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ABSTRACT In the complex industrial environment, data missing situation is often occurred in the process
of data acquisition and transition. The major contribution of the paper is the proposal of a deep bidirectional
echo state network (DBESN) framework for time series prediction with such incomplete dataset. Instead
of data imputation methodology, a bidirectional fusion reservoir is here designed to extract the deep
bidirectional feature along with forward and backward time scales, based on which a deep autoencoder
echo state network (DAESN) and a deep bidirectional state echo state network (DBSESN) are constructed
for the incomplete output and input samples, respectively. As for such two networks, a bidirectional
echo state network (BESN) is proposed for connecting them to constitute the DBESN framework for
prediction. To verify the effectiveness of the proposed method, one synthetic time series as well as two real-
world industrial datasets are employed to conduct the comparative experiments. The experimental results
demonstrate that the proposed method outperforms other comparative ones at various missing rates.

INDEX TERMS Deep learning, echo state network, incomplete dataset, prediction, time series.

I. INTRODUCTION
With the development of modern industrial information tech-
nology, the amount of the industrial data accumulated in
process of manufacturing is increasing at an unprecedented
rate [1]. To monitor and analyze the state of energy utilization
in industrial process, it is necessary to establish a prediction
model for some crucial variables based on these process
data [2].

Since, in the process of industrial data acquisition and tran-
sition, due to the collector faults, transmission errors, memory
failures and human errors, the data absence phenomenonmay
occur, which often brings a huge challenge for data analysis
and processing [3]. Furthermore, the existence of missing
data may largely increase the difficulties to describe a system
by using data-driven approaches [4]. Therefore, it becomes
essential to construct a prediction model for the incomplete
data to provide a significative guidance for energy scheduling
to avoid energy waste in the industrial process.
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In literature, a series of researches exist on the time series
prediction with incomplete dataset in recent years, but most
of them only considered the issue of data imputation [5]. For
example, a multiple imputation using Markov Chain Monte
Carlo (MCMC) algorithm were adopted in [6] to impute the
missing data by using partial least squares regression model.
Besides, periodicity imputation method, mean imputation
method and cubic spline imputation method were employed
in [7] for incomplete time series data imputation before mod-
eling, in which the differences between them were analyzed.
Furthermore, a polyfit line-fitting algorithm [8], a Gaussian
process [9] and a nearest neighbor method [10] were also
applied to data imputation. However, one of the major draw-
backs of data imputation lies in that the original feature of the
data may be retorted by imputation, which could exhibit an
adverse effect on the prediction accuracy.

Deep learning, featuring inmore hidden layers andmassive
training data, transforms the samples from the original space
into a new feature space to reveal more useful feature and
ultimately improve the accuracy of prediction [11]–[14]. For
example, a deep architecture was constructed in [15] for time
series prediction, in which a deep belief network (DBN)
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was employed at the bottom for feature learning in an unsu-
pervised fashion and a multitask regression layer was built
at the top for supervised prediction. Also, considering the
inherent spatial and temporal correlations, a deep learning-
based prediction model was proposed in [16], in which a
greedy layer wise training-based stacked autoencoder (SAE)
model was used to learn the feature of the samples. Besides, a
deep learning-based prediction method was reported in [17],
which adopted a multi-task convolutional neural network
model to automatically extract features from the time series
before prediction. Although the abovementioned studies were
applied to time series prediction, they belonged to a class of
static memoryless network, which shown limited ability in
modeling time series.

With respect to the memory-based deep learning model,
a cascade connecting long short-term memory (LSTM) net-
work with multi-layers based on memory units was con-
structed in [18], in which an origin destination correlation
matrix was integrated in the LSTM network via full con-
nected layers and vector generators to capture the feature of
time series. Moreover, an improved deep recurrent neural net-
workmodel was reported in [19], in which a computationally-
efficient optimization framework was designed by using
Bayesian optimization and Gaussian processes to reduce the
computational cost. However, these studies were completed
only for complete datasets without any missing points.

Aiming at time series prediction with incomplete dataset,
a deep bidirectional echo state network (DBESN) framework
is proposed in this study. In order to dispose the missing
points in the output and input samples of the proposed frame-
work instead of data imputation, a deep autoencoder echo
state network (DAESN) and a deep bidirectional state echo
state network (DBSESN) are constructed based on a designed
bidirectional fusion reservoir for extracting the deep bidirec-
tional feature of the samples in both past and future time.
Then, a bidirectional echo state network (BESN) is proposed
for prediction of the deep features extracted by such two
constructed networks to compose the proposed framework.
To verify the effectiveness of the proposed method, one
synthetic time series and two industrial time series datasets
coming from real world practice are adopted here for predic-
tion task. The experimental results with three missing rates
are further analyzed, and the effectiveness of the proposed
method is demonstrated.

The rest of this paper is organized as follows. The
related works and preliminaries are reviewed in Section 2.
The main contributions including the establishment of the
time series prediction model with incomplete dataset based
on the DBESN framework is given in Section 3. And,
the experimental analyses are conducted in Section 4. Finally,
the section 5 draws the conclusions.

II. RELATED WORKS AND PRELIMINARIES
A. RELATED WORKS
Most of the existing prediction studies adopted com-
plete data-based methods via imputation processing when

facing with incomplete dataset. In data imputation field,
an expectation-maximization (EM) based classification algo-
rithm was reported in [20], which imputed the data by sim-
ilar target object. However, such an algorithm required to
classify the dataset, which made the imputation performance
depend on the classification accuracy. In addition, three kinds
of correlation analysis-based imputation methods were pro-
posed in [21] to interpolate the missing data. But, these three
methods constructed the correlation equations with linear
interpolation, which might result in low imputation accu-
racy. Furthermore, a data imputation algorithm was proposed
in [22], where the nearest neighbor data objects of themissing
data were found by the classification method, and its average
attribute value was used as the estimated value of the missing
data. However, the value of k was difficult to determine in
practice, which limited the practicability of the method.

In the field of data imputation-based practical application,
a quartic polynomial was used to impute the missing data of
wind tower in [23] by fitting the wind speed data at different
heights of the same tower, but the fitting parameters would
dynamically vary with the height, thus the fitting process was
very complex. Besides, a sector linear regression method for
wind direction data imputation was proposed in [24], where
the wind direction data was divided into several categories
by wind sector, and the missing data was imputed by linear
regression method. However, a large amount of high-quality
historical data was required for such a method.

With respect to the field of prediction, a backpropagation
neural network with generalized type-2 fuzzy weights was
proposed in [25] for time series prediction, where the fuzzy
inference was used to optimize the weights of the neural
network. Besides, a single neuron model based on dendritic
mechanisms and a phase space reconstruction (PSR) method
were proposed in [26] to analyze the time series, where the
PSR observed the properties of the samples in a reconstructed
phase space. Furthermore, an oblique random forest model
was proposed in [27], where a least square classifier was
employed to replace the single optimal feature-based orthog-
onal classification algorithm used by standard random forest
in each node of the decision trees for forecasting. However,
the abovementioned methods were all based on shallow net-
work, in which their modeling ability were largely limitative
while handling the complicated data with high noise, and the
satisfactory result could not be obtained.

As for deep model-based prediction, a graph deep learning
model was proposed in [28], where the temporal features
of samples were extracted by using a LSTM network, and
then a scalable graph convolutional deep learning architec-
ture was constructed for time series prediction. Moreover,
a deep learning-based method was proposed in [29], where a
convolutional neural network combining with correlated vari-
able analysis was constructed to predict dynamic time delay
sequences. In addition, a deep belief echo-state network was
proposed in [30], where a DBN was used for feature extract-
ing and an echo-state learning mechanism was employed
for time series prediction. However, the abovementioned
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FIGURE 1. The network structure of ESN.

deep learning studies were not concerned with missing data
issue.

B. PRELIMINARIES
To make the study self-contained, a brief review of the echo
state network (ESN) is given as preliminaries. Such a net-
work, as a kind of recurrent neural network, has shown good
performance in time series prediction [31]. Its structure is
shown in Fig. 1.

ESN consists of three parts: input layer, state reservoir,
output layer [32]. The input signal uesn(k) is connected to
the reservoir by input connection weight matrix Wesnin, and
the output yesn(k) is fed back to the reservoir by feedback
connectionweight matrixWesnback . Besides, the internal state
vector is composed of the reservoir output xesn(k), which is
connected to the output layer by output connection weight
matrix Wesnout . Furthermore, the internal neurons in the
reservoir are connected with each other by internal connec-
tion weight matrixWesnres [33], [34]. The relationship among
the input, state and output of ESN are

xesn(k+1)= f (Wesninuesn(k+1)+Wesnresxesn(k)

+Wesnbackyesn(k)) (1)

and

yesn(k + 1)=g(Wesnout [uesn(k + 1), xesn(k + 1), yesn(k)])

(2)

where f (·) and g(·) denote the activation function of reservoir
neurons and output layer neurons, respectively.

III. DEEP BIDIRECTIONAL ECHO STATE NETWORK
FRAMEWORK -BASED TIME SERIES PREDICTION
Due to the irregularities of industrial processes, industrial
time series usually contains missing data. In this paper, a deep
learning-based prediction model is proposed for time series
data with incomplete dataset.

A. OVERALL STRUCTURE OF THE DEEP BIDIRECTIONAL
ECHO STATE NETWORK FRAMEWORK
A deep network framework called DBESN is proposed here
for time series prediction with incomplete dataset, whose
overall structure is shown in Fig. 2.

FIGURE 2. The overall structure of the DBESN framework.

The DBESN framework consists of three parts, i.e., the
processing for output samples and input samples with incom-
plete dataset and the feature-based prediction. In the first two
parts, such framework adopts multilayer feature extraction
instead of data imputation to deal with the missing data,
in which a DAESN and a DBSESN are constructed for
unsupervised deep feature extraction of the output and input
samples with missing points respectively. Then, the third part
establishes a BESN to connect the DAESN and the DBSESN
for supervised prediction with the deep features extracted by
them.

B. DEEP AUTOENCODER ECHO STATE NETWORK
In order to extract the deep feature of the output sample with
missing points of the DBESN framework, a DAESNmodel is
proposed in this study, which stacks multilayer autoencoder
echo state network (AESN) to form deep structure for feature
extraction.

1) AUTOENCODER ECHO STATE NETWORK
Considering the time series data with missing points, both the
past information and the future information play an important
role in feature extraction of current time. However, the reser-
voir state of an ESN in current time is only related to the input
data of current time, the reservoir state of past time and the
output data of past time, that is to say, ESN collects the state
information of past time and neglects the future time.

To overcome this issue, a bidirectional fusion state network
called AESN is proposed in this study, which collects the state
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FIGURE 3. The structure of AESN.

information along with forward and backward time scales.
The structure of AESN is shown in Fig. 3.

The AESN consists of L input units u(k + 1) = [u1(k +
1), u2(k + 1), . . . , uL(k + 1)]T , M output units y(k + 1) =
[y1(k+1), y2(k+1), . . . , yM (k+1)]T and internal state units
x(k + 1) at time k + 1. To extract the feature of u(k + 1),
the output of the AESN is set to be equal to the input,
i.e., y(k + 1) = u(k + 1). Therefore, x(k + 1) is the feature
of u(k + 1).

a: BIDIRECTIONAL FUSION RESERVOIR
In order to collect the state information of both past time and
future time at time k + 1, this study proposes a bidirectional
fusion reservoir, which fuses a forward reservoir and a back-
ward reservoir.

The forward reservoir and the backward reservoir collect
the past state information and the future state information,
respectively, and then such two separated reservoirs are fused
together to extract the feature of input sequence. Since the
two opposite direction reservoirs are not connected with
each other, each reservoir network can be regarded as an
ESN structure, which guarantees that its unfolded chart is
non-cyclic. The internal state updating equation of forward
reservoir is shown in (1), and the backward one is shown as
follows,

xb(k + 1) = f (Wbresxb(k + 2)+Wbinu(k + 1)

+Wbbacku(k + 2)) (3)

where, Wbres denotes the connection weight matrix of inter-
nal neurons in backward reservoir, Wbin denotes the input
weight matrix of backward reservoir, Wbback denotes the

feedback connection weight matrix of backward reservoir,
and xb(k + 1) denotes the state of backward reservoir.
Since the bidirectional fusion reservoir is composed of

forward and backward reservoirs, its internal state updating
equation is shown as

x(k + 1) = f (xf (k + 1)+ xb(k + 1))

= f (f (Wfresxf (k)+Wfinu(k + 1)+Wfbacku(k))

+ f (Wbresxb(k + 2)+Wbinu(k + 1)

+Wbbacku(k + 2))) (4)

where, x(k + 1) denotes the state of the bidirectional fusion
reservoir, xf (k + 1) denotes the state of the forward reser-
voir, Wfres denotes the connection weight matrix of internal
neurons in forward reservoir, Wfin denotes the input weight
matrix of forward reservoir, Wfback denotes the feedback
connection weight matrix of forward reservoir.

However, due to the missing points in the sample matrixU,
(4) is incalculable. To solve this problem, this paper proposes
principle 1 to deal with the missing points.
Principle 1: Themissing points do not participate in matrix

multiplication and the remaining points participate in matrix
multiplication in their original positions.

This principle ensures that the feature extraction is carried
out without changing the original feature of the samples with
missing points.

b: INPUT WEIGHT MATRIX AND OUTPUT WEIGHT MATRIX
In order to form deep structure by stacking multiple AESNs
and apply fine-tuning strategy to optimize the weights of
the DAESN, this study defines an input weight matrix Win,
an input bias bin, an output weight matrixWout , and an output
bias bout .
As for Win, it multiplied by the input sample equals the

feature of the input sample extracted by the proposed bidi-
rectional fusion reservoir. The process can be shown as

h(Winu(k + 1)+ bin) = x(k + 1) (5)

where h(·) denote the activation function.
Since the output of the AESN equals to its input, the rela-

tionship between the feature of the input sample and the
output can be summarized as follows,

h(Woutx(k + 1)+ bout ) = u(k + 1) (6)

where the matrix multiplication with missing points is dis-
posed by the principle 1.

To get the optimal values of Win, bin, Wout and bout , one
canminimize the following cost function with respect to them
by the gradient descent method, i.e.,

J (Win,bin)=
1
m

m∑
i=1

(
1
2
‖h(Winui(k+1)+bin)−xi(k + 1)‖2)

+
λ

2

s1∑
j=1

s2∑
k=1

(Wjk
in)

2 (7)

152536 VOLUME 7, 2019



Q. Wang et al.: Time Series Prediction With Incomplete Dataset Based on DBESN

and

J (Wout ,bout )

=
1
m

m∑
i=1

(
1
2
‖h(Woutxi(k+1)+bout )−ui(k+1)‖2)

+
λ

2

s1∑
j=1

s2∑
k=1

(Wjk
out )

2 (8)

where, m, s1, and s2 denote the number of input samples,
the number of rows of the weight matrix, and the number of
columns of the weight matrix, respectively. Furthermore, the
first term in the right-hand side denotes an average sum-of-
squares error term, and the second term with its coefficient
λ denotes a regularization term decreasing the magnitude of
the weights as well as preventing overfitting.

However, due to the missing points in U, the calculation
process of the gradient descent method cannot be continued.
Therefore, this study proposes the following method to solve
this problem as principle 2.
Principle 2:When the gradient descent method is used for

optimizing the parameters, we calculate the gradient for each
sample at a time, in which the case of matrix multiplication
with missing points is solved by principle 1. Then, all the
gradients are added together and divided by the number of
samples to obtain the average of these gradients for updating
the parameters.

2) DEEP NETWORK FORMATION AND UNSUPERVISED
FINE-TUNING
By utilizing the AESN, the state of the bidirectional fusion
reservoir is the feature of the input samples. However, such
feature is so shallow that it cannot reveal the essential infor-
mation of the input samples. In order to further acquire deep
features, a DAESN is proposed in this study, in which the
reservoir state of an AESN is taken as the input sample of
another AESN in order that multiple AESNs are stacked layer
by layer to form deep structure.

As for the DAESN, an improved unsupervised wake-sleep
algorithm including a wake phase and a sleep phase is also
proposed in this paper to fine-tune the deep network, in which
all the weights can be optimized to improve the performance
of the whole network.

In the wake phase, the feature of current layer X(i)
′

is
generated by the product of the feature of lower layer X(i−1)

′

and the upward input weight W(i−1)
in , and a reconstructed

feature of lower layer X(i−1)
′′′′

is generated by the product of
the downward output weightW(i−1)

out and X(i)
′

. By calculating
the residual error between X(i−1)

′

and X(i−1)
′′′′

, the gradient
descent algorithm can be used to modify W(i−1)

out . The updat-
ing formula of output weight 1W(i−1)

out is shown as

1W(i−1)
out = εX

(i)
′

(X(i−1)
′

−X(i−1)
′′′′

)

= εW(i−1)
in X(i−1)

′

(X(i−1)
′

−W(i−1)
out W(i−1)

in X(i−1)
′

)
(9)

where, ε denotes the learning rate.

In the sleep phase, the feature of lower layer X(i−1)
′′

is
generated by the product of the feature of current layer
X(i)

′′

andW(i−1)
out , and a reconstructed feature of current layer

X(i)
′′′

is generated by the product of W(i−1)
in and X(i−1)

′′

.

By calculating the residual error between X(i)
′′

and X(i)
′′′

,
the gradient descent algorithm can be used to modifyW(i−1)

in .
The updating formula of input weight 1W(i−1)

in is shown as

1W(i−1)
in = εX(i−1)

′′

(X(i)
′′

−X(i)
′′′

)

= εW(i−1)
out X(i)

′′

(X(i)
′′

−W(i−1)
in W(i−1)

out X(i)
′′

)

(10)

By multi-layer feature extraction of the DAESN optimized
by the improved unsupervised wake-sleep algorithm, the fea-
ture of the topmost layer is the deep feature Ldf of the output
samples, which is expressed as

Ldf =W(1)
in W

(2)
in W

(3)
in · · ·W

(n−1)
in U (11)

C. DEEP BIDIRECTIONAL STATE ECHO STATE NETWORK
With respect to the input samples with missing points of the
DBESN framework, a DBSESNmodel stacked by multilayer
bidirectional state echo state network (BSESN) is proposed in
this study to extract its deep feature instead of data imputa-
tion, in which the reservoir state of an BSESN is taken as the
input sample of another BSESN to form deep structure. The
network structure of the BSESN is shown in Fig. 4.

The BSESN also adopts the proposed bidirectional fusion
reservoir to collect the state information x1(k + 1) fused by
the past state information x1f (k+1) and the future state infor-
mation x1b(k+1) for the incomplete input samples u1(k+1),
in which the missing points are treated by principle1 and 2.
In this way, x1(k + 1) is the feature of u1(k + 1), which can
be obtained by (4).

By collecting the fusion reservoir state layer by layer,
the deep feature Rdf of the input samples with missing points
of the DBESN framework can be extracted on the topmost
layer of the DBSESN model.

D. BIDIRECTIONAL ECHO STATE NETWORK
By utilizing the DBSESN and DAESN models, the deep
features of the input samples and output samples withmissing
points of the DBESN framework are extracted. Based on
these deep features, this paper proposes a BESN model for
prediction, whose structure is shown in Fig. 5.

In order to meet the prediction demand, the BESN adds an
output matrixWBESN

out to its reservoir, meanwhile, it considers
Rdf (k + 1) as the input samples and Ldf (k + 1) as the out-
put samples to calculateWBESN

out for prediction. Furthermore,
such network also fuses a forward and a backward reservoir to
collect the past state information x2f (k+1) and the future state
information x2b(k+1) of Rdf (k+1). Its updating equation of
the bidirectional fusion reservoir state x2(k + 1) is the same
as (4), and the output equation is the same as (2).
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FIGURE 4. The network structure of BSESN.

FIGURE 5. The network structure of BESN.

E. SUPERVISED FINE-TUNING
In order to further improve the prediction performance of the
DBESN framework, such network is divided into a left part
and a right part by the boundary of the reservoir of BESN
for supervised fine-tuning. The left part includes the output
state of the BESN reservoir and the DAESN, which is used
for output prediction. The right part includes DBSESN and
the reservoir input of the BESN, which is used for extracting
deep feature of the input sample.

In this way, this study uses the error back-propagation
algorithm [35] to fine-tune the left part, in which the output
state of the reservoir of BESN is considered as the input of the
left part and the input of the bottom DAESN is considered
as the output of the left part. Thus, its cost function can be
expressed as

J (W(l)
out ,b

(l)
out )

=
1
m

m∑
i=1

(
1
2

∥∥∥h(W(l)
out (h(W

(2)
out (h(W

(1)
outx

BESN
i (k + 1)

+b(1)out )) +b
(2)
out ) · · · )+ b(l)out )− uDABESNi (k + 1)

∥∥∥2)
+
λ

2

n∑
l=1

s1∑
j=1

s2∑
k=1

(W(l)jk
out )

2 (12)

where, W(l)
out denotes the output weight of the l layer,

b(l)out denotes the output bias of the l layer, m denotes
the number of samples, h(·) denote the activation func-
tion, xBESNi (k + 1) denotes the output state of the reservoir
of BESN, uDABESNi (k + 1) denotes the input of the bottom
DAESN, n denotes the number of layers, s1 denotes the num-
ber of rows of the output weight matrix, and s2 denotes the
number of columns of the output weight matrix. Moreover,
the first term in the right-hand side denotes an average sum-
of-squares error term, and the second term with its coefficient
λ denotes a regularization term decreasing the magnitude of
the weights as well as preventing overfitting.

Therefore, the optimal values of the decision variables
W(l)

out and b(l)out can be obtained by using the gradient descent
algorithm to minimize the cost function (12) with respect to
them, in which the missing points are treated by principle 1
and 2.

F. PROCEDURE OF THE PROPOSED PREDICTION MODEL
To make the structure of the proposed prediction method
much easier to be understood, the whole prediction procedure
is summarized as follows.
Step 1: Extract the deep feature Rdf of the training input

samples by the DBSESN.
Step 2: Collect the fusion reservoir state of the DAESN

with the training output samples layer by layer. Then calculate
W(l)

in , b
(l)
in , W

(l)
out and b(l)out defined in (5) and (6).

Step 3: Fine-tune the DAESN by the improved unsuper-

vised wake-sleep algorithm to optimize W(l)
in , b

(l)
in ,W

(l)
out and

b(l)out . Then make a forward propagation to obtain the deep
feature Ldf of the training output samples.
Step 4: Train the BESN by taking Rdf as the input samples

and taking Ldf as the output samples to obtain WBESN
out .

Step 5: Fine-tune part of the DBESN framework includ-
ing the DAESN and the output part of the BESN by the
error back-propagation algorithm to optimize WBESN

out , W(l)
out

and b(l)out .
Step 6: Make prediction. Extract the deep feature Pdf of

the testing samples by the DBSESN and the input part of
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TABLE 1. Parameters of the five methods for the incomplete noisy mackey-glass time-series.

the BESN. Then multiply Pdf byWBESN
out ,W(l)

out and add b
(l)
out

layer by layer to obtain the final prediction results.

IV. EXPERIMENTS AND ANALYSIS
To verify the effectiveness of the proposed method, the
Mackey-Glass benchmark dataset and two industrial datasets
i.e., blast furnace gas generation flow and coke oven gas
generation flow in the gas pipe network system of a steel
plant in China are employed for validation. These datasets are
chosen due to their own specific features: The Mackey-Glass
time series is a standard dataset commonly used for verifying
the prediction method. And the two industrial datasets are
employed here for demonstrating the practical applicability
of the proposed method.

It is well known that due to the equipment failure and
the complex industrial environment, the data missing often
occurs in supervisory control and data acquisition system.
In this study, we employ a period of complete data and
randomly create some missing points with 10%, 20% and
30% missing rates to conduct the experiments. For practical
demand, we designate the prediction horizon as 200 points.
(the sampling interval is 1 min.)

To demonstrate the performance of the proposed method,
a series of comparative experiments by some imputation and
prediction methods are also presented here. These methods
include SAE [36] prediction along with EM [37] impu-
tation (EM-SAE), ESN prediction along with EM impu-
tation (EM-ESN), SAE prediction along with regression
imputation [38] (R-SAE) and ESN prediction along with
regression imputation (R-ESN). The reasons for choosing
these four combination experiments are explained as follows.
ESN belongs to shallow dynamic memorial network with a
strong ability of modeling time series, and SAE is a deep
static memoryless network with a powerful capacity of fea-
ture extraction. Therefore, EM-SAE along with EM-ESN,
R-SAE along with R-ESN are employed to compare the
prediction performance between deep static memoryless net-
work and shallow dynamic memorial network with the same
imputation method. EM-SAE along with R-SAE, EM-ESN
along with R-ESN are employed to show the influence of
different imputation methods on the same prediction method.

To further quantify the performance of the proposed
method, the root mean square error (RMSE) and the mean
absolute percentage error (MAPE) are employed as the eval-
uation indices for judging the prediction accuracy of different
methods, in which RMSEmeasures the deviation between the

predicted value and real value and MAPE reflects the ratio
between the error and the real value. Their expressions are
given as

RMSE =

√√√√1
n

n∑
i=1

(y(i)− yd (i))2 (13)

and

MAPE =
100
n

n∑
i=1

|y(i)− yd (i)|
yd (i)

(14)

where n denotes the predicted length, and y(i) and yd (i) refer
to the predicted value and real value, respectively.

A. MACKEY-GLASS TIME-SERIES DATA
Mackey-Glass system is a time-delay differential system,
which is described in the following form

dx(t)
dt
=

ax(t − τ )
1+ x(t − τ )10

− bx(t) (15)

In this experiment, the parameters are set as a = 0.2,
b = −0.1 and τ = 17. In addition, the forth-order Runge-
Kutta method is employed to sample a standard Mackey-
Glass time-series data, where the sampling period and the
initial condition x(0) are set to be 2-s and 1.2, respectively.
Furthermore, a noisy Mackey-Glass time-series data gener-
ated by the standard one with additive white Gaussian noise
with the variance 0.01 is employed to verify the accuracy and
robustness of the proposed model.

40,000 data points of the noisy Mackey-Glass time-series
data serve as the experimental data. The principles of param-
eter setting are given as follows. As for the SAE network,
the number of neurons in hidden layer is less than that of
input layer, and the number of hidden layers is more than one.
With respect to the ESN, the number of neurons in reservoir
is much more than that of the input layer. The number of
hidden layers and the number of neurons in reservoir of the
proposed method are set similarly as SAE and ESN. The
detailed parameters determined offline by trial and error are
listed in Table 1.

The comparison curves of the real values and the pre-
dicted ones by the five methods are plotted in Fig. 6.
Besides, to present the comparison curves more clearly, every
8 prediction points by these methods are exhibited here.
At 10% missing rate, the prediction curves of the five meth-
ods can all track the real values curve with small difference.
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TABLE 2. Prediction errors of the five methods for the incomplete noisy mackey-glass time-series.

FIGURE 6. Prediction curves of different methods for the incomplete
noisy mackey-glass time-series: (a) 10% missing (b) 20% missing (c) 30%
missing.

At 20% missing rate, such four comparison methods begin
to deviate from the real values, especially at the individ-
ual points of the last period. At 30% missing rate, these

FIGURE 7. Comparison of real and predicted values for the incomplete
noisy mackey-glass time-series.

comparison methods show a great fluctuation in about last
50 points. On the contrary, the prediction values of the
proposed method have the smallest deviation from the real
values.

Furthermore, to come up with a complete comparison
of the prediction results by the proposed method, the real
and predicted values with three missing rates are compared
in Fig. 7. It is clearly seen that all the points are basically
distributed around the diagonal at the three missing rates,
which indicates a higher prediction accuracy.

To further quantify the prediction accuracy, the RMSE
and MAPE of the prediction results of the five methods are
listed in Table 2. Due to a certain regularity of the noisy
Mackey-Glass time-series data, the prediction accuracy of the
five methods at the three missing rates are high. As for the
imputation accuracy, EM algorithm is lower than regression
algorithm with the same prediction method. Furthermore,
the prediction accuracy of ESN is higher than that of SAE
with the same imputation method at the three missing rates
owing to the memory ability of the reservoir of ESN and the
low noise of the data. While, with the capable of memory
and the avoidance of data imputation, the prediction accuracy
of the proposed method is higher than that of the other four
methods.

B. GENERATION FLOW DATA OF THE BLAST FURNACE
GAS SYSTEM
In the production process of iron and steel enterprise, the blast
furnace gas (BFG) is produced by four blast furnaces.
BFG is a very important secondary energy, but it is also
an air pollutant. Therefore, it is of great significance to
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TABLE 3. Parameters of the five methods for the incomplete #3 BFG generation flow data.

FIGURE 8. Prediction curves of different methods for the incomplete
#3 BFG generation flow data: (a) 10% missing (b) 20% missing
(c) 30% missing.

accurately predict the quantity of BFG generation flow for
energy scheduling. In this section, the generation flow data
of the third blast furnace (#3 BFG) in May 2016 with

FIGURE 9. Comparison of real and predicted values for the incomplete
#3 BFG generation flow data.

40,000 points are employed to verify the effectiveness of the
proposedmethod. The dataset with such period can reflect the
typical flow state of the BFG, therefore, accurate prediction
for it has representative significance at regardless of the time.
The parameters of the five methods are offline determined by
trial and error in Table 3.

The comparative results of different prediction methods
with three missing rates are shown in Fig. 8. As can be
seen from the comparison curves, the difference between the
predicted values and the real values of the four comparison
methods is acceptable at 10% missing rates. But it exhibits
unsatisfied performance as the missing rates go on, especially
for the regression imputation method at 30% missing rate.
However, the proposed method shows an obvious advantage
in the aspect of prediction tendency compared with the other
four methods along with the increase of the missing rate.
In addition, the scatter plot of the proposed method at 10%,
20% and 30% missing rates in Fig. 9 also can further verify
the accuracy in a statistical fashion.

In order to further demonstrate the advantage of the pro-
posed method, we present the prediction errors in Table 4.
Due to the high noise and poor regularity of the #3 BFG
generation flow data, the RMSE and MAPE of the four com-
parison methods are large. In addition, the regression imputa-
tion method performs worse than the EM algorithm with the
same prediction method at the three missing rates. Moreover,
the performance of ESN is inferior to SAE with the same
imputation method, that means deep network can better deal
with the high noise and poor regularity data than the shallow
network due to the powerful ability of feature extraction. Fur-
thermore, owing to the deep framework, the proposedmethod
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FIGURE 10. Prediction curves of different methods for the incomplete
#1 COG generation flow data: (a) 10% missing (b) 20% missing (c) 30%
missing.

uses multilayer feature extraction to replace data imputation
to get a more excellent accuracy than other methods.

C. GENERATION FLOW DATA OF THE COKE OVEN
GAS SYSTEM
The coke oven gas (COG) is an essential part of the energy
system in the production of steel enterprise. Accurate pre-
diction of generation flow of COG has an important impact
on the rational scheduling in energy system. The COG is
produced via six coke ovens in the energy system, and its
generation flow data with 40,000 points of the first coke oven

FIGURE 11. Comparison of real and predicted values for the incomplete
#1 COG generation flow data.

(#1 COG) in June 2016 are taken here as the samples, which
may reflect the typical flow state of the COG. Hence, accurate
prediction for such dataset has representative significance at
regardless of the time. Table 5 gives the detailed parameters
of the five methods determined offline by trial and error.

Fig. 10 gives the performances of the five prediction meth-
ods with different missing rates, and Fig. 11 presents the
comparison of real and predicted values of the proposed
method. It can intuitively reflect that the prediction curve of
the proposed method is closer to the real values curve than
the other four comparison methods with no larger deviation
points at 10% missing rate. With the increase of missing
rate, the prediction curves of the four comparison methods
gradually show larger fluctuation, and some of the prediction
values have been significantly deviated from the real values.
However, the proposedmethod still performs better than other
methods.

According to the error statistics of the five methods pre-
sented in Table 6, the prediction errors of the #1 COG
generation flow data are between the noisy Mackey-Glass
time-series and the #3 BFG generation flow data. At 10%
missing rate, the regression imputation method and the ESN
prediction method outperform EM imputation method and
the SAE prediction method with the same prediction method
and the same imputation method, respectively. Nevertheless,
at 20% and 30% missing rates, their performances gradually
become similar and opposite.

The fluctuation of the prediction accuracy shows that dif-
ferent imputationmethods affect the final prediction accuracy
seriously at different missing rate. Furthermore, with some
low noise and strong regularity data, shallow dynamic memo-
rial network performs better than deep static memoryless net-
work at low missing rate due to its memory ability. However,
with the increase of missing rate, the capability of feature
extraction is becoming more important than memory ability
in modeling incomplete time series data.

As for the proposed method, it can give full play to the
powerful modeling ability of dynamic memorial network
for time series data and the strong feature extraction ability
of the deep network for avoiding the shortcomings of data
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TABLE 4. Prediction errors of the five methods for the incomplete #3 BFG generation flow data.

TABLE 5. Parameters of the five methods for the incomplete #1 COG generation flow data.

TABLE 6. Prediction errors of the five methods for the incomplete #1 COG generation flow data.

imputation, so both the RMSE and MAPE of the proposed
method are significantly lower than those of the other four
comparison methods at three missing rates.

V. CONCLUSION
In this study, a DBESN framework is proposed for time
series prediction with incomplete dataset. As for the out-
put and input samples with missing points of the proposed
framework, a DAESN and a DBSESN are constructed to
deal with them respectively, in which a bidirectional fusion
reservoir is designed to extract the deep bidirectional feature
of the incomplete samples along with forward and backward
time scales instead of data imputation. With respect to the
deep bidirectional features extracted by these two networks,
a BESN model is proposed for prediction based on them to
constitute the DBESN framework. To verify the effectiveness
of the proposed method, one benchmark dataset and two
practical industrial datasets are employed for prediction. The
experimental results show that the proposed method outper-
forms other comparative methods at different missing rates.
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