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ABSTRACT Nowadays, in the international scientific community of machine learning, there exists an
enormous discussion about the use of black-box models or explainable models; especially in practical
problems. On the one hand, a part of the community defends that black-box models are more accurate than
explainable models in some contexts, like image preprocessing. On the other hand, there exist another part
of the community alleging that explainable models are better than black-box models because they can obtain
comparable results and also they can explain these results in a language close to a human expert by using
patterns. In this paper, advantages and weaknesses for each approach are shown; taking into account a state-
of-the-art review for both approaches, their practical applications, trends, and future challenges. This paper
shows that both approaches are suitable for solving practical problems, but experts in machine learning need
to understand the input data, the problem to solve, and the best way for showing the output data before
applying a machine learning model. Also, we propose some ideas for fusing both, explainable and black-
box, approaches to provide better solutions to experts in real-world domains. Additionally, we show one way
to measure the effectiveness of the applied machine learning model by using expert opinions jointly with
statistical methods. Throughout this paper, we show the impact of using explainable and black-box models
on the security and medical applications.

INDEX TERMS Black-box, white-box, explainable artificial intelligence, deep learning.

I. INTRODUCTION
Three decades ago, a part of the international scientific
community working on computer science was focused on
creating machine learning models for solving theoretical
challenges [1], [2]. Nowadays, there exist both theoretical and
practical progress in computer science. However, the interna-
tional scientific community working on machine learning has
begun an important debate about the relevance of the black-
box approach and the explainable approach (a.k.a white-box
approach) from a practical point of view [3], [4].

On the one hand, the international scientific community of
machine learning has labeled as black-box models all those
proposals containing a complex mathematical function (like
support-vector machine and neuronal networks) and all those
needing a deep understanding of the distance function and
the representation space (like k-nearest neighbors), which
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are very hard to explain and to be understood by experts
in practical applications [4]–[6]. On the other hand, those
models based on patterns, rules, or decision trees are labeled
as white-box models; and they, usually, ca be understood by
experts in practical applications due to they provide a model
closer to the human language [7]–[9].

There has been a trend of moving away from black-
box models towards white-box models, particularly for crit-
ical industries such as healthcare, finances, and military
(e.g. battlefields). In other words, there has been a focus
to obtain white-box models, as well as fusing white- and
black-box models for explaining to both experts and an
intelligent lay audience the results obtained by the applied
model [3], [4].

This trend is due to experts who are needing both under-
standable and accurate models. Also, currently, in several
practical problems, it is mandatory to have an explanation of
the obtained results. For example, the Equal Credit Opportu-
nity Act of the US labels as illegal those denied credits to a
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customer where there are indefinite or vague reasons; hence,
any classifier used by the financial institution should provide
an explanatory model [10].

Both white- and black-box approaches have shown accu-
rate results for different practical problems, but usually, when
one is suitable for a problem obtaining accurate results, then,
another one obtains poor results [4], [8], [11]–[14]. As a
consequence, some questions arise:
• What approach (black- or white-box) should be used in
a practical problem?

• Is it necessary to move from a black-box approach to a
white-box approach?

• Are the white-box-based models easy to interpret, and
the black-box-based models very hard to understand?

• Is it always necessary that experts in the application
domain should understand the black-box models?

• Is it feasible to fuse white- and black-box models?
• How tomeasure the effectiveness of the appliedmachine
learning model by using expert opinions jointly with
statistical methods?

All these questions are responded throughout this paper by
using a state-of-the-art review for both, white- and black-box,
approaches. Hence, the main contributions of this paper are:
• A review of the most outstanding models, following the
white- or black-box approach, from a practical point of
view.

• A practical analysis of both approaches taking into
account their advantages and weaknesses.

• Ideas for obtaining new machine learning models by
fusing white- and black-box models.

• One way to measure the effectiveness of the applied
machine learning models by using expert opinions
jointly with statistical methods.

• To the best of our knowledge, it is the first paper dis-
cussing about white- and black-box approaches from a
practical point of view.

It is important to highlight that this paper is different to
the ones recently published by [3], [4], where the author out-
lines several key reasons why explainable black-box models
should be avoided in high-stakes decisions. In this paper we
provide another point of view for understanding that both,
white- and black-box, approaches are suitable for solving
practical problems, but experts in machine learning need to
understand the input data, the problem to solve, and the best
way for showing the output data before applying a machine
learning model.

This paper is organized as follows: Section II shows a brief
introduction to the black-box approach as well as those rel-
evant models following this approach. Also, advantages and
weaknesses of the black-box approach in practical scenarios
are presented. Next, Section III shows a similar structure than
Section II but for the white-box approach. After, Section IV
presents some papers fusingwhite- and black-box approaches
and our points of view about how to fuse both approaches.
Next, Section V shows one way to measure the effective-
ness of the applied machine learning model by using expert

opinions jointly with statistical methods. Finally, Section VI
presents the conclusion of this paper.

II. BLACK-BOX APPROACH
The term black-box is mainly used for labeling all those
machine learning models that are (from a mathematical point
of view) very hard to explain and to be understood by experts
in practical domains [3], [4], [8]. These black-box-based
models can be grouped into the following categories: based
on hyperplanes, like used by the support-vector machines
(SVMs) [15]; inspired on the biological neural networks that
constitute animal brains [16], [17]; based on probabilistic
and combinatory logic, like the probabilistic logic networks
(PLNs) [18], [19]; and those based on instances (a.k.a lazy
learning) where the function is only approximated locally,
like the k-nearest neighbors [20], [21]. Below we will detail
the most usedmodels within each of these categories and why
they are labeled as black-box models.

Hyperplane-based models try to find a subspace that
allows separating the problem’s classes. In this way,
a SVM-based model builds a hyperplane or set of hyper-
planes in a high-dimensional space, which can be used
for classification, regression, or other tasks like outliers
detection [15], [22], [23].

For a better understanding, Fig. 1 shows an example based
on data points each belong to one of two classes (green dashes
and red crosses). Any hyperplane can be defined as a set of
points Ep satisfying Ew∗Ep−a = 0, where Ew is the normal vector
to the hyperplane and a is an arbitrary constant. From Fig. 1,
we can see that there are two hyperplanes: Ew ∗ Ep − a = 1,
where any point on or above this boundary belongs to the
green class; and Ew∗Ep−a = −1, where any point on or below
this boundary belongs to another class. The region bounded
by these two hyperplanes is called the ‘‘margin’’ and its
distance between them is 2

‖Ew‖ . The parameter a
‖Ew‖ determines

the offset of the hyperplane from the origin along the normal
vector Ew. In this example, we can see that the problem’s
classes are linearly separable, but usually, the practical prob-
lems are not linearly separable; consequently, other functions
(a.k.a kernel) for separating those non-linear problems have
been proposed [22].

One of the most outstanding application areas for the
SVMs is biometrics [13], [14], [24]–[28]. For example,
the SVM-based model has been widely used for face ver-
ification and recognition by using Local Binary Patterns
(LBP) as feature extractor [26]. In the same vein, SVM has
widely been used as classifier for iris and fingerprint authen-
tication/verification and identification/recognition [13], [14],
[27], [28].

Another context where the SVM-based model has widely
been applied is author profiling. In this context, the main
idea is to identify the authorship based on the information
provided by several documents. For doing this, all gathered
information is converted in vector feature representations,
and after, using an SVM-based model, the authorship of a
query text can be identified [29]–[31].
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FIGURE 1. Example of a two-class (green dashes and red crosses)
problem, linearly separable by using hyperplanes. Notice that there are
two hyperplanes (between the purple dashed line and the orange line).
Any point on or above the upper purple dashed line belongs to the green
class, and any point on or below the bottom purple dashed line belongs
to another class. Hyperplane-based models are categorized as black-box
models because it is complicated to understand this type of models
applied to a more complex problem than shown in this figure, e.g.,
a problem with at least 10 classes, thousands of objects, and hundreds of
features.

From the above mentioned, we can say that SVM-based
models have been used in several practical problems. How-
ever, the mathematical operations supporting this type of
models are hard to understand for both machine learn-
ing experts and specialists in the application area. In this
way, SVM-based models are categorized into the black-box
approach.

It is important to highlight that nowadays, the com-
puter science community continues creating new kernels
and methodologies for improving the existing SVM-based
models [15], [23], [32], [33].

Other of the models labeled as black box are those
inspired on the biological neuronal networks. Artificial
neural networks (ANNs) marked a milestone due their uti-
lization of potential functional similarities between human
and artificial information processing systems [16]. In the
80’s decade, ANNs showed an important advantage in
the supervised- and unsupervised-based classification using
images as input. ANNs are based a set of artificial neurons,
which are connected by using a weight that adjusts as learning
proceeds [17].

From 1980 to nowadays, the approach behind the ANNs
has been subject to continuous improvements; as a result,
convolutional neuronal networks (CNNs) were proposed
by [34], which marked a milestone. CNNs are regular-
ized versions of multilayer perceptrons coming from ANNs,
which are interconnected among them to create an input
layer, at least one hidden layer, and an output layer [35].
Fig. 2 shows a typical CNN architecture. Using CNNs,

the input image is processed by using several convolutional
filters based on sliding dot products and cross-correlations; as
a consequence, only spatially local correlations by enforcing
sparse local connectivity patterns between neurons of adja-
cent layers are conduced [35].

In 2014, Goodfellow et al. proposed a new type of
ANN labeled as Generative Adversarial Networks (GANs).
A GAN-based model is trained using two ANNs. One is
called generator, which learns to generate new plausible sam-
ples. The other is called discriminator, which learns to differ-
entiate generated examples from real examples (see Fig. 3).
Both ANNs are set up in a contested space (similar to the
game-theory-based approach), where the generator network
seeks to fool the discriminator network, and the latter should
be able to detect generated samples from real ones. After
training, the generator network can then be used to create new
plausible samples on demand [36].

From our state-of-the-art review, we see that there exist a
large number of interesting applications of GANs [37], such
as generating examples for image datasets [36], [38], creating
photographs of human faces, objects, and scenes [39]–[41],
generating cartoon and Pokemon characters [42], image-
to-image translation [43], [44], text-to-image transla-
tion [45]–[48], semantic-image-to-photo translation [49],
face frontal view generation [50], generating new human
poses [51], photos to emojis [52], photograph
editing [53]–[55], face aging [56], [57], photo blending [58],
super resolution [59]–[61], photo inpainting [62]–[64], video
prediction [65], and 3D object generation [66], [67]; among
others.

Recently, Razavi et al. proposed a Vector Quantized Vari-
ational AutoEncoder (VQ-VAE) model for large scale image
generation. This model is able to scale and improve the pre-
vious VQ-VAE-based models [68], which allows generating
synthetic samples of much higher coherence and fidelity than
possible before. The proposal of Razavi et al. uses simple
feed-forward encoder and decoder networks, which making
this model an attractive candidate for applications where the
encoding and/or decoding speed is critical.

From our review of GANs, we can say that nowadays,
several researchers are moving to this type of networks. The
main reason is that GANs are providing solutions to practical
problems, which are revolutionizing the computer science;
mainly, where the images are the inputs of the problem.
Nevertheless, other approaches (like probabilistic networks)
have shown good results in other contexts where images are
not the inputs of the problem [19], [69].

It is important to highlight that ANN-based models
(CNN and GANs families) are the most difficult to under-
stand by both machine learning experts and specialist in the
application area due to the several transformations made to
the input data.

Probabilistic networks is one of the pioneering approaches
used for solving practical problems, which continue show-
ing good progress on practical problems [19], [70]. Markov
networks [18], [70] and Bayesian networks [19], [71] are the
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FIGURE 2. Example of a typical CNN architecture for hand-written digits recognition. The input is a handwritten digit, after, there are
several hidden layers, and finally, using the fully connected layer the output is a label representing a number between zero and nine.
Note that, for human, is hard to understand the number of mathematical operation used behind the convolutional filters applied in
each network’s layer.

FIGURE 3. Example of a typical GANs architecture for both hand-written
digits recognition and generation. The discriminator tries to identify
between real samples and those artificial samples generated by other
ANN. Both, generator and discriminator are trained by using a back
propagation procedure.

main models used for solving practical problems by using a
probabilistic approach.

On the one hand, a Markov network [70] is based on the
joint distribution of a set of features F = {f1, f2, . . . fn}, which
is composed of an undirected graph G and a set of potential
functions8 = {φ1, φ2, . . . φn}. The graph contains a node for
each feature, and the model has a potential function for each
clique in the graph. A potential function is a non-negative
real-valued function of the state of the corresponding clique.
The joint distribution represented by a Markov network is
given by P(F) = 1

Z

∏
k φk (f{k}), where f{k} is the state of the

kth clique (i.e., the state of the variables that appear in that
clique), and Z (known as the partition function) is computed
by Z =

∑
f ∈F

∏
k φk (f{k}).

Markov network-based models have been used in different
applied context, such as financial engineering [72], image
annotation [73], social network analysis tools in ecology [74],
and tool-wear monitoring [75]; among others. For applying
Markov network-based models is necessary that the problem
can be represented as a graph, and the input data provides a
timeline, which difficult its application in some contexts [69].

On the other hand, a Bayesian network (BN) is a proba-
bilistic directed acyclic graphical model [19], [71]. BNs use
nodes to represent features, arcs to signify direct dependen-
cies between the linked nodes and conditional probabilities
to quantify the dependencies (see Fig. 4). A set of features
F = {f1, f2 . . . fn} can be represented in a BN by using a

FIGURE 4. Example of a Bayesian Network architecture and its
probabilities. Each circle represents a feature and its probabilities by
using (or not) the probabilities of other features. Each circle has
associated a table showing probabilities. Note that each row of each
table should sum 1. Note that a graph similar to this image but containing
hundreds of nodes and probability tables is more complicated to
understand by a human than other structure like a decision tree, which is
acyclic and it does not contain probability tables.

directed acyclic graph with n nodes, where each node j (1 ≤
j ≤ n) is associated with each fj feature. It can be represented
by P(f1, f2 . . . fn) =

∏n
j=1 P(fj|9(fj)); where9(fj) denotes the

set of features in the graph, which are connecting the node i
with the node j [19].

BN-based models have been applied on several practical
problems, such as diagnosis of Alzheimer’s disease [76], fault
location on distribution feeder [77], human cognition [78],
educational testing [79], analysis of resistance pathways
against HIV-1 protease inhibitors [80], ovarian cancer diag-
nosis [81], fault diagnostic system for proton exchange mem-
brane fuel cells [82], information retrieval [83], inferring
missing climate data for agricultural planning [84], and pre-
dicting protein-protein interactions from genomic data [85];
among others.

It is important to highlight that the main drawback of
BN-based models is that their network structure depends on
the order of all problem’s features. If the order is chosen
carelessly, the resulting network structure may fail to reveal
many conditional non-dependencies in the domain. Conse-
quently, BNs are challenging to apply for solving practical
problems [86].

Some authors [85] can consider BN-based models as an
interpretable model compared with other ANN-based mod-
els. However, in a practical problem, a BN-based model
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FIGURE 5. Example of kNN-based classification based on the Euclidean
distance and the majority vote strategy. The query object (blue-fill circle)
should be classified either to the green-dash class or to the red-cross
class depending of the k value (3 or 7) and its borderline region. Note
that for problems containing nominal features and which need to use
other distance function (different than the Euclidean distance), it is no
easy to understand this type of model.

produces a graph containing hundreds of nodes and prob-
ability tables. Consequently, this BN-based model is more
complicated to understand by a human than other models
like a decision tree, which is acyclic, and it does not contain
probability tables. For that reason, BN-based models are
considered as black-box models.

The last one labeled as a black-box approach is lazy
learning. Models following this approach are based on a
target function, which is approximate locally [20]. One of
the most outstanding models following the lazy learning
approach is the nearest neighbors-based model [21]. The
k-nearest neighbors-based models (kNN) rely on a target
function f for given a query object o and a training dataset T .
Then, the aim is to find the k-nearest neighbors in T by
using f that allow classifying o taking into account a clas-
sification strategy. For example, Fig. 5 shows an example
of kNN-based classification based on the Euclidean distance
and the majority vote strategy. The query object (blue-fill
circle) should be classified either to the green-dash class or to
the red-cross class. If k = 3 (dashed-line orange circle),
the query object is assigned to the green-dash class because
two objects are belonging to the green-dash class and only
one object belonging to the red-cross class on or inside the
inner orange circle. If k = 7 (dashed-line purple circle),
the query object is assigned to the red-cross class because
four objects are belonging to the red-cross class vs. three
objects belonging to the green-dash class on or inside the
purple circle.

Lazy learning-based approach has widely been used in
several practical contexts, such as data streams [87], air qual-
ity planning [88], predictive toxicology based on a chemical
ontology [89], prediction of customer demands [90], hydro-
logic forecasting [91], air quality prediction [92], magne-
torheological damper [93], and spam filtering [94]; among
others.

Lazy learning-based models, like kNN, suffer from other
intrinsic problems coming from application domains, such
as the class imbalance problem [95], [96], and the class
confidence problem; where objects are weighted regarding
their confidence to all classes of the problem [97].

It is important to highlight that lazy learning-based models
mainly rely on a distance function, which biases the classifi-
cation results. Ideally, a distance function should arise from
the interaction between experts in the application domain
and mathematics specialists due to experts have the known
about the problem to solve and provide important information
about the comparison between objects containing nominal
values. However, in practice, experts in machine learning use
different distance functions proposed for general purposes,
and they select the best one according to previous results [98].
Also, it is known that learning-based models obtain dif-
ferent classification results when the distance function is
changed [99]. The before stated comments are the main rea-
sons for labeling the lazy learning-based models as black-box
models.

A. DISCUSSION
After we have stated the main models following the black-
box approach, it is important to expose why this approach
could obtain good or bad results from a practical point of
view. For that, firstly, we need to understand some important
keys, which are related below.

Commonly, experts in the application domain have focused
their knowledge on understanding the phenomenons of their
expertise area instead of learning about machine learning [4].
As a consequence, for most of these experts it is complicate
to understand models containing a complex mathematical
function (like SVMandNeuronal Networks) or those needing
a deep understanding of the distance function and the repre-
sentation space (like kNN). For most of these experts, any
application based on machine learning should provide help
for decision making in a clear and precise way. Even, most
of these experts claim that they do not need to understand the
mathematical supporting the machine learning model applied
in their expertise domain [6], [100], [101].

Based on the above, the following question arises: what is
the reluctance of some experts of applying black-box models
in their application domain? For answering this question,
first we need to understand about how people learn and trust
naturally.

Usually, people are learning from experts or teachers,
which based on logical reasoning and images can transmit
their knowledge to apprentices [102], [103]. This method
must be respected when experts in machine learning try to
apply an artificial intelligence-based model to a practical
problem because if we break this method then, we can obtain
reluctance from experts in practical problems.

For example, Fig. 6 shows a mammography image
(left-hand side), and after using a Faster R-CNN model,
an image (right-hand side) containing two red bounding-
boxes for delimiting those zone of possible lesions is showed.
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FIGURE 6. Example of a mammography image (left-hand side), and after
using a Faster R-CNN model, the output image (right-hand side)
containing two red bounding-boxes for delimiting those zone of possible
lesions. Both images were taken from the paper published by [104]. Note
that for an expert in the application area is easy to understand the output
image and detect the affected zones, independently of the mathematical
operations executed by the applied model.

These images were taken from [104], where the authors
proposed a computer aided detection (CAD) system based on
a VGG16 network, which is a 16 layer deep CNN [105]. The
proposed model can detect two types of lesions: benign and
malignant.

The CAD system, proposed in [104], outputs an image
that is easy to understand by an expert (in this case an
oncologist) because this system outputs red bounding-boxes
for delimiting those zone of possible lesions, which facilitate
to localize the possible affected zones from a mammography
image. Notice that this model is based a CNN of 16 layers,
which contains a strong mathematical foundation based on
several convolutional filters. This model is hard to understand
by the expert in the application domain but its output is
straightforward to understand due to the visual form used. It is
an excellent example of how to use a black-box-based model
from a practical point of view because the output produced
by the model is in correspondence with its input data.

On the other hand, there exist other practical contexts
where it is hard to obtain an understandable output for experts
in the application domain when a black-box approach is
used. For example, in author profiling the main idea is to
identify the authorship based on the information provided by
several documents [29]. For doing this, usually, all collected
information is converted in vector representations, and after,
using an SVM-based model, the authorship of a query text
can be identified [29]–[31]. Notice that, commonly, the input
data in the author profiling problem are texts but after several

FIGURE 7. A face verification system diagram. First, the raw image is
processed for extracting features, in this case, using a local binary pattern
procedure. After that, a pairwise comparison between the extracted
vector and each vector contained in the databases is executed. Finally,
the system output the image corresponding to the vector more similar
found in the database. Note that it is easy for experts in biometrics to
compare the input and output images. The author of this paper has
provided his face images to be used in this figure as illustrations of the
face verification system diagram.

mathematical operations they are transformed to vector rep-
resentations. The final result is hard to understand by experts
in the application domain because the output result is very
different to the input data. In other words, the input domain
(which is known by the expert) was changed by a new domain
non-understandable by the expert.

It is important to highlight that the difficulty of under-
standing the model’s output in several practical problems
is not attributed to the use of a black-box-based model
but the transformation of the output data. For example, the
SVM-based model has widely been used for face verification
and recognition [24], [25] but although the input images
suffers several transformations during the training, the output
result provided by the model is an image understandable by
experts in the domain application (see Fig. 7).

Based on the above mentioned, we can conclude that,
on the one hand, experts in the application domain do not need
to understand the mathematical transformation behind the
applied black-box-basedmodel, they only need a natural form
of interpreting the model’s output. For doing that, the easiest
way is to provide to experts the output data in the same
form that they provided the input data but highlighting the
important keys discovered by the applied model.

On the other hand, it is mandatory for experts in machine
learning to understand the black-box-based model to be
applied due to, in most occasions, these models need to be
tuned for obtaining accurate results. Consequently, experts in
machine learning need to know where the model is failing
or it needs to be tuned, and for doing that, they need to
understand the black-box-based model in depth. This last it is
hard to achieve because some black-box-based models, like
CNN, are designed for applying several transformations over
the input data and debugging these models, at any stage, is not
a straightforward task.

III. WHITE-BOX APPROACH
The terms white-box, understandable model, and explain-
able artificial intelligence (XAI) are used for labeling all
those machine learning models providing results associated
to their models that are easy to understand by experts in the
application domain. Usually, these models provide a good
trade-off between accuracy and explainability [3], [4], [106].
Usually, the terms understandable and interpretable are used
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FIGURE 8. A graphic showing the interaction of the different areas
forming the XAI model.

for referring to all those models providing an explanation to
experts in the application area. However, based on the expla-
nation provided by [4], an understandable model refers to
those machine learning needing an additional model or other
features for providing an explanation to experts in the applica-
tion area. On the other hand, an interpretable model is able to
provide explanations to experts without using any additional
model. In this paper, we will refer to this type of models as
white-box models.

As we showed in Fig. 8, an explainable model is possi-
ble by the interaction of different areas, such as machine
learning, human computer interface, explanation of human
experts, visual analytic, iterativemachine learning, and dialog
between machine learning experts and human experts in the
application domain [4], [106].

There exist different families of algorithms following the
white-box approach but we will describe the most used in the
literature, such as decision trees [1], [2], [107], rule-based
systems [108], [109], contrast patterns [7], [8], [110], and
fuzzy patterns [5], [110].

Decision tree-based model was a pioneer model providing
both accurate results and an understandable model for experts
in the application domain [1], [2], [107]. A decision tree
(DT) contains elements of tree structure, based on the graph
theory, and decision support system. Consequently, a DT can
be described as an directed graph in which any two vertices
are connected by exactly one path [2], [107].

There are two approaches for inducing decision trees: top-
down and bottom-up [111]. The top-down approach is the
most used from them, which is based on the divide and con-
quer approach [107]. For inducing a top-down-based decision
tree, it starts building a root node with all objects of the
training database D. Then, it splits the root node into two
disjoint subsets (left child Dl and right child Dr ) and repeats
this process recursively over the children nodes until certain
stopping criterion is met [111].

Fig. 9 shows an example of a binary decision tree where
the root node (grey rectangle) contains 30 objects belonging
to the A class and other 100 belonging to the B class. After,
the objects are recursively distributed into two disjoint sub-
sets (green and blue ovals) by using test conditions. Finally,
orange squares represent the leaf (or decision) nodes, which
based on some classification strategy will define the class of
a query object.

The above-explained procedure allows inducing just one
decision tree. However, several authors have shown that using
a model containing several and diverse decision trees attains
significantly better classification results than using only one
decision tree; even, than other popular state-of-the-art clas-
sifiers, which are not based on decision trees [112]–[114].
For inducing diverse decision trees, there exist three popular
ways:
Random: it selects a subset of features randomly and,

by using the selected features, generating as many
binary splitting criteria as possible depending on the
type of the feature [1], [2], [107]. This procedure is
used at each level of the decision tree while it is being
induced.

Bagging: it selects a subset of objects randomly from the
training dataset for each decision tree to be induced
[113].

Boosting: it selects a subset of object randomly from the
training dataset and after that, it takes the remaining
no selected objects for validation where each object
is weighted. Finally, based on the weight assigned
to each object, a new subset of objects randomly
from the training dataset is selected to induce a new
decision tree [113].

Decision tree-based models have been used for solving
several practical problems, such as classification of can-
cer data by analyzing gene expression [115], diagnosis and
drug codes for analyzing chronic patients [116], medical
diagnosis [117], diagnosis of sport injuries [118], predic-
tion and sensitivity analysis of bubble dissolution time
in 3D selective laser sintering [119], and part-of-speech
tagging [120]; among others.

The main advantages of the decision trees are [1], [2],
[107], [111]:
• They are self-explanatory andwhen contain a reasonable
number of leaves, they are also easy to follow.

• They can handle both nominal and numeric input fea-
tures as well as missing values.

• Ensemble of decision trees can deal with noisy objects
and outlier data.

On the other hand, as anymachine learningmodel, decision
trees have disadvantages [1], [2], [107], [111]; among the
most important are:
• An ensemble of decision trees is complicated to under-
stand by experts in the application domain due to the
number of decision trees induced, e.g., some authors
have stated that an ensemble containing 100 decision
trees obtains the best classification results among the
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FIGURE 9. A example of a binary decision tree. The root node (grey rectangle) contains 30 objects belonging to the A class and other 100 belonging to the
B class. The objects are recursively distributed into two disjoint subsets (green and blue ovals) by using test conditions. The orange squares represent the
leaf (or decision) nodes.

different number of decision trees tested for creating a
DT-based ensemble [1], [111]. Notice that for a human,
it is complicate to understand 100 decision trees.

• They present over-sensitivity to the training dataset,
which makes the model unstable. Small variations in the
training dataset can cause a different selection of one
split candidate near the root node, and consequently, all
the subtree will change [107].

• An ensemble of decision trees can provide the same path
(from the root node to a leaf node) in several of the
induced decision trees, which can overwhelm the other
important paths.

As was stated by [107], rules can be extracted from deci-
sion trees. Rule-based models are considered as understand-
able models. A rule is an expression describing a collection of
objects. Usually, a rule is represented as a logic implication
(IF-THEN) by using a conjunction of relational statements
(a.k.a antecedent), and another part (a.k.a consequent) impli-
cating one or more labels [108].

Agrawal et al. proposed an algorithm for mining rules,
which is able to discover regularities between products in
large-scale transaction data recorded by point-of-sale (POS)
systems in supermarkets. For example, {milk, butter} ⇒
{bread}, which would indicate that if a customer buys milk
and butter together, they are likely to also buy bread. Such rule
can be used for decisions about marketing activities [108].

Following the definition proposed by [109], the problem of
rule mining is defined as: Let I = {i1, i2, . . . , in} be a set of
n binary features called items, and let T = {t1, t2, . . . , tm} be
a set of transactions (a.k.a database); where each transaction
in T is unique and contains a subset of the items in I . Then,
a rule is defined as an implication of the form: X ⇒ Y ; where
X ,Y ⊆ I .

Usually, algorithms for mining rules are prone to extract
several rules. Consequently, several quality measures have
been proposed for evaluating the extracted rules. The
best-known quality measures for rules are support and
confidence [121], [122].

On the one hand, the support for a given set of items X
regarding to a given database T is computed as the proportion
of transactions T ′ ⊆ T containing X . On the other hand,
the confidence value for a given rule, X ⇒ Y regarding to
a given database T , is computed as the proportion of the
transactions T ′ ⊆ T that contains X which also contains Y ;
i.e., support of X ∪ Y/ support of X .
Although, Agrawal et al. proposed their algorithm for

mining association rules in contexts where there are not
classes (a.k.a unsupervised classification), other authors,
like [1], [107], introduced variations of the algorithm pro-
posed by Agrawal et al. for mining rules from decision
trees in those contexts containing classes (a.k.a supervised
classification).
Rule-based algorithms have widely been applied to dif-

ferent practical contexts, such as software defect predic-
tion [123], inferring causal gene regulatory networks [124],
evaluating the efficiency of currency portfolios [125],
ranking of text documents [126], relationship between stu-
dent engagement and performance in E-learning environ-
ment [127], assessing web sites quality [128], and exploring
shipping accident contributory factors [129]; among
others.

Rule-based systems have shown good classification results
in several practical problems. Also, these systems provide
rules understandable to experts in the application domain.
Nevertheless, rule-based models have some drawbacks, such
as exponential complexity [130], they need an a-priori
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discretization for all numerical features [131], and rule
mining strategies provides a large number of rules, which
cannot be handled by experts effectively [132].

At the end of the 90s, Dong & Li proposed the contrast
pattern-based model, which is similar to a rule-based model,
but it has not the consequent as a rule has. A pattern is
an expression defined in a certain language that describes
a collection of objects [7], [8], [100], [110], [133], [134].
Usually, a pattern is represented by a conjunction of relational
statements (a.k.a items), each with the form: [fi # vj], where
vj is a value in the domain of feature fi, and # is a relational
operator from the set {∈, /∈,=, 6=,≤, >} [7], [8], [135]. For
example, [Hour_in_Server ∈ [0, 5]]∧ [Number_of _URL >
5] ∧ [Number_of _Follower ≤ 10] ∧ [Mobile = ‘‘False’’]
is a pattern describing a collection of tweets issued from a
botnet [9]. Let p be a pattern, and C = {C1,C2,C3, . . . ,Cn}
a set of classes such that C1 ∪ C2 ∪ C3 ∪ . . . ∪ Cn = U ;
then, support for p is the fraction resulting from dividing the
number of objects belonging to Ci described by p by the total
number of objects belonging toCi [7], [8], [110], [135], [136].
A contrast pattern (cp) for a class Ci is a pattern p whereby
the support of p forCi is significantly higher than any support
of p for every class other than Ci [7], [8], [110], [135], [136].

For building a contrast pattern-based classifier, there are
three phases [7], [8], [110]:

Mining: this phase is dedicated to finding patterns from a
training dataset by an exploratory analysis using a
search-space, which is defined by a set of inductive
constraints provided by the user. Contrast pattern
mining algorithms can be grouped into two groups: (i)
exhaustive-search based algorithms, which perform
an exhaustive search of combination of values for
a set of features appearing significantly in a class
regarding the remaining classes; and (ii) decision
trees based algorithms, which extract cps from a col-
lection of decision trees.

Filtering:as usually several patterns are extracted at the min-
ing phase, filtering is dedicated to select a set of high-
quality patterns, which allows obtaining equal or bet-
ter results than using all patterns extracted at the
first phase. Filtering algorithms are divided into two
groups: (i) based on set theory, which are suitable
for removing redundant items and duplicate patterns,
as well as removing specific patterns (a.k.a maximal
patterns); and (ii) based on quality measure, which
allow generating a pattern ranking based on the dis-
criminative power of the patterns.

Classification: it is responsible for searching the best strat-
egy for combining the information provided by a col-
lection of patterns, which allows building an accurate
model based on patterns. Classification strategies are
divided into two categories: (i) those providing an
unweighted score, which are easy to compute and
understand, but they can be affected by the nature of
the problem; for example, on class imbalance prob-
lems; and (ii) those providing aweighted score, which

are suitable for handling balanced and imbalanced
problems.

Algorithms for mining contrast patterns can use an exhaus-
tive search, like rule-based models or decision trees, for
extracting contrast patterns from a training dataset. Some
authors [107], [137] have shown that those algorithms based
on decision trees have advantages regarding those approaches
not based on trees for extracting contrast patterns. First,
the local discretization performed by decision trees with
numeric features avoids doing a priori global discretization,
which might cause information loss. Second, with decision
trees, there is a significant reduction in the search space of
potential patterns.

Contrast pattern-based classifiers have been applied in
several practical problems, such as bot detection on twit-
ter [9], road safety [138], crime pattern [139], cerebrovas-
cular examination [140], describing political figures [141],
sales trends [142], detection of frequent alarm patterns [143],
bot detection on weblog [6], complex activity recognition in
smart homes [144], network traffic [145], and studying the
patterns of expert gamers [146]; among others.

Contrast patterns were improved by using fuzzy sets [147],
deriving a new type of pattern called fuzzy pattern [5], which
shows a language closer to the human experts than provided
by contrast patterns. A fuzzy pattern is a pattern contain-
ing conjunctions of selectors [Feature ∈ FuzzySet], where
∈ is the membership of the feature value to FuzzySet. This
way an object satisfies a given pattern to a certain degree
according to the degree the object feature values satisfy the
item expressed in the pattern. For example, [Temperature ∈
hot] ∧ [Humidity ∈ normal] is a fuzzy pattern describing
the weather in a fuzzy domain. For mining fuzzy patterns,
first, this procedure creates a fuzzification of all features.
For non-numeric features, a collection of singleton fuzzy sets
is created, i.e. for each different value, a fuzzy set having
membership 1 for that value, and 0 for the remaining val-
ues is created. For numeric features, a traditional fuzzifi-
cation method is applied. After that, [5] use a fuzzy vari-
ant of the ID3 method [2] for building a set of different
fuzzy decision trees, from where several fuzzy patterns are
extracted.

García-Borroto et al. proposed extending the fuzzy pat-
terns by using linguistic hedges (e.g., ‘‘very’’, ‘‘often’’, and
‘‘somewhat’’), which are commonly used for fixing the dis-
cretization of continuous features. These fuzzy patterns look
more closely to the language used by experts than other types
of patterns.

For a better understanding of the difference between the
three types of patterns aforementioned, we provide an exam-
ple of each one for the same domain.

CP. [Temperature > 35] ∧ [Humidity ∈ [55, 70], it is a
contrast pattern.

FP. [Temperature ∈ hot] ∧ [Humidity ∈ normal], it is
a fuzzy pattern using discretization of continuous
features.
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FPLH. [Temperature is very(hot)]∧
[Humidity is somewhat(normal)], it is a fuzzy pattern
by using linguistic hedges.

Notice that the three items aforementioned are patterns
describing the same domain but the fuzzy pattern by using
linguistic hedges looks more closely to the language used by
experts than other two types of patterns.

Models based on decision trees, rules, or patterns have their
major advantage in the explanation provided by them, further
their accuracy. However, like all classification model, they
have important drawbacks, which we mentioned below:
• Their explanatory power is limited by the nature of input
data and the feature representation. For example, they
cannot provide a suitable explanation when the input
data are images.

• Usually, they provide a considerable number of patterns,
rules, or decision trees, which are hard to understand
by experts in the application domain, and the proposed
filtering methods do not provide a reasonable filtered
collection of them.

A. DISCUSSION
Aswe stated in Section II and this one, black-box-basedmod-
els are so good as white-box-based models are. Their perfor-
mances depend on the application domain and the input data.
In practical contexts, the results obtained by a white-box-
based model where the input data are described in a matrix
containing features and values issued by experts in the appli-
cation area are easier to understand by that experts than other
types of feature representation, which are transformations of
input data. For example, a rule-based system using images as
input data for document image segmentation provides rules
like if ((Ht,min ≤ height < Ht,max) AND ((At,min ≤
aspect ratio < At,max))CC ⇒ TEXT and if (aspect ratio ≤
AL,min)CC ⇒ NONTEXT , which are hard to understand
by experts in the application area and even, usually, these
types of system output a huge number of rules; being more
complicated for understanding [148]. On the other hand, there
exist black-box-based models proving both cropped images
and bounding boxes for document image segmentation [149],
which are easier to understand by experts in the application
area than white-box-based models, like rule-based system.

As we have stated on before sections, it is essential to
understand the input data as well as the best way for showing
the output data to experts before applying a machine learning
model to a practical problem. For some contexts a white-box-
based model is better than using a black-box-based models;
for other contexts it is the other way around. However, there
are machine learning experts fusing both white- and black-
box approaches for obtaining the best performance in practi-
cal applications.

IV. FUSING BLACK- AND WHITE-BOX APPROACHES
On the one hand, in several contexts, black-box-basedmodels
have shown better classification results than white-box-based
models. However, in most of these contexts, an accurate

model is not the only desired characteristic by experts in the
applied context, the used model should provide an explana-
tion of their results, which should be easy to understand by
experts in that context [7]–[9].

On the other hand, there exist several contexts wherewhite-
box-based models obtain a good explanation of the problem’s
classes for experts in the application context, but they obtain
lower accuracy than other black-box-based models. Conse-
quently, new models fusing white- and black-box approaches
are necessary [150]–[152].

One of the pioneer ideas for fusing white- black-box
approaches was unifying decision tree-based classification
with the representation learning functionality known from
deep convolutional networks by training them in an end-
to-end way [150]–[155]. This approach starts with random
initialization of the decision nodes parameters and iterates
the learning procedure for a given number of epochs.1

At each epoch, it initially obtains an estimation of the pre-
diction node parameters given the actual value of by running
an iterative scheme, starting from the uniform distribution
in each leaf. Then, it splits the training set into a random
sequence of mini-batches.2 After each epoch, it could even-
tually change the learning rate according to predetermined
schedules. In Fig. 10, we show how the hidden layer and the
leaf nodes are connected into a Deep CNN for obtaining a
random forest by using the representation learning function-
ality.

As we stated in Section III, from decision trees
several rules can be extracted. Consequently, several
authors [156]–[158] have proposed to extract rules from
different deep convolutional networks.

For extracting rules from CNN, the main idea is processing
every hidden layer in a descending order for obtaining a set
of rules for each class (CNN output). This approach extracts
rules for each hidden layer that describes its behaviour based
on the preceding layer. At the end, all rules for one class are
getting merged [156]–[158].

Although models fusing rule and CNN have been used
in some applied context like aspect level sentiment analy-
sis [158] and semantic image labeling [153], the extracted
rules are not easy to understand by experts in the application
domain due to these rules are extracted from several hid-
den layers into the CNN model, which contain connections
inherent from the CNN. Also, the applied pruning strategies
for rules do not provide a subset of rules easy to under-
stand by experts [156]–[158]. Hence, other authors [150]
have proposed to integrate both visualization techniques
and rules for understanding the output provided by CNN.
Samek et al. proposed to use a heatmap and a rule-based
model for extracting how much does each pixel contribute
to prediction and how much do changes in each pixel affect

1An epoch is a hyperparameter belonging to deep learning-based models.
It is considered an epoch when an entire dataset is passed both forward and
backward through the neural network only once [34].

2Batch is a hyperparameter used by deep learning-based models for
representing a proportion of the total number of training objects [34].
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FIGURE 10. Red-dashed arrows are hidden layers coming from a Deep CNN. The α block represents the fully connected layer used to provide
functions F = {f1, f2, f3 . . . fn}. Each output of fi is brought in correspondence with a split node in a tree, eventually producing the routing (split)
decisions di (x) = σ (fi (x)). The order of the assignments of output units to decision nodes can be arbitrary (the one we show allows a simple
visualization). The block of circles at bottom (β) correspond to leaf nodes, which contain probability distributions. All blue circles represent a
decision tree and the green circles another one.

the prediction. Nevertheless, the proposed explanatory model
is yet hard to be understandable by experts in the application
area [156].

Recently, Kanehira & Tatsuya proposed a framework to
generate complemental explanations by using three different
neural networks: predictor, linguistic explainer, and example
selector. The aim is that given a query object o and a class
c associated to o, the model projects them to the common-
space and element-wise summation is applied. After one
more projection, they are normalized by the the softmax3

function. The output vector of the network f (o, c) is the same
as that of the vector representation, and each vector indicates
the probability that each type of feature is selected as an
explanation [159].

Fig. 11 shows an example for illustrating how to work the
proposal of [159]. The main drawback of the Kanehira &
Tatsuya’s proposal is that the image databases should contain
additional features describing the images, which is no com-
mon in the image databases.

A. IDEAS FOR FUSING WHITE- AND BLACK-BOX
APPROACHES
Although models fusing white- and black-box approaches
have recently been proposed, and they have shown good
classification results, they need to improve their explana-
tory models to provide an explanation close to the human
language [151], [152], [156]. Consequently, we will state a
couple of ideas for doing that, which, as far as we know, have
not been proposed before.

3The softmax is a function taking as input a vector of n real numbers,
and normalizes it into a probability distribution consisting of n probabilities
proportional to the input numbers.

FIGURE 11. The model proposed by [159] predicts the query object o
(gray circle) by referring other objects based on the similarity space
(orange and blue non-dashed lines) corresponding to each linguistic
explanation (S1 and S2).

One idea is to extract information and a feature represen-
tation using one of the approaches (white- or black-box) and
after, use another approach for extracting more information
and other feature representation. After that, we need to prove
that both feature representations contain a strong correlation,
and finally, the result provided by an approach should be com-
plemented by the result provided by another one. For exam-
ple, see Fig. 12, imagine that we need to classify human brain
cancer (malignant or benign) from an input image, where both
white- and black-box approaches contribute together to the
solution and understanding of the model’s output. A possible
solution is to use a CNN for both detecting and classifying the
types human brain cancer and by other way, extract important
information from both the image and the patient’s clinical
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FIGURE 12. An example of fusing white- and black-box approaches for human brain cancer diagnosis. The brain cancer images were
taken from [160] and the human brain cancer characteristics were extracted from [161]. Note that this idea of fusing white- and
black-box approaches can provide both accurate and understandable results.

TABLE 1. A taxonomy for the white- and black-box approaches as well as the fusing of both, taking into account different characteristics.

history, in a language close to the human expert. Finally,
the model’s output provide an image with a bonding box for
detecting the affected area, a classification of the type of brain
cancer, and a description in a language close to the human
expert for explaining the classification.

Another idea is to design a stacking approach considering
some white- and black-box models by using a structure simi-
lar to the one stated in Fig. 12. Using a stacking approach,
the predictions from both models are used as inputs for
each sequential layer, and combined to form a new set of
predictions. A stacking approach can deal when the white-
box-based model’s output differs from the black-box-based
model’s output. As was stated by [162], stacking approach
has shown better results than using ensembles of classifiers
of the same nature.

One of the contributions of this paper is Table 1, where a
taxonomy for the white- and black-box approaches is shown.
In this taxonomy, we analyzed what type of input data and
feature type are better for the models following any of the
reviewed approaches. Also, we analyzed the interpretability
of the model’s output, taking into account the input data, and
if the reviewed approach is able for working with the original
dataset containing missing values. For example, if you select
a black-box-based model, then, based on Table 1 you can
infer that the selected model can work with different types

of input data, only with numerical features (it needs a data
transformation for working with other types of features).
Also, it is feasible to interpret the model’s output when the
input data are images, and it needs to modify the input data
for working with missing values.

Finally, based on the reviews stated in Sections II-III, it is
important to show a way for measuring the effectiveness of
the applied model, where statistical procedures and the expert
opinions can be taken into account together.

V. MEASURING THE EFFECTIVENESS OF THE APPLIED
MODEL
For measuring the effectiveness of a machine learning model,
there are two main procedures: internal and external vali-
dation [163]. On the one side, internal validation estimates
how accurately a predictive model will perform in practice
by using a set of databases. Most of the published machine
learning papers use an experimental setup based on the k-fold
cross-validation (k-FCV) procedure as internal validation.
For doing that, the original database is randomly partitioned
into k equal-sized datasets, where a single dataset is retained
as the testing dataset, and the remaining k − 1 datasets are
used as the training dataset. The cross-validation procedure
is repeated k times, where each of the k datasets is used
only once as the testing data. After, using some measure,
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the k results are averaged to produce a single estimation.
Some machine learning areas, like biometrics, use one round
of cross-validation where the database is partitioned into two
complementary datasets [163].

On the other side, external validation uses at least two
databases (d1 and d2) from the same nature, but they cannot
share any objects. The idea is to use a database d1 for training
the model and use this database d1 as internal validation, and
after that, the second database d2 is used as external vali-
dation. This type of validation is widely used in biometrics
problems such as iris and fingerprint identification [13], [14],
[24]–[28], [164].

The main weakness of using internal and external val-
idation procedures for validating machine learning mod-
els, which will be applied in practical scenarios, is that
expert opinions are not being taken into account. For applied
machine learning models, the experts in the application area
have the last word. However, the main question is: how to
validate the suitability of an applied machine learning model
by using the opinions of several experts in the application
area?

A statistical method for validating the suitability of an
applied machine learning model by using the opinions
of several experts in the application area is the Delphi
method [165], [166]. This method is an effective and system-
atic procedure for collecting expert opinions on a particular
topic. The Delphi method achieves a consensus from all
opinions issued by experts by using an evaluation question-
naire. The main novelty of the Delphi method is the use of
a structured questionnaire to which the different opinions of
the experts in the subsequent rounds are added or modified,
until at least three rounds are completed [165], [166]. The
Delphi method, as a validation instrument for questionnaires,
has been widely used in numerous applied areas, such as
sports, economics, marketing, medical sciences, and curricu-
lum planning [167]–[169].

For applying the Delphi method, it is essential to have:
(i) at least three experts in the application area, having ample
experience in the area; and (ii) a suitable questionnaire for
measuring the effectiveness of the applied machine learning
model. The questionnaire should provide a set of suitable
questions, which can extract from the experts their objective
opinion for the applied machine learning model. Also, this
questionnaire should provide a numerical scale for assigning
a value, according to that scale, to each question [165], [166].

This questionnaire could include some of the following
question for evaluating an applied machine learning model:
• Is it suitable the applied model?
• Is it accurate the model?
• Does the model’s output is easy to understand?
• Does the model’s output help to the end-user for taking
a decision?

• Does the model provides an explanation that justifies its
recommendation, decision, or action?

The Delphi method uses the evaluations issued by the
experts using the applied questionnaire, the numerical scale,

and the grade of expertise of each expert for outputting the
suitability of the assessed model [165], [166].

The Delphi method can be described in the following
items:
• The Delphi method is a methodology to arrive at a
consensus or decision by surveying a panel of experts.

• Experts fulfill all the questionnaires after several rounds,
and the responses are aggregated and shared with the
group of experts after each round.

• Based on the interpretation of the group response pro-
vided by each expert in the before item, they can change
their answers after each round.

• The final result is meant to be a true consensus of what
the group thinks.

In most of the published papers about white-box models
applied to practical problems, the authors claim that the pro-
posed model is explainable because it follows a white-box
approach [8], [9], [108]. However, it is essential that those
white-box model applied to practical problems can be evalu-
ated by using the Delphi method or other methods requiring
the opinion of experts in the application area. In this way,
the proposed white-box model can be validated by experts in
the application area.

VI. CONCLUSION
In this paper, we provide a brief introduction for both white-
and black-box approaches, where the most outstanding mod-
els based on each one were reviewed. Also, we presented
advantages and weaknesses of both white- and black-box
approaches from both theoretical and practical points of
view; taking special interest in those security and biomedical
applications. Additionally, one the one hand, we reviewed
and provided idea about how to fuse white- and black-box
approaches for creating better machine learning models than
other proposed in the literature. On the other hand, we provide
a way to measure the effectiveness of the applied models by
using statistical procedures and experts opinions jointly.

From this paper, we can conclude the following:
(i) It is essential to understand the input data as well as

the best way for showing the output data to experts
before applying a machine learning model to a practical
problem; showing a special interest in those problems
related to security and medicine.

(ii) Experts in the application domain do not need to
understand the mathematical transformation behind the
applied black-box-based model, they only need a nat-
ural form of interpreting the model’s output. For doing
that, the output data should be provided to experts in a
similar form that they provided the input data but high-
lighting the important keys discovered by the applied
model.

(iii) White-box-based models are so good as black-box-
based models are, and their performances depend on the
application domain and the input data.

(iv) Experts in the application domain do not need to under-
stand the inside of the applied model but it is mandatory

154108 VOLUME 7, 2019



O. Loyola-González: Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View

for experts inmachine learning to understand this model
due to, on most occasions, the model need to be tuned
for obtaining accurate results.

(v) It is not necessary tomove all black-boxmodels towards
white-box models, but it is mandatory to analyze the
models for selecting the best one to be applied in the
given problem and the best form to show the model’s
output.

(vi) New models fusing white- and black-box approaches
are necessary for providing models more easy to inter-
pret than those previously proposed.
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