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ABSTRACT GNSS is now being speedily expanded to our daily life, but the positioning precision still
can hardly meet the demands of many high-precision applications, such as approaching landing system on
airports. Due to the development of GNSS, quadruple-frequency signals are now available in China’s BeiDou
Navigation Satellite System (BDS) and the European Galileo system, which can contribute to positioning
precision. Positioning precision can not be improved obviously by quadruple-frequency carrier phases until
cycle slips are detected and repaired. Amethod using four linear combinations to detect and repair quadruple-
frequency cycle slips is proposed in the paper. The choices of the four linear combinations are conducted
in cascaded steps in accordance to the cycle slip fixing probability. When the four detection combinations
are determined, cycle slips on original carrier phase observations can be uniquely determined. The proposed
algorithm has been tested on real 30-second quadruple-frequency static observations of BDS and Galileo
and on real 0.05-second quadruple-frequency kinematic observations of BDS and Galileo. Simulated and
real cycle slips are tested. The results show that the proposed algorithm can detect and repair cycle slips
even for one cycle effectively.

INDEX TERMS Quadruple-frequency observations, cycle slip, linear combination, BDS, Galileo.

I. INTRODUCTION
With the completion of the experimental and regional phases,
China’s BeiDou Navigation Satellite System (BDS) is being
speedily expanded to a global and multifunctional satellite
navigation system, BDS-3 [1]. To ensure the smooth tran-
sition from BDS-2 to BDS-3, B1I and B3I will continue to
be broadcast while B2I will not be retained [2]. At the same
time, two new OS (open service) signals, i.e. B1C and B2a,
will be broadcast by the BDS-3 satellites [3], [4]. Those four
signals are broadcast on four frequencies and can be received
by BDS users. In addition, the European Galileo system has
broadcasted quadruple-frequency signals, i.e. E1, E5a, E5b
and E6, and several researches have been done based on
Galileo quadruple-frequency signals [5], [6].

Carrier phase measurements are the important observa-
tions for highly accurate positioning because of their high
accuracy. Multi-frequency signals can form more linear
combinations with small combined noise, small ionospheric
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delay and long wavelength compared with single-frequency
signal, and multi-frequency signals are used in many high
precise applications, such as approaching landing system and
geodetic measurement applications [7]–[18]. Cycle slips can
interrupt the consistence of multi-frequency carrier phase
measurements so that degrade the precise of positioning.
It is necessary to detect and repair cycle slip when multi-
frequency carrier phase measurements are used in high pre-
cise applications.

Over the past decades, there have been many methods
to detect and repair cycle slips. Chen et al. used double
differenced observations to detect and repair cycle slips
which needed two receivers at least [7]. For most of appli-
cations, we can only process one receiver data so that
the methods to detect and repair un-differenced cycle slips
are more attractive. For dual-frequency receiver, the Hatch-
Melbourne-Wubbena (HMW) [8] linear combination can
be applied to detect cycle slips. In addition, the difference
of carrier phase observations on two frequencies, which is
called as the ionospheric residual combination, can also be
applied to detect cycle slips. TurboEdit algorithm uses both
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the HMW combination and the ionospheric residual com-
bination to detect and repair dual-frequency cycle slips [9].
Because of the ionospheric residual combination, the
TurboEdit algorithm does not perform well under high iono-
spheric activity. In order to detect and repair cycle slip
under high ionospheric activity for a dual-frequency receiver,
researchers have developed several methods. A forward and
backwardmoving window averaging algorithm and a second-
order, time-difference phase ionospheric residual algorithm
are used by Cai et al. to detect and repair cycle slips [10].
Liu used the ionospheric total electron contents rate (TECR)
and HMW wide lane linear combination to uniquely deter-
mine the cycle slip on both L1 and L2 frequencies [11].
Banville et al. proposed a geometry-based approach with the
rigorous handling of the ionosphere [12]. Triple-frequency
signals are now available and many researches have been
done with triple-frequency signals. Hatch R et al. intro-
duced the benefits of the third frequency signal on cycle slip
correction [13]. Liu et al. selected three linearly indepen-
dent geometry-free pseudorange minus phase combination
to determine the cycle slips on the original triple-frequency
carrier phase observations [14]. de Lacy et al. defined five
geometry-free linear combinations used in three steps for
real-time cycle slip detection and repair on triple-frequency
GNSS data [15]. Huang et al. defined two geometry-
free phase combinations and one geometry-free pseudor-
ange minus phase linear combination to detect and correct
cycle slip and applied an effective decorrelation search
based on LAMBDA and least squares minimum principle
to calculate and determine the cycle slips [16]. Zhao et al.
used three combinations, namely extra-wide lane, wide
lane, and narrow lane, to determine cycle slips sequen-
tially in three cascaded steps and results showed that this
method performed well under high ionospheric activity [17].
Zeng et al. used triple-frequency combinations to detect
and repair cycle slip under ionospheric disturbance with
BDS data [18].

A real-time quadruple-frequency cycle slip detection and
repair algorithm based on the four chosen linear combinations
is proposed in the paper. When the four detection combina-
tions are determined, cycle slips on the original carrier phase
observations can be uniquely determined. The following
section describes the choices of the first, the second, the third
and the fourth detection combinations in detail and introduces
the method of recovering cycle slip on each frequency based
on the chosen four combinations. Then, the BDS and Galileo
quadruple-frequency static and kinematic data with simulated
cycle slips are used to test the performance of the proposed
algorithm. Finally, conclusions are drawn.

II. PROPOSED METHOD
The pseudorange and carrier observation equations can be
expressed as:

ρi = r + c
(
dtu − dts

)
+ T + γiI1 + ερi (1)

φi = λiϕi = r + c
(
dtu − dts

)
+T−γiI1+λiNi+εφi (2)

where i = 1, 2, 3, 4 indicates the four frequencies. For
BDS, the signal frequencies f1, f2, f3, f4 are 1561.098 MHz,
1575.42 MHz, 1176.45 MHz and 1268.52 MHz correspond-
ing to B1I, B1C, B2a and B3I, respectively. For Galileo,
the signal frequencies on f1, f2, f3, f4 are 1575.42 MHz,
1176.45 MHz, 1207.14 MHz and 1278.75 MHz, correspond-
ing to E1, E5a, E5b and E6, respectively. ρi and φi are
pseudorange and carrier phase observations on frequency fi
in meters. ϕi is carrier phase observation on frequency fi in
cycles and λi is corresponding wavelength. r is geometric
distance. dtu and dts are receiver clock error and satellite
clock error in second. c is light speed. T is the tropospheric
delay. I1 is the first-order ionospheric group delay on the
frequency f1 and γi is ionospheric delay coefficient of fi
which is γi = f 21

/
f 2i . Ni is integer ambiguity of fi and the

difference ofNi between two continuous epochs which can be
expressed as1Ni is cycle slip on frequency fi. ερi and εφi are
pseudorange observation noise and carrier phase observation
noise in meters on frequency fi and are assumed the same
on four frequencies. On the basis of the original quadruple-
frequency observations, the linear combinations of carrier
phase observations and pesudorange observations in meters
can be defined as follows:

φijkt =
if1φ1 + jf2φ2 + kf3φ3 + tf4φ4

if1 + jf2 + kf3 + tf4
(3)

ρabcd = aρ1 + bρ2 + cρ3 + dρ4 (4)

where φijkt and ρabcd are the combined carrier phase and
pseudorange in meters, (i, j, k, t) is the coefficient of carrier
phase observations, and (a, b, c, d) is the coefficient of pseu-
dorange observations. For carrier phase combination, the lin-
early combined frequency, wavelength, integer ambiguity and
ionospheric delay are given by:

fijkt = if1 + jf2 + kf3 + tf4 (5)

λijkt =
c

if1 + jf2 + kf3 + tf4
(6)

Nijkt = iN1 + jN2 + kN3 + tN4 (7)

Iijkt = −
λijkt

λ1

(
i+ j

f1
f2
+ k

f1
f3
+ t

f1
f4

)
I1 (8)

For pseudorange combination, the linearly combined iono-
spheric delay is given by:

Iabcd =

(
a+ b

f 21
f 32
+ c

f 21
f 33
+ d

f 21
f 34

)
I1 (9)

When the coefficients of carrier phase observations (i, j, k, t)
are integers, combined ambiguity Nijkt can maintain integer
and the combined cycle slip 1Nijkt can be calculated by
term (7) when cycle slips on four frequencies which are
expressed by 1N1, 1N2, 1N3 and 1N4 occur

A. FIRST DETECTION COMBINATION
The geometry-free and ionospheric-free (GFIF) pseudor-
ange/carrier linear combination in cycles is used as the
first detection combination which can be expressed as

154698 VOLUME 7, 2019



Y. Wang et al.: Real-Time Quadruple-Frequency Cycle Slip Detection and Repair Algorithm

follow (10), as shown at the bottom of this page. where
(i, j, k, t) is the coefficient of carrier phase observations and
(a, b, c, d) is the coefficient of pseudorange observations.
The combination should satisfy two constraints below for
eliminating geometry and ionosphere:

a+ b+ c+ d = 1 (11)

a+ b
f 21
f 32
+ c

f 21
f 33
+ d

f 21
f 34
= −

λijkt

λ1

(
i+ j

f1
f2
+ k

f1
f3
+ t

f1
f4

)
(12)

Assuming that the pseudorange observation noise and carrier
phase observation noise are white Gaussian noise (WGN),
the variance of L1 in cycles can be expressed as follows in
accordance with the variance covariance propagation law:

σ 2
L1=

(
i2f 21 +j

2f 22 +k
2f 23 +t

2f 24
)

c2
σ 2
φ+

a2 + b2 + c2 + d2

λ2ijkt
σ 2
ρ

(13)

where σρ and σφ are pseudorange and carrier phase noise
standard deviation in meters. The difference of L1 between
continuous epochs which is expressed as1L1 satisfies Gaus-
sian distribution and the average is 1Nijkt and the variance
is 2σ 2

L1
. It can be expressed as follows:

1L1 ∼ N
(
1Nijkt , 2σ 2

L1

)
(14)

where N
(
µ, σ 2

)
expresses Gaussian distribution, µ is aver-

age and σ 2 is variance. The threshold is set as 0.5 cycles so
that the cycle slips can be fixed to the integer by rounding off
the float estimation. The probability of successfully determin-
ing cycle slip defined as fixing probability in this research is
expressed as follows:

P
(∣∣1L1 −1Nijkt ∣∣ < 0.5

)
= 28

 0.5√
2σ 2

L1

− 1 (15)

where

8(x) = P (X ≤ x) =
1
2

[
1+ erf

(
x
√
2

)]
(16)

and

erf (x) =
2
√
π

∫ x

0
e−t

2
dt (17)

The optimal coefficient of pseudorange observation
(a, b, c, d) can be determined by the below term when
the coefficient of carrier phase observations (i, j, k, t) is
given (18), as shown at the bottom of this page, where min {•}
expresses the minimum value. We can use the Lagrange
Multiplier Method to solve the term of (18). We construct
the function as follows:

Lag

=

(
i2f 21 + j

2f 22 + k
2f 23 + t

2f 24
)

c2
σ 2
φ

+
a2 + b2 + c2 + d2

λ2i,j,k,t
σ 2
ρ

+α (a+ b+ c+ d − 1)+ β

×

(
a+b

f 21
f 22
+ c

f 21
f 23
+ d

f 21
f 24
+
λi,j,k,t

λ1
(i+j

f1
f2
+k

f1
f3
+ t

f1
f4
)

)
(19)

Then the optimal solution is as follows:


a
b
c
d
α

β

 =



1 1 1 1 0 0

1
f 21
f 22

f 21
f 23

f 21
f 24

0 0

2σ 2
ρ

λ2ijkt
0 0 0 1 1

0
2σ 2
ρ

λ2ijkt
0 0 1

f 21
f 22

0 0
2σ 2
ρ

λ2ijkt
0 1

f 21
f 23

0 0 0
2σ 2
ρ

λ2ijkt
1
f 21
f 24



−1

×



1

−
λijkt

λ1

(
i+ j

f1
f2
+ k

f1
f3
+ t f1f4

)
0
0
0
0


(20)

L1 =
φijkt − ρabcd

λijkt
=

λijkt
c (if1φ1 + jf2φ2 + kf3φ3 + tf4φ4)− (aρ1 + bρ2 + cρ3 + dρ4)

λijkt

=
if1φ1 + jf2φ2 + kf3φ3 + tf4φ4

c
−
aρ1 + bρ2 + cρ3 + dρ4

λijkt
(10)

min


(
i2f 21 + j

2f 22 + k
2f 23 + t

2f 24
)

c2
σ 2
φ +

a2 + b2 + c2 + d2

λ2i,j,k,t
σ 2
ρ |a+ b+ c+ d = 1,

a+ b
f 21
f 22
+ c

f 21
f 23
+ d

f 21
f 24
= −

λi,j,k,t

λ1
(i+ j

f1
f2
+ k

f1
f3
+ t

f1
f4
)

 (18)
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TABLE 1. Best pseudorange/carrier phase combinations.

FIGURE 1. Fixing probability of BDS (top) and Galileo (bottom) varying
with pseudorange standard deviation (The first detection combination).

As the term (20) shows, the optimal solution of (a, b, c, d)
is related to σ 2

ρ and (i, j, k, t). As the term (13) shows,
the combined noise is related to carrier phase coefficients
(i, j, k, t), and in order to reduce the combined noise, car-
rier phase coefficients (i, j, k, t) can not be too large. As a
result, the range of (i, j, k, t) varies from −5 to +5 in this
research. Table 1 lists the best pseudorange/carrier phase
combinations for BDS and Galileo according to the fix-
ing probability calculated by the term of (15) when σρ =
0.3m, σφ = 0.003m. Fig 1 shows the results of fixing prob-
ability varying with pseudorange standard deviation when
the carrier phase standard is set as 0.003 m. As Fig. 1
shows, the fixing probabilities of (−1 1 0 0) for BDS and
(0 −1 1 0) for Galileo are almost 100% even when σρ
is 0.5 m. As a result, we choose (−1 1 0 0) for BDS and
(0 −1 1 0) for Galileo as the first carrier phase combination.

B. SECOND DETECTION COMBINATION
When the combined cycle slip of the first carrier phase
combination is fixed and repaired, the first carrier phase

combination is used to provide geometrical reference for
the second carrier phase combination. The second detection
combination in cycles can be expressed as follows:

L2

=
λijkt

(if1φ1+jf2φ2+kf3φ3+tf4φ4)
c −λpquv

(pf1φ1+qf2φ2+uf3φ3+vf4φ4)
c

λpquv

(21)

where (i, j, k, t) is the coefficient of the first carrier phase
combination, i.e. (-1 1 0 0) for BDS and (0 -1 1 0) for Galileo,
(p, q, u, v) is the coefficient of the second carrier phase com-
bination. The second detection combination eliminates the
geometry but the ionospheric delay still exists and the value
of ionospheric delay in cycles is as follows (22), as shown at
the bottom of the next page. In accordance with the variance-
covariance propagation law, the variance of L2 in cycles can
be expressed as follows (23), as shown at the bottom of the
next page. The difference of L2 between continuous epochs
which is expressed as1L2 satisfies Gaussian distribution and
the average is 1Npquv +1IL2 and variance is 2σ 2

L2
. It can be

expressed as follows:

1L2 ∼ N
(
1Npquv +1IL2 , 2σ

2
L2

)
(24)

The fixing probability can be expressed as follows:

P
(∣∣1L2 −1Npquv∣∣ < 0.5

)
= 8

0.5−1IL2√
2σ 2

L2

−8
−0.5−1IL2√

2σ 2
L2

 (25)

The fixing probability is related to
∣∣1IL2 ∣∣ and σ 2

L2
. The range

of (p, q, u, v) varies from -5 to +5 in this research. For each
choice of (p, q, u, v), we can calculate the fixing probability
according to the term of (25). The larger the fixing probability
is, the better the choice is. Liu et al. showed that in the
equatorial region such as Hong Kong, the ionospheric slant
total electron content rate (TECR) was about 0.01 TECU/s
during quiet ionosphere periods and it rose to 0.03 TECU/s
during disturbed ionosphere period [19]. We set the TECR
as 0.03 TECU/s to assess the validity of different carrier
phase combinations under high ionospheric activity. Table 2
lists the ten best carrier phase combinations for BDS and
Galileo according to the fixing probability calculated by
the term of (25) and the carrier phase standard deviation is
set as 0.003 m. Fig. 2 shows the fixing probability varying
with TECR. As Fig. 2 shows, the fixing probabilities of
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TABLE 2. Ten best carrier phase combinations.

those ten carrier phase combinations are larger than 99.99%
for BDS and Galileo even when TECR is 0.03 TECU/s,
so that they can determine cycle slips efficiently under high
ionospheric activity. Due to their having the same fixing
probability, we cannot determine the best combination during
the second stage so that they are all set as alternative combi-
nations and provide geometrical reference for the third carrier
phase combination

FIGURE 2. Fixing probability of BDS (top) and Galileo (bottom) varying
with TECR (The second detection combination).

C. THIRD DETECTION COMBINATION
When the combined cycle slip of the second carrier phase
combination is fixed and repaired, the second carrier phase
combination is used to provide geometrical reference for the
third carrier phase combination.

The third detection combination in cycles can be expressed
as follows (26), as shown at the bottom of this page, where

IL2 =

{
λijkt

(
i+ j f1f2 + k

f1
f3
+ t f1f4

)
− λpquv

(
p+ q f1f2 + u

f1
f3
+ v f1f4

)}
I1
λ1

λpquv
(22)

σ 2
L2 =

{(
λijkt i−λpquvp

c f1
)2
+

(
λijkt j−λpquvq

c f2
)2
+

(
λijktk−λpquvu

c f3
)2
+

(
λijkt t−λpquvv

c f4
)2}

σ 2
φ

λ2pquv
(23)

L3 =
λpquv

(pf1φ1+qf2φ2+uf3φ3+vf4φ4)
c − λwxyz

(wf1φ1+xf2φ2+yf3φ3+zf4φ4)
c

λwxyz
(26)

IL3 =

{
λpquv

(
p+ q f1f2 + u

f1
f3
+ v f1f4

)
− λwxyz

(
w+ x f1f2 + y

f1
f3
+ z f1f4

)}
I1
λ1

λwxyz
(27)

σ 2
L3 =

{(
λpquvp−λwxyzw

c f1
)2
+

(
λpquvq−λwxyzx

c f2
)2
+

(
λpquvu−λwxyzy

c f3
)2
+

(
λpquvv−λwxyzz

c f4
)2}

σ 2
φ

λ2wxyz
(28)
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(p, q, u, v) is the coefficient of the second alternative carrier
phase combination listed in Table 2 and (w, x, y, z) is the
coefficient of the third carrier phase combination. The third
combination eliminates the geometry but the ionospheric
delay still exists and the value of ionospheric delay in cycles
is as follows (27), as shown at the bottom of the previous
page. The variance of L3 in cycles can be expressed as fol-
lows in accordance with the variance-covariance propagation
law (28), as shown at the bottom of the previous page.

The first-order time difference of L3 between continuous
epochs which is expressed as 1L3 satisfies Gaussian distri-
bution and the average is1Nwxyz+1IL3 and variance is 2σ

2
L3
.

It can be expressed as follows:

1L3 ∼ N
(
1Nwxyz +1IL3 , 2σ

2
L3

)
(29)

The fixing probability can be expressed as follows:

P
(∣∣1L3 −1Nwxyz∣∣ < 0.5

)
= 8

0.5−1IL3√
2σ 2

L3


−8

−0.5−1IL3√
2σ 2

L3

 (30)

Assuming that cycle slip occurs at epoch k and there are
no cycle slips or cycle slips have been repaired at epoch
k-1 and k-2, the second-order time difference of L3 between
continuous three epochswhich is expressed as11L3 satisfies
Gaussian distribution and the mean value is 1Nwxyz and the
variance is 4σ 2

L3
. It can be expressed as follows:

11L3 ∼ N
(
1Nwxyz, 4σ 2

L3

)
(31)

The fixing probability can be expressed as follows:

P
(∣∣11L3 −1Nwxyz∣∣ < 0.5

)
= 28

 0.5√
4σ 2

L3

− 1 (32)

The range of (w, x, y, z) varies from −5 to +5 in this
research. Table 3 and Table 4 list the best carrier phase
combinations of the first-order and the second-order time-
difference methods for BDS and Galileo according to the fix-
ing probability calculated by the term of (30) and (32) when
the TECR is set as 0.03 TECU/s and the carrier phase standard
deviation is set as 0.003 m. For BDS, the fixing probability
of the second-order time-difference method, i.e. 0.99999,
is larger than that of the first-order time-difference method,
i.e. 0.98900, so that we use the second-order time-difference
method to detect and repair the combined cycle slips on the
third detection combination. For Galileo, the fixing proba-
bility of the first-order time-difference method, i.e. 0.99999,
is larger than that of the second-order time-differencemethod,
i.e. 0.99997, so that we use the first-order time-difference
method to detect and repair the combined cycle slips on the
third detection combination. Fig.3 shows the fixing proba-
bility of the second-order time-difference method for BDS

FIGURE 3. Fixing probability of the second-order time-difference method
for BDS varying with carrier phase observation noise (top) and the
first-order time-difference method for Galileo varying with TECR (bottom)
(The third detection combination).

varying with carrier phase observation noise and the first-
order time-differencemethod for Galileo varyingwith TECR.
As Fig.3 shows, for BDS, the fixing probability decreases
when carrier phase standard deviation grows, but the fixing
probability is still larger than 99.94% even when the carrier
phase standard deviation is 0.004 m. For Galileo, the fixing
probability is almost 100% even when TECR is 0.03 TECU/s
so that it can detect and repair cycle slip efficiently under
high ionospheric activity. Until now, the second carrier phase
combination is determined as listed in Table 3 and Table 4.
In accordance to the fixing probability of the third detection
combination, there are two equal choices for the third carrier
phase combination for both BDS and Galileo, i.e. (−3 0 4 0)
and (−1 5 −1 −4) for BDS and (1 −3 5 −3) and (1 2 1 −4)
for Galileo, and they are all set as alternative combinations
to provide geometrical reference for the fourth carrier phase
combination.

D. FOURTH DETECTION COMBINATION
When the combined cycle slip of the third carrier phase com-
bination is fixed and repaired, the third carrier phase combi-
nation is used to provide geometrical reference for the fourth
carrier phase combination. The fourth detection combination
in cycles can be expressed as follows (33), as shown at the
bottom of the next page, where (w, x, y, z) is the coefficient
of the third carrier phase combination listed in Table 3 and
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TABLE 3. Best carrier phase combinations of the first-order
time-difference method.

TABLE 4. Best carrier phase combinations of the second-order
time-difference method.

Table 4, and (l,m, n, g) is the coefficient of the fourth carrier
phase combination. The fourth detection combination elimi-
nates the geometry but the ionospheric delay still exists and
the value of ionospheric delay is as follows (35), as shown
at the bottom of this page, In accordance with the variance-
covariance propagation law, the variance of L4 in cycles can
be expressed as follows (34), as shown at the bottom of this
page, The first-order time difference of L4 between contin-
uous epochs which is expressed as 1L4 satisfies Gaussian
distribution and the average is1Nlmng+1IL4 and the variance
is 2σ 2

L4
. It can be expressed as follows:

1L4 ∼ N
(
1Nlmng +1IL4 , 2σ

2
L4

)
(36)

TABLE 5. Best carrier phase combinations of the first-order
time-difference method.

The fixing probability can be expressed as follows:

P
(∣∣1L4 −1Nlmng∣∣ < 0.5

)
= 8

0.5−1IL4√
2σ 2

L4


−8

−0.5−1IL4√
2σ 2

L4

 (37)

Be same with the third detection combination, the second-
order time difference of L4 between continuous three epochs
which is expressed as 11L4 satisfies Gaussian distribution
and the mean value is1Nlmng and the variance is 4σ 2

L4
. It can

be expressed as follows:

11L4 ∼ N
(
1Nlmng, 4σ 2

L4

)
(38)

The fixing probability can be expressed as follows:

P
(∣∣11L4 −1Nlmng∣∣ < 0.5

)
= 28

 0.5√
4σ 2

L4

− 1 (39)

The range of (l,m, n, g) varies from −5 to +5 in this
research. Table 5 and Table 6 list the best carrier phase
combinations of the first-order and the second-order time-
difference methods for BDS and Galileo according to the fix-
ing probability calculated by the term of (37) and (39) when
the TECR is set as 0.03 TECU/s and the carrier phase standard
deviation is set as 0.003 m. For BDS, the fixing probability of
the first-order time difference method, i.e. 0.99163, is larger
than that of the second-order time difference method, i.e.
0.94235, so that we use the first-order time-differencemethod

L4 =
λwxyz

(wf1φ1+xf2φ2+yf3φ3+zf4φ4)
c − λlmng

(lf1φ1+mf2φ2+nf3φ3+gf4φ4)
c

λlmng
(33)

IL4 =

{
λwxyz

(
w+ x f1f2 + y

f1
f3
+ z f1f4

)
− λlmng

(
l + m f1

f2
+ n f1f3 + g

f1
f4

)}
I1
λ1

λlmng
(34)

σ 2
L4 =

{(
λwxyzw−λlmngl

c f1
)2
+

(
λwxyzx−λlmngm

c f2
)2
+

(
λwxyzy−λlmngn

c f3
)2
+

(
λwxyzz−λlmngg

c f4
)2}

σ 2
φ

λ2lmng
(35)

VOLUME 7, 2019 154703



Y. Wang et al.: Real-Time Quadruple-Frequency Cycle Slip Detection and Repair Algorithm

TABLE 6. Best carrier phase combinations of the second-order
time-difference method.

to detect and repair the combined cycle slips on the fourth
detection combination. For Galileo, the fixing probability
of the second-order time-difference method, i.e. 0.99997, is
larger than that of the first-order time difference method,
i.e. 0.23632, so that we use the second-order time-difference
method to detect and repair the combined cycle slips on
the fourth detection combination. Fig. 4 shows the fixing
probability of the first-order time-difference method for BDS
varying with TECR and the second-order time-difference
method for Galileo varying with carrier phase observation
noise. As Fig. 4 shows, for BDS, the fixing probability is
larger than 99.16% when TECR is 0.03 TECU/s. For Galileo,
the fixing probability is larger than 99.8% when the carrier
phase standard deviation is 0.004 m. Until now, the third and
the fourth carrier phase combinations for BDS and Galileo
are determined as listed in Table 5 and Table 6. For BDS,
the third carrier phase combination is (−1 5 −1 −4) and
the fourth carrier phase combination is (3 0 −5 1), respec-
tively. For Galileo, the third carrier phase combination is
(1 −3 5 −3) and the fourth carrier phase combination is
(−3 2 2 0) or (4 −5 3 −3). We select (−3 2 2 0) as the
fourth carrier phase combination in this research. Actually,
as Table 5 and 6 show, when we determinate the optimal com-
bination, all factors affecting the fixing probability, includ-
ing ionospheric delay and combined noise, are in units of
cycles. Although the wavelength and the combined noise of
(−3 2 2 0) and (4−5 3−3) are different in meters, their com-
bined noise in cycles are same so that their fixing probabilities
are the same. As a result, we can select (4−5 3−3) also as the
fourth carrier phase combination in this research, too. To be
brief, we choose (−3 2 2 0) as the fourth combination.

E. RECOVER CYCLE SLIPS ON EACH FREQUENCY
When the first, the second, the third and the fourth detection
results are determined, the detection equation for BDS can be
expressed as follows:


−1 1 0 0
−4 5 3 −4
−1 5 −1 −4
3 0 −5 1



1N1
1N2
1N3
1N4

=


int (1L1)
int (1L2)
int (11L3)
int (1L4)

 (40)

FIGURE 4. Fixing probability of the first-order time-difference method for
BDS varying with TECR (top) and the second-order time-difference
method for Galileo varying with carrier phase observation noise (bottom)
(The fourth detection combination).

and the detection equation for Galileo can be expressed as
follows:

0 −1 1 0
0 −5 4 1
1 −3 5 −3
−3 2 2 0



1N1
1N2
1N3
1N4

=


int (1L1)
int (1L2)
int (1L3)
int (11L4)

 (41)

where (1N1,1N2,1N3,1N4) are cycle slips on f1, f2, f3, f4,
respectively. int (x) means that x is rounded to the nearest
integer. All coefficients in the term of (40) and (41) are
integers so that the integer nature of (1N1,1N2,1N3,1N4)

is maintained.

III. DATA ANALYSIS
The proposed algorithm is tested on real quadruple-frequency
data collected at Changsha onApril 7, 2019. The receiver type
is TRIMBLEALLOY 5.37 which can receive BDS-2 signals,
i.e. B1I and B3I, BDS-3 new OS signals, i.e. B1C and B2a,
and quadruple-frequency Galileo signals, i.e. E1, E5a, E5b
and E6. The observation interval is 30 s. The elevation mask
angle is set as 10 degrees. Two BDS satellites, i.e. C21 and
C28, and two Galileo satellites, i.e. E07 and E19, are used
to assess the performance of the proposed algorithm. The
satellite C21 data refers to GPS time 9:24 to 13:23, with
elevation angle varying from 10 degrees to 34 degrees. The
satellite C28 data refers to GPS time 11:50 to 17:50, with
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FIGURE 5. Ionospheric delay variations of C21 (top left), C28 (top right),
E07 (bottom left) and E19 (bottom right). First-order time-difference TEC
variations 1TEC(blue) and second-order time-difference TEC variations
11TEC(red).

elevation angle varying from 10 degrees to 87 degrees. The
satellite E07 data refers to GPS time 00:00 to 05:40, with
elevation angle varying from 10 degrees to 82 degrees. The
satellite E19 data refers to GPS time 12:05 to 18:55, with
elevation angle varying from 10 degrees to 69 degrees.

A. IONOSPHERIC ACTIVITY
Ionospheric delay variations are analyzed at first. The carrier
phase observations of B1I and B3I for BDS and E1 and
E6 for Galileo are used to calculate ionospheric delay vari-
ations. Fig. 5 shows the first-order and the second-order
time-difference TEC variations of C21, C28, E07 and E19.
As Fig. 5 shows, the first-order time-difference ionospheric
delay variations (blue) for all involved satellites are signif-
icant. However, the trend component is not obvious in the
second-order time-difference TEC variations (red) for all
satellites involved. The second-order time-difference TEC
variations are clustered around zero over the entire observa-
tion time. This indicates that the impact of ionospheric delay
can be significantly reduced using the second-order time-
difference method.

B. NOISE LEVEL OF COMBINATION
Fig. 6 shows the 1L1, 1L2, 11L3 and 1L4 of C21 and
C28 and the 1L1, 1L2, 1L3 and 11L4 of E07 and E19.
As Fig. 6 shows, the ionospheric delay variations in11L3 of
C21 andC28 and11L4 of E07 and E19 have been eliminated
and the detect results are lower than 0.5 cycles during the
entire observation time for those four combinations. As a
result, when the threshold is 0.5 cycles, the proposed algo-
rithm can efficiently detect and repair cycle slips.

C. SIMULATED CYCLE SLIP TEST
In order to assess the performance of the proposed method,
we simulated several cycle slip pairs on the original carrier
phase observations. The small cycle slips range from 1 to
2 and they can occur on one, two, three or four frequencies
simultaneously. At first, several random cycle slip pairs are
simulated on the original carrier phase observations to test the

FIGURE 6. Detection results of the four combinations. Top left, top right,
bottom left and bottom right are C21, C28, E07 and E19, respectively. The
observation interval is 30 s.

FIGURE 7. Detection results of the four combinations with simulated
cycle slips. Top Left, Top Right, Bottom left and bottom right are C21, C28,
E07 and E19, respectively. The observation interval is 30 s.

algorithm. Then, the particular cycle slip pairs are simulated
to the observations every ten epochs to analyze the reliability
and efficiency of the proposed method.

1) REPAIR RANDOM CYCLE SLIP PAIRS
We simulate two types of random cycle slips on the original
carrier phase observations. The cycle slips include small and
particular cycle slips. Fig.7 shows the random cycle slip
detection results on the four combinations for each satellite.
Table 7 lists all the detection results. As Fig.7 shows, the cycle
slips, despite a small cycle size of 1, cause significant jump
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TABLE 7. Cycle slip detection and repair results with simulated cycle slips.

on the four combinations. As to the particular cycle slip pairs,
such as (1 1 0 0), (0 1 1 0), (0 1 1 1) and (1 1 1 1), these
cycle slip pairs cannot be detected by the first or the second
detection combination for BDS and Galileo, but they do not
cause the discontinuity of these detection combinations so
that these cycle slip pairs will not affect the above detec-
tion combinations providing geometrical reference for the
subsequent detection combinations. In addition, they can be
detected by the other detection combinations, such as the
third or the fourth detection combination, so that those par-
ticular cycle slip pairs will be detected and repaired correctly,
too. Table 7 summarizes all the detection results in the test.
As listed, the proposed algorithm correctly detected and
repaired all the random cycle slips.

2) REPAIR PARTICULAR CYCLE SLIP PAIRS
As discussed above, the particular cycle slip pairs with the
form of (N, N, N, N), (N, N, 0, 0), (0, N, N, 0) and
(0, N, N, N) cannot be detected by the first or the second
detection combination of BDS and Galileo. We simulated
those forms of cycle slip pairs to observations every ten
epochs, which are (1 1 0 0) in C21, (1 1 1 1) in C28, (0 1 1 0)
in E07, (0 1 1 1) in E07 and (1 1 1 1) in E19 on quadruple-
frequency data, respectively. The repairing correct rates are
100% for all simulated cycle slips.

D. KINEMATIC TEST
In this section, BDS and Galileo data from the car-
driven experiment are used to further evaluate the perfor-
mance of the proposed algorithm under kinematic condition.

FIGURE 8. Observational environment and GNSS antenna in the
car-driven experiment (trajectory of the car with yellow line).

The kinematic data are collected from the car-driven experi-
ment conducted at Wuhan on April 17, 2019. The sampling
interval is 0.05 s. The type of GNSS receiver is TRIMBLE
ALLOY 5.37. Fig. 8 shows the observational environment
and GNSS antenna in the car-driven experiment. BDS satel-
lite C30 and Galileo satellite E26 are analyzed to verify the
performance of the proposed algorithm. Fig. 9 shows the
noise level of the four combinations. As Fig. 9 shows, the
detect results are lower than 0.5 cycles during the entire
observation time for those four combinations. Then, several
simulated cycle slips are inserted to carrier phase observa-
tions. Fig. 10 and Table 8 show the detection results. Results
show that the proposed algorithm is efficient when applied to
kinematic application.

E. COMPARISONS WITH TRADITIONAL METHODS
Traditional methods to detect and repair cycle slip
are mainly based on dual-frequency or triple-frequency
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TABLE 8. Cycle slip detection and repair results with simulated cycle slips for C30 and E26.

FIGURE 9. Detection results for C30 (left) and E26 (right) with sampling
interval of 0.05 s.

FIGURE 10. Detection results with simulated cycle slips for C30 (left) and
E26 (right) with sampling interval of 0.05 s.

observations. Regarding the limitation of space, BDS satellite
C21 observed at Changsha on April 7, 2019 is used as an
example to assess the performance of the traditional dual-
frequency and triple-frequency methods. The performance of
the proposed method using this satellite’s data can be seen
from Fig.6 and we do not show them again.

1) PERFORMANCE OF DUAL-FREQUENCY METHOD
Weuse B1I and B3I observations to assess the performance of
dual-frequency method. TurboEdit method has been widely
used to detect and repair dual-frequency cycle slip [9].

This method uses MW combination and GF (Geometry-
Free) combination (some researches call this combination as
ionospheric residual combination [10]) to detect and repair
cycle slips. In order to detect and repair cycle slip of one
cycle, the threshold of MW combination is set as 0.5 cycles.
Assuming the carrier phase noise is 0.02 cycles on each
frequency, according to the variance covariance propagation
law, the threshold of GF combination is set as 0.0773 cycles.
One point should be mentioned is that the detection threshold
in TurboEdit method is adaptive according to reference [9].
It is reasonable from the static point. However, our ultimate
goal is repairing cycle slips but not only detecting cycle slips.
For MW combination, it maintains the integer nature of cycle
slips which is the same with the four combinations of the
proposed method.We can repair MW combination cycle slips
by rounding integer directly.When the threshold is larger than
0.5 cycles, we cannot repair cycle slips by rounding integer
directly, and as a result, we cannot achieve the ultimate goal.
Under this consideration, we set the threshold of MW as
0.5 cycles. For GF combination, the coefficients of carrier
phase are not integer so we can not repair GF combination
cycle slips by rounding integer simply. As a result, we respect
the statistic characteristic of combined noise and set three
factors of the standard deviation of the combined noise as the
threshold of the GF combination. Fig 11 shows the results.
As Fig 11 shows, for MW combination, there are several
detection results exceeding the threshold due to the large
noise; for GF combination, there is a trend component in
detection results causing that many detection results exceed
the threshold. As to the proposed method whose results are
shown at Fig. 6, the noise is small and there is no trend
component in the detection results.

2) PERFORMANCE OF TRIPLE-FREQUENCY METHOD
Liu et al. [14] proposed a triple-frequency cycle slip detect
and repair method under high ionospheric activity for BDS.
They constructed three linear combinations to detect and
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FIGURE 11. Dual-frequency detection results with sampling interval
of 30 s.

FIGURE 12. Triple-frequency detection results of (Liu et al)’ method with
sampling interval of 30 s.

repair cycle slips.We use BDSB1I, B2a and B3I observations
to compare the performance of their method with our method.
Fig. 12 shows the results. As Fig. 12 shows, Liu et al.’s
method performs well during most of time. However, there
exist several detection results exceeding the threshold (set as
0.5 cycles) in the second combination. As to our algorithm,
there are no detection results exceeding 0.5 cycles for the four
combinations. Those results further verify the effectiveness
of our method. One point should be mentioned is that the
threshold which Liu et al. set was three factors of the standard
deviation of the combined noise and the threshold was larger
than 0.5 cycles in this case. Their detection results did not
exceed the threshold they set. However, they can not repair
cycle slips by rounding integer directly due to threshold larger
than 0.5 cycles. Detecting cycle slips is just the primary goal.
Repairing cycle slips is the ultimate goal. As a result, we set
0.5 cycles as the threshold. In this way, we can not only
detect cycle slip but also repair cycle slips by rounding integer
directly.

F. REAL CYCLE SLIP TEST
To test the performance of the proposed algorithm, we use it
to detect and repair real cycle slips using observations of BDS
C20 and Galileo E08 at Changsha on April 7, 2019. Cai et al.
proposed a dual-frequency cycle slip detection and repair
algorithm [10]. A forward and backward moving window
averaging (FBMWA) algorithm and a second-order, time-
difference phase ionospheric residual (STPIR) algorithm are

FIGURE 13. Dual-frequency detection results with real cycle slips. Top
left, top right, bottom left and bottom right are C20 B1I-B3I, C20 B1C-B2a,
E08 E1-E5b and E08 E6-E5a, respectively. The observation interval is 30 s.

FIGURE 14. Detection results for C20 (left) and E08 (right) with real cycle
slips. The observation interval is 30 s.

integrated to jointly detect and repair cycle slips in their algo-
rithm. Their experiments show the effectiveness of their algo-
rithm andmany other researches refer to their algorithm, such
as reference [16] and [18]. As a result, we use their algorithm
to process the observations at first. For BDSC20, we use their
algorithm to detect and repair dual-frequency cycle slip on
B1I-B3I and B1C-B2a, respectively. For Galileo E08, we use
their algorithm to detect and repair dual-frequency cycle
slip on E1-E5b and E6-E5a, respectively. Fig 13 shows the
results. We can recover dual-frequency cycle slip according
to reference [10]. For expressing briefly, if dual-frequency
combination is expressed as X-Y, then cycle slip pair can be
expressed as (x, y), which x is cycle slip on X and y is cycle
slip on Y. For BDS C20 B1I-B3I, results show that there are
two cycle slips, i.e. (1, 1) at epoch 117 and (5, 2) at epoch
277. For BDS C20 B1C-B2a, results show that there are two
cycle slips, i.e. (1, 1) at epoch 117 and (4, 2) at epoch 277.
For Galileo E08 E1-E5b, results show that there are three
cycle slips, i.e. (3, 5) at epoch 77, (5, 1) at epoch 114 and
(0, 1) at epoch 138. For Galileo E08 E6-E5a, results show
that there are three cycle slips, i.e. (6, 5) at epoch 77, (1, 2)
at epoch 114 and (0, 1) at epoch 138. Next, we use our

154708 VOLUME 7, 2019



Y. Wang et al.: Real-Time Quadruple-Frequency Cycle Slip Detection and Repair Algorithm

algorithm to process the same observations. Fig 14 shows
the results. For BDS C20, there are two cycle slip pairs. The
first cycle slip pair occurs at epoch 117, and the detection
results of the four detection combinations are 0.04, 0.11, -
1.04 and -1.06, respectively. Then the cycle slip pair can be
calculated by term (40) and it is (1, 1, 1, 1). The another cycle
slip pair occurs at epoch 277, and the detection results of the
four detection combinations are -0.99, -2.02, 5.01 and 6.99,
respectively. Then the cycle slip pair can be calculated by
term (40) and it is (5, 4, 2, 2). For Galileo E08, there are
three cycle slip pairs. These three cycle slip pairs occur at
epoch 77, 114 and 138, respectively. These three cycle slip
pairs’ detection results of the four detection combinations are
(0.12, 1.02, -5.01, 11.03), (-0.99, -5.02, 0.98, -8.97) and (0.05,
-1.03, 1.99, 3.95), respectively. These three cycle slip pairs
can be calculated by term (41) and they are (3, 5, 5, 6), (5, 2,
1, 1) and (0, 1, 1, 0), respectively. The cycle slip detection and
repair results on each frequency are the samewith (Cai et al)’s
algorithm, and as a result, the correctness of our algorithm in
real cycle slip test is validated. Consequently, the reliability
of the proposed algorithm is further tested.

IV. CONCLUSION
We propose a real-time quadruple-frequency cycle slip detec-
tion and repair algorithm based on the four chosen linear
combinations in this research. Four detection combinations
are determined in accordance with fixing probability in four
cascaded steps. The proposed algorithm has been tested on
real 30-second quadruple-frequency static observations of
BDS and Galileo on April 7, 2019 and on real 0.05-second
quadruple-frequency kinematic observations of BDS and
Galileo on April 17, 2019. Simulated and real cycle slips
are tested in the data analysis part. The results show that
the proposed algorithm can detect and repair cycle slips even
for one cycle under different sampling interval, i.e. 30 s and
0.05 s, and different applications, i.e. static and kinematic
applications, in real time effectively. In addition, we compare
the performance of the proposed method with the traditional
methods. Results show that the proposed method is better
than the traditional methods. Those results further verify the
effectiveness of the proposed method.
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