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ABSTRACT Inspired by their tremendous success in optical image detection and classification, convo-
lutional neural networks (CNNs) have recently been used in synthetic aperture radar automatic target
recognition (SAR-ATR). Although CNN-based methods can achieve excellent recognition performance, it is
difficult to collect a large number of real SAR images available for training. In this paper, we introduce
simulated SAR data to alleviate the problem of insufficient training data. To address domain shift and task
transfer problems caused by differences between simulated and real data, we propose a model that integrates
meta-learning and adversarial domain adaptation. We use sufficient simulated data and a few real data to
pre-train the model. After fine-tuning, the pre-trained model can quickly adapt to new tasks in real data.
Extensive experimental results obtained in the real SAR dataset demonstrate that our model effectively
solves the cross-domain and cross-task transfer problem. Compared with conventional SAR-ATR methods,
the proposed model can achieve better recognition performance with a small amount of training data.

INDEX TERMS Synthetic aperture radar (SAR), target recognition, convolutional neural network (CNN),
meta-learning, adversarial domain adaptation.

I. INTRODUCTION
Synthetic aperture radar (SAR) is an active sensor mounted
on moving platforms such as aircraft, satellites, and space-
ships. SAR provides two-dimensional high-resolution images
by receiving the electromagnetic echoes of targets. Benefit-
ing from its unique imaging mechanism, SAR can operate
day and night, independent of weather conditions, and has
specific surface penetration capability. The SAR system has
unique advantages in many applications, ranging from dis-
aster monitoring and resource exploration to military inspec-
tion, and it plays an unreplaceable role in both military and
civilian fields.

Automatic target recognition (ATR) is an essential topic
in the field of SAR application research. According to dif-
ferent implementation methods, classic ATR methods can be
classified into feature-based and model-based approaches.
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Feature-based methods extract discriminative features, such
as binary regions [1], target contours [2], monogenic sig-
nals [3], [4], projection features [5], [6], and tensor decompo-
sition features [7] from images. Classifiers such as K-nearest
neighbor (KNN) [8], support vector machine (SVM) [9],
the Bayesian classifier [10], and the sparse representation
classifier [11] have been developed to classify the extracted
features. Both feature extraction and classification require
careful selection by experienced researchers. Model-based
methods [12]–[14] focus on the electromagnetic scattering
features of a target, which are related to the physical charac-
teristics of the target. A computer-aided design (CAD) model
is developed for the target and is then processed through
electromagnetic simulation software to obtain the attribute
scattering centers. The similarity between the attribute scat-
tering centers of the test target and the training target is eval-
uated by specifically designed matching methods. However,
building a CAD model that stores all the details of the target
is time-consuming. Electromagnetic simulation software also
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has difficulty in simulating diffuse scattering and ground
intersection in real scenes. These difficulties degrade the
recognition performance of model-based methods.

In recent years, CNN [15] has been widely used in
image segmentation, image detection, and image classifi-
cation. Inspired by these successful applications, CNN has
also been introduced to the SAR-ATR field. Chen et al. [16]
proposed an all-convolutional network (A-ConvNets) for
SAR target recognition, and convolutional layers were used
to replace the fully connected layers. Kwak et al. [17] pro-
posed a noise-invariant CNN to prevent the degradation of
recognition performance caused by speckle noise. In [18],
CNN was employed to extract the features of SAR images.
Then the extracted features were sent to an SVM classifier.
Min et al. [19] proposed a micro-CNN (MCNN) to reduce
the network computational cost and memory consumption so
that the network can be deployed in a real-time recognition
system. To minimize the influence of noise in SAR images,
Cho and Park [20] proposed a multiple feature aggregation
CNN (MFCNN). They extracted the feature maps of different
CNN layers and aggregated them into a column vector for
classification. Deng et al. [21] employed amultilayer autoen-
coder (AE) combined with a Euclidean distance constraint to
extract the latent features of SAR images. The extracted fea-
tures are subsequently classified by a linear SVM classifier.

CNN can achieve state-of-the-art performance with a sig-
nificant amount of labeled training data. However, due to
cost and confidentiality factors, collecting real SAR images
for training is difficult and time-consuming. Previous work
has attempted to increase training data via simulated SAR
image generation, image augmentation, transfer learning, etc.
Ding et al. [22] produced virtual SAR images through aug-
mentation operations such as translation, speckle noise addi-
tion, and pose synthesis, effectively extending the training
dataset. Pei et al. [23] proposed a multiview deep learning
framework to reduce the number of required training samples.
The input of the framework is a combination of multiview
SAR images rather than a single SAR image. With the recent
advances in generative models, researchers have applied the
generative adversarial network (GAN) [24] and Wasserstein
autoencoder (WAE) [25] to generate simulated SAR images.

In addition to generating simulated images, another
approach to expand training data is transfer learning. Transfer
learning can transfer prior knowledge from a source domain
with large amounts of data to a target domain of limited data.
Previous researchers have applied network-based transfer
learning to SAR-ATR [26]–[28]. They used optical image
data or simulated SAR data as the source domain and real
SAR data as the target domain. Network-based transfer learn-
ing attempts to use images in the source domain to pre-train
the network. The pre-trained network needs only a few real
SAR images for fine-tuning, thus alleviating the need for real
data in the target domain. However, the differences in target
pose, view angle, scene illumination, and background clutter
between the source domain and target domain lead to data
distribution differences between the two domains. We call

this phenomenon the domain shift [29]. Moreover, different
image classes in the source domain and the target domain
will cause task transfer problems [30]. Domain shift and
task transfer make the transfer of knowledge from simulated
SAR data to real SAR data a cross-domain and cross-task
transfer problem, which will degrade the performance of
network-based transfer learning methods.

In this paper, we utilize transfer learning between simu-
lated SAR data [31] and real SAR data to solve the problem
of insufficient training samples. We propose a unified model
to address the cross-domain and cross-task transfer problem.
Recently, model-agnostic meta-learning (MAML) [32] is one
of the best methods for few-shot learning. MAML builds a
variety of tasks to train a network that can quickly adapt
to new tasks in testing. However, MAML assumes that the
training tasks and the test tasks are from the same distribu-
tion; otherwise, its performance will degrade. Following the
training strategy of MAML, we improve the adaptability of
the model on new tasks to address cross-task problems.

We also introduce adversarial domain adaptation [33], [34]
to solve domain shift. We use the adversarial loss to measure
the distance between source and target domain mappings.
By optimizing adversarial loss, we minimize the distance
between the source and target features. Our model maps
image features across domains into a shared space, thus
solving the problem of domain shift. To solve cross-domain
and cross-task transfer problems simultaneously, we propose
a unified network that combines meta-learning with adver-
sarial domain adaptation. Meta-learning enables our model to
adapt to new tasks in the source domain quickly. Adversarial
domain adaptation reduces the distance between the source
domain and the target domain. Hence, our model is capable
of quickly learning new tasks in the target domain.

The rest of this paper is organized as follows. Section II
introduces the framework, network structure, and optimiza-
tion objectives of our model. In section III, we present the
detailed experimental results based on the real SAR dataset
and verify the effectiveness of the model. We conclude this
paper in Section IV.

II. METHODOLOGY
Wefirst use themeta-learning and adversarial domain adapta-
tion to pre-train the model. The prior knowledge learned dur-
ing training initializes the network parameters of our model.
Next, we fine-tune themodel with a small amount of real data.
The fine-tunedmodel can produce good recognition results in
the real dataset.

A. MODEL FRAMEWORK
As illustrated in Fig. 1, our model consists of a classifier,
a domain discriminator, and a feature extractor. All three
components are parameterized by deep neural networks. Dur-
ing training, we collect simulated images and their class
labels from the simulated dataset to form various source
tasks. The feature extractor extracts source features from
input tasks. Next, the classifier identifies these features to
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FIGURE 1. The framework of our model. Simulated images and real images are organized into source tasks and target tasks,
respectively. The feature extractor extracts image features from the tasks. The classifier identifies the classes of image
features, and the discriminator determines whether the image features are from the source domain or the target domain.
Dashed arrows indicate the backward gradient flow.

obtain the corresponding class labels and to calculate the
meta-learning loss. By minimizing the meta-learning loss on
various training tasks, the adaptability of the model to new
tasks is improved. The gradients of meta-learning loss are
backward to the feature extractor and classifier to update
their network parameters. Meanwhile, we collect a few real
images to form the target tasks and send them to the feature
extractor to obtain target features. Target features and source
features are fed into the domain discriminator to predict
their domain labels. We minimize adversarial loss to confuse
the domain discriminator. When the domain discriminator
cannot distinguish between the source features and the target
features, the distance between the source domain and target
domain is minimal. We calculate the gradients of adversarial
loss and back-propagate them in the path indicated in Fig. 1.
We optimize meta-loss and adversarial loss jointly so that our
model can achieve excellent generalization performance on
new tasks in the target domain. This adaptability helps solve
cross-domain and cross-task transfer problems.

After training, we discard the domain discriminator and
fine-tune the network parameters of the feature extractor
and classifier with real data. Using only a small amount of
real training data, our model can produce good recognition
performance in the real SAR dataset.

B. OPTIMIZATION OBJECTIVE
In this section, we formulate the optimization objectives of
the model. We optimize the feature extractor fθ and classifier
fφ through meta-learning while optimizing fθ and domain
discriminator fω through adversarial domain adaptation. θ, φ
and ω represent the network parameters of the three model
components. For each training iteration, we sample a source
task τs from the source domain distribution ps (τ ), as well as
a target task τt from the target domain distribution pt (τ ).The
source task τs consists of M training samples; thus, τs ={(
xj,yj

)}M
j=1, where x and y represent images and the corre-

sponding class labels, respectively. Following the standard
meta-learning protocol, we split the samples in the source
task τs into disjoint training samples and test samples, and

call them the support set τ vs and the query set τ
q
s , respectively.

Thus, τs = τ vs ∪ τ
q
s , where τ vs =

{(
xj,yj

)}P
j=1 and τ qs ={(

xj,yj
)}M
j=P+1. The target task τt is defined similarly.

1) META-LEARNING
The critical assumption of meta-learning is that tasks drawn
from the same domain distribution share a common structure
that can be used for fast adaptation of new tasks. Let us
denote the parameters set of feature extractor fθ and classifier
fφ as (θ, φ). We use one or more gradient descent steps on
the support set to optimize (θ, φ) so that it achieves good
performance on the query set. For each task τs, we use the
gradient of classification loss of τ vs to update (θ, φ). (θ, φ) is
updated as follows:

(θ, φ) = (θ, φ)− α∇θ,φLτ νs
(
fθ,φ

)
(1)

where ∇θ,φ denotes a gradient operation for θ and φ.The
gradient step size α is a hyperparameter. In practice, we repeat
(1) several times to obtain a better result. Lτ νs

(
fθ,φ

)
is the clas-

sification loss of τ vs calculated by the cross-entropy function;
thus, it is defined as:

Lτ νs
(
fθ,φ

)
= −

∑
xj,yj∼τ νs

yj ∗ log
(
fθ,φ

(
xj
))

(2)

where xj and yj denote the jth image and class label in τ vs ,
respectively, fθ,φ

(
xj
)
is the predicted class label of xj, and the

operator ∗ represents the inner product between vectors. Our
goal is to improve the recognition performance of the model
updated by (1) on the query set τ qs . We set the classification
loss of τ qs as our meta-objective and minimize it in meta-
learning. The meta-objective Lmeta is as follows:

min
θ,φ

Lmeta = Eτs∼ps(τ )
[
Lτ qs

(
f(θ,φ)−α∇θ,φLτνs (fθ,φ)

)]
(3)

where Lmeta is minimized by training θ and φ across tasks
sampled from ps (τ ). Lτ qs denotes the classification loss of τ qs
after using (1) to update the network parameters.
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2) ADVERSARIAL DOMAIN ADAPTATION
The distance between the source domain and the target
domain is reduced by minimizing an adversarial loss in the
feature space. We design two independent objectives to min-
imize the adversarial loss, one for the feature extractor fθ
and one for the domain discriminator fω. The adversarial loss
used in [34] is the GAN loss, but the training of GAN is
unstable. To improve the stability of training, we introduce
the Wasserstein distance [35] as the adversarial loss.

First, we train fω to identify whether the image features are
from the source domain or the target domain. The discrimi-
nator marks the source feature with a positive label and the
target feature with a negative label. The training objective of
fω takes the following form:

min
ω
LadvD = Eτt∼pt (τ ) [fω (fθ (τt))]− Eτs∼ps(τ ) [fω (fθ (τs))]

+λ · Eµ
[(∥∥∇µfω (µ)∥∥2 − 1

)2] (4)

where fθ (τt) denotes the extracted image features of
τt , fω (fθ (τt)) represents the domain labels of target images
produced by fω, andµ is a linear interpolation of the source
and target features, which is defined as:

µ = εfθ (τs)+ (1− ε) fθ (τt) (5)

where ε ∼ U [0, 1] is a uniformly distributed random
variable. The difference between the first two terms of (4)
is the original loss of fω. The smaller the original loss is,
the stronger the discrimination ability of fω. The last term of
(4) is a regularized term constraining the gradient norm of
fω (µ). λ is a hyperparameter that balances the original loss
and gradient penalty. Details can be found in [35].

Second, we train fθ to produce domain invariant features to
fool fω. The training objective of fθ is:

min
θ
LadvF = −Eτt∼pt (τ ) [fω (fθ (τt))] (6)

where fθ is trained to minimize LadvF while leaving fω fixed.
When LadvF has not been optimized, the target feature should
be labeled as negative by fω. By minimizing LadvF , the output
of fω changes from negative to positive, that is, fω mistakes the
target feature for the source feature. The feature extracted by
fθ can be regarded as domain invariant.

In a training iteration, we begin by sampling τs and τt from
ps (τ ) and pt (τ ). Next, we use τs and τt to evaluate Lmeta,
LadvD, and LadvF sequentially. Finally, we use the gradient
of the losses to update the network parameters. The detailed
training process is outlined in TABLE 1.

C. NETWORK STRUCTURE
Fig. 2 illustrates the network structure of our model. The
feature extractor consists of 4 convolutional modules. Each
convolutional module consists of a convolutional (CONV)
layer, a batch normalization (BN) layer [36], a rectified linear
unit (ReLU) layer, and a 2×2 max-pooling layer. BN plays a
vital role in our network. It can accelerate the convergence of
the network and effectively improve the stability of training

TABLE 1. Training algorithm.

FIGURE 2. Network structure of our model.

when there are few training samples. The classifier is imple-
mented by a single fully connected (FC) layer. The domain
discriminator is a cascaded network with three FC layers.

We preprocess the raw SAR amplitude images to a log
scale and normalize the pixels to [−1, 1]. The images are first
cropped into a size of 64 × 64 to reduce clutter interference
while preserving the target characteristics. Next, the cropped
images are fed into the feature extractor. In the first convolu-
tional module, inputs are filtered by 16 filters with a kernel
size of 5×5. Since the convolutional layer uses spatial zero
paddings and a convolutional stride of 1 pixel, the outputs
of this layer are 16 feature maps of size 64 ×64. After being
processed by the BN layer and the ReLU layer, the outputs are
downsampled at the max-pooling layer to obtain 16 feature
maps of size 32 ×32. The outputs of the last convolutional
module are 32 feature maps of the size 4 ×4. We flatten
the output feature maps into feature vectors that can be sub-
sequently processed by the classifier or discriminator. The
classifier reduces the dimension of features to N and uses
the softmax function to produce class labels. N represents the
number of classes included in a single task. In the discrimina-
tor, the features are processed by three FC layers sequentially
to produce domain labels. We use Xavier [37] to initialize the
parameters of the network as uniformly distributed random
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variables. That is,

2 ∼ U

(
−

√
6

ni + no
,

√
6

ni + no

)
(7)

where 2 denotes the initialized parameters, U represents a
uniform distribution, ni is the input dimension of a layer in
the network, and no is the output dimension of this layer.

III. EXPERIMENTAL RESULTS
A. DATASETS
During testing, we use a small amount of real SAR data to
fine-tune the model and test it on the remaining real SAR
data. We use the moving and stationary target acquisition
and recognition (MSTAR) dataset, which was collected and
released by the U.S. Air Force Research Laboratory, as the
real SAR dataset. A variety of ground targets are imaged by
an HH-polarized X-band SAR system operating in spotlight
mode. All images have a resolution of 0.3 m × 0.3 m and a
size of 128 ×128 pixels. These target images are acquired at
full azimuth angles (0◦−360◦) and limited depression angles
(15◦, 17◦, 30◦, and 45◦). The publicly released MSTAR
dataset contains ten classes of military vehicles, such as battle
tanks and infantry fighting vehicles. Because of the authority
and completeness of its data, the MSTAR dataset is widely
used to compare various SAR-ATR approaches. We summa-
rize the classes, numbers, and depression angles of the targets
available for training and testing in TABLE 2.

TABLE 2. Description of the real SAR dataset.

The simulated SAR images were provided by researchers
at the Technical University of Denmark. They built a CAD
model of the target and used commercial electromagnetic
simulation software to obtain the radar cross-section (RCS) of
the target. A self-developed postprocessing software program
was used to generate simulated images containing the tar-
get’s RCS, speckle noise, and ground clutter. The simulation
software parameters were set by referring to the imaging
parameters of the MSTAR dataset. The simulated dataset
contains seven types of targets, including cars, trucks, and
bulldozers. Each type of target is imaged using two different
CAD models. Hence, there are a total of fourteen classes of

targets in the simulated dataset. The simulated images are
acquired at various depression angles (15◦, 17◦, 25◦, 30◦,
35◦, 40◦, and 45◦) over different azimuth angles (0◦ − 360◦,
with a step of 5◦). Compared with the MSTAR dataset,
the target classes and angles of the simulated dataset are
more diverse. TABLE 3 lists the classes of simulated images,
the CADmodel numbers used, and the number of images per
class.

TABLE 3. Description of the simulated SAR dataset.

B. TRAINING DETAILS
According to the standard meta-learning setup, the inputs of
our model are organized into N-way, K-shot tasks. To form
a task, we randomly select N classes in the dataset and then
extract L images in each class. The N∗K images in a task form
a support set, and the remainingN∗(L-K) images form a query
set. It is worth noting that the image labels in the tasks are
randomly assigned, which forces the model to learn the task-
general features. During testing, we randomly extract training
samples from the real dataset to form input batches. Then,
we use stochastic gradient descent to fine-tune themodel with
a learning rate of ρ and a batch size of σ . The image labels
used during fine-tuning correspond to the classes of targets
rather than being randomly assigned. The hyperparameters
of our model are searched through cross-validation. We list
the detailed hyperparameter settings in TABLE 4.

TABLE 4. Hyperparameters settings.
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C. TARGET RECOGNITION UNDER SOC
In this experiment, we evaluate the ten-class target recog-
nition performance of our model under standard operating
conditions (SOC). SOC refers to the acquisition of training
and test images under similar conditions. The serial number,
configuration, and depression angle of the same class of
images are similar for the training set and test set. After
training, images at a depression angle of 17◦ are used to
fine-tune the model, and the images at a depression angle
of 15◦ are used to test it. Detailed classes and numbers of
images are shown in TABLE 2.

We compare the recognition performance of three meth-
ods under the same network structure and the same num-
ber of training samples. These methods are CNN without
pre-training (denoted CNN_ORG), CNN pre-trained with
network-based transfer learning (denoted CNN_TF) [28], and
CNN pre-trained with meta-learning and domain adaptation
(our model). The accuracy curves of these methods are plot-
ted in Fig. 3. When using only 10% of the training set,
the recognition accuracies of our model and CNN_TF are
88.9% and 81.3%, respectively, which ismuch higher than the
76.9% of CNN_ORG. When using the complete training set,
the accuracy of our method is 98.5%, while the accuracies of
CNN_TF andCNN_ORG are 95.6% and 95.2%, respectively.
Compared with training from scratch, pre-training improves
the recognition performance of CNN. The smaller the amount
of data used for training, the higher the advantage of the
pre-training method.

FIGURE 3. Recognition accuracy of three methods under the SOC test.

The pre-training on the simulated data allows CNN to learn
some general features, such as edges and textures. These
transferable features are also applicable to real data, which
provides a good starting point for fine-tuning on real data.
Fig. 3 shows that as the quantity of training data increases,
the accuracies of CNN_TF and CNN_ORG tend to be consis-
tent. The accuracy of our model is always higher than those
of CNN_TF and CNN_ORG. Our model uses meta-learning
and domain adaptation for pre-training. Hence it achieves

TABLE 5. Comparison of different methods under the SOC test.

better recognition results in such cross-domain and cross-task
transfer scenarios.

We also compare our model with the recognition meth-
ods proposed in recent years. The methods used for com-
parison include CNN-based methods (A-ConvNet [16] and
MCNN [19]), sparse representation-based methods (KSR [3]
and TJSR [4]), and locality-preserving projection-based
methods (CDSPP [5] and KRLDP [6]). The recognition accu-
racies of all methods are obtained on the complete training
dataset. As shown in TABLE 5, our model is superior to
most methods according to the SOC test. The ± shows 95%
confidence intervals of accuracy.Moreover, the average accu-
racy of these methods is approximately 95%. As shown in
Fig.3, our model can achieve this accuracy, with only 30%
of the training dataset. Our model performs well, even if the
real training data are scarce, which is quite practical in the
SAR-ATR field.

D. DTARGET RECOGNITION UNDER
DEPRESSION VARIATIONS
In this experiment, we evaluate the recognition performance
of the model under significant depression angle variations,
which is one of the extended operating conditions (EOC)
tests. Due to the unique imaging mechanism of SAR, SAR
images are sensitive to the depression angle variations of
targets. The change in the depression angle has a significant
influence on the appearance of the target image. We compare
the images of the same target at different depression angles
in Fig. 4. When the depression angle of the target changes
from 17◦ to 30◦, the intensity and position of the scattering
centers of the images change slightly. When the depression
angle changes to 45◦, the shape, shadow, and even the noise
intensity of the image change drastically. To explore the
robustness of our model, we use target images collected at
a depression angle of 17◦ for training and use the images
collected at depression angles of 30◦ and 45◦ for testing.
Referring to the experimental setup of [3], [4], we select three
classes of targets, 2S1, BRDM2, and ZSU234, for training
and testing. The class and numbers of target images used for
training and testing are summarized in TABLE 6.

We compare the recognition performance of three methods
at a depression angle of 30◦ in Fig. 5. When only 10% of the
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FIGURE 4. Examples of three targets at different depression angles.

TABLE 6. Dataset for recognition under various depression angles.

FIGURE 5. Recognition accuracy of three methods at a depression angle
of 30.

training data is used, the recognition accuracies of our model,
CNN_TF, and CNN_ORG are 90.3%, 89.2%, and 85.6%,
respectively. If all the training data is used, the recognition
accuracies of the three methods increase to 95.8%, 94.0%,
and 91.6%, respectively. The recognition accuracy increases
with the number of training samples. Our model is superior to
the other two methods. The recognition performance of our
model is similar to that under the SOC test. When the depres-
sion angle of the training data and the test data do not differ
considerably (17◦ versus 30◦), the recognition performance
of our model will not decrease significantly.

As shown in Fig.6, when the depression angle of the test
images changes from 30◦ to 45◦, the recognition accuracies
of the three methods decrease significantly. When using 10%
of the training data, the recognition accuracies of our model,
CNN_TF, and CNN_ORG are 65.6%, 65.3%, and 52.3%,

FIGURE 6. Recognition accuracy of three methods at a depression angle
of 45.

respectively. The accuracies of the three methods based on
100% of the training data are 72.5%, 62.5%, and 60.1%,
respectively. Significant variations in depression angles lead
to dramatic changes in the appearance of the target, which
results in a considerable difference between the training
images and the test images. In this case, fine-tuning has a lim-
ited effect on recognition accuracy. We observe that with the
increase in the quantity of training data used, the recognition
accuracy of CNN_TF decreases. It is possible that network-
based transfer learning is not suitable for scenarios in which
the training images are very different from the test images.

We also compare the model with several SAR-ATR meth-
ods at different depression angles. The recognition accuracies
based on all training data are shown in TABLE 7. Compared
with the SOC test results, the recognition accuracy of each
method in this EOC test has decreased. The considerable
difference between the training images and the test images
will degrade recognition performance. The accuracies of our
model at 30◦ and 45◦ are 95.8% and 72.5%, respectively,
which are better than those of most methods. In addition,
the average accuracies of the SAR-ATR methods at 30◦ and
45◦ are 94.8% and 71.0%, respectively. Our model can obtain
these accuracies with only 50% of the training data. Even
if the depression angle of the target varies dramatically, our
model can achieve reasonable performance without a large
quantity of training data.

TABLE 7. Comparison of methods under various depression angles.
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E. TARGET RECOGNITION UNDER
CONFIGURATION VARIATIONS
Differences in the configuration of the same target, such as
whether the target equips with fuel barrels, fenders, or smoke
grenade launchers, will lead to variances in the corresponding
SAR images. These variances will degrade the performance
of recognitionmethods. In this EOC test, several targets under
different configurations are used for recognition. We select
four targets, T72, T62, BMP2, and BTR60, for training and
testing, where T72 and BMP2 contain three variants denoted
by different serial numbers. The details of the training and
test samples are summarized in TABLE 8.

TABLE 8. Dataset for recognition under configuration variations.

The difference between the test image and training image
is mainly due to two factors. First, their depression angles
are slightly different, and second, their appearance varies due
to configuration differences. Compared with the SOC test,
these two differences will result in a decrease in the recogni-
tion accuracy. When using all the training data, we compare
our model with other recognition methods. The recognition
results are shown in TABLE 9. Benefiting from pre-training
using meta-learning and domain adaptation, our model is
robust to the variations in the target configuration. Under the
same network structure, our model is superior to CNN_TF
and CNN_ORG. Compared with other traditional SAR-ATR
methods, our model achieves state-of-the-art results.

TABLE 9. Comparison of methods under configuration variations.

F. COMPARISON OF THE TRAINING CONVERGENCE
In this experiment, we compare the convergence speed of
the proposed model with those of CNN_TF and CNN_ORG.
We evaluate the convergence speed in two cases, one using
100% of the training data and the other using 50% of the
training data. As shown in Fig. 7, when using 50% of
the training data, the three methods need to train 14, 25,
40 epochs to converge.When using 100% of training data, the
convergence epochs of the three methods decrease to 10, 20,

FIGURE 7. Comparison of the training convergence using (top) 50% of the
training data (bottom) 100% of the training data.

and 30, respectively. Compared with training from scratch,
the pre-training-based methods converge much faster. Bene-
fiting from the excellent features of meta-learning, our model
converges faster than CNN_TF. Our model can quickly adapt
to new tasks with a few fine-tuning steps, which is a con-
siderable advantage in practical applications in which there
are many more targets than in the MSTAR dataset. Moreover,
the number of targets in practical applications is not fixed but
will continue to increase. Instead of training from scratch, our
model can adapt to the expanded dataset by fine-tuning with
the new target images.

IV. CONCLUSION
In practice, CNN-based SAR-ATR methods lack sufficient
real SAR images to train networks. To alleviate this problem,
we employ simulated SAR data to expand the training dataset.
We propose a unified model integrating meta-learning and
adversarial domain adaptation to transfer prior knowledge
from simulated SAR data to real SAR data. By introduc-
ing meta-learning and domain adaptation into the applica-
tion scenario of transfer learning, our model addresses the
cross-domain and cross-task transfer problem. Experimental
results on the MSTAR dataset verify that our model is supe-
rior to the network-based transfer learning method and non-
pre-training method. Compared with traditional SAT-ATR
methods, our model achieves better performance with fewer
training data.
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