
be obtained based on multi-rate filtering.

In future work, the authors intend to place greater emphasis
on research into new advanced fusion algorithms. In addition,
subsequent modification of the current fuse model for UAV
velocity measurement to increase its intelligence will form
another possible area for further investigation.
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