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ABSTRACT Fast and accurate detection of ripe tomatoes on plant, which replaces manual labor with a
robotic vision-based harvesting system, is a challenging task. Tomatoes in adjacent positions are easily
mistaken as a single tomato by image recognition methods. In this study, a ripe tomato detection method that
combines deep learning with edge contour detection is proposed. Our approach efficiently separates target
tomatoes from overlapping tomatoes to detect individual fruits. This approach yields several improvements.
First, deep learning requires less time and extracts deeper features than traditional methods for assessing
candidate ripe tomato regions. Second, we use Gaussian density function of H and S in the HSV color
space to help segment tomato regions from the background, followed by erosion and dilation on the tomato
body to separate adjacent tomatoes and remove peripheral subpixels from all detected ripe tomatoes. Third,
an adaptive threshold intuitionistic fuzzy set (IFS) method was developed to identify the tomato’s edge,
and it performs well in detecting blurred edges in overlapping regions. To improve the efficiency and
stability of edge detection under natural conditions, we adopted an illumination adjustment algorithm for
the tomato image before edge detection. As samples, we collected images showing tomatoes that were
separated, adjacent, overlapped, and even shaded by leaves. The widths and heights of these tomato samples
were calculated and analyzed to evaluate the detection performance of the proposed method. The root mean
square error (RMSE) results for tomato width and height using the proposed method are 2.996 pixels and
3.306 pixels, respectively. The mean relative error percent (MRE%) values for horizontal and vertical center
position shift are 0.261% and 1.179%, respectively. These results demonstrate that the proposed method
improves tomato detection accuracy and that it can be further applied in the harvesting process of agricultural
robots.

INDEX TERMS Tomato detection, deep learning, background subtraction, intuitionistic fuzzy set theory
(IFS), contour segmentation.

I. INTRODUCTION
A. BACKGROUND
Tomatoes are one of the most important and popular fruit
crops. Tomatoes offer humans many essential and benefi-
cial nutrients such as antioxidants and vitamins C and A.
As tomato demand increases, tomatoes are increasingly
grown in greenhouses. However, manual harvesting is
time consuming and costly, and as China’s labor costs

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohan Venkateshkumar .

rise, the adoption of agricultural automation processes is
inevitable. Such processes are of great significance for
reducing agriculture labor costs and improving a country’s
industrial structure. Therefore, it is necessary to develop auto-
matic tomato pickers. Although most agricultural robots—
fruit harvesting systems in particular—use computer vision
to detect fruit targets, accurate fruit detection is a challenging
research topic. It is difficult to develop a vision system that
functions as intelligently as a human and can easily iden-
tify fruit, especially in the presence of overlapping fruits
or large leaf occlusions. The performance of the robot’s
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visual system directly affects tomato picking and operational
safety. Improving the recognition rate of the visual system can
increase the locating accuracy of the robot arm. In this study,
we mainly aimed to identify ripe tomatoes based on a vision
system. Systems designed to count or harvest fruit require
accurate detection schemes that can overcome challenges
such as naturally occurring changes in illumination, shape,
pose, color and viewpoint.

Many fruit detection and recognition methods based on
vision systems have been proposed. These methods include
color-based, shape-based, feature-fusion-based and deep-
learning-based detection methods. Color is one of the most
prominent features used to distinguish mature fruit from
complex backgrounds. In studies that focus on color-based
detection, the image pixels are clustered into two classes
based on a color threshold to determine whether a pixel
belongs to a fruit or to the background. But the fruit detection
method based on color only will keep the background with
similar color features to the fruit in the image, and it is
difficult to only obtain the fruit. Commonly used methods are
color difference processing, HSV, YCbCr color space trans-
formation. Wei et al. [1] proposed a method using the OHTA
color space that achieved a detection accuracy above 95%.
Zhou et al. [2] used visible spectrum images and a color
threshold method to detect both green and red apples.
Arefi et al. [3] developed a ripe tomato recognitionmethod by
combining the RGB, HSI and YIQ color spaces and consid-
ering fruit morphological features; this method achieved an
accuracy of up to 96.36%. Teixidó et al. [4] defined different
linear color models in the RGB vector color space to detect
red peaches in orchard images. Ostovar et al. [5] proposed a
method based on reinforcement learning to adaptively find
hue (H) and saturation (S) thresholds in images to detect
yellow peppers in greenhouses. Luo et al. [6] developed
an approach that combined the AdaBoost framework and
multiple color components to identify grape clusters in a
vineyard, and the approach was able to effectively extract
color components from multiple color spaces.

Shape-based detection methods mainly extract the geo-
metric features of targets, including edge contour features
and features of the whole region. Nevertheless, it has the
disadvantage of high time complexity. Hough transform is
one of the commonly used method. Some recent papers on
the fruit detection using shape-based methods are listed as
follows. Xie et al. [7] proposed an improved randomized
circular Hough transform method to rapidly and accurately
calculate the center coordinates and radii of quasi-circular
fruits. Liu et al. [8] proposed a method for construct-
ing a multi-elliptical boundary model in Cr-Cb coordi-
nates to detect citrus fruit and tree trunks under natural
lighting conditions. Nyarko et al. [9] proposed a nearest
neighbor approach for fruit recognition in RGB-D images
based on detecting convex surfaces. The paper also pro-
posed a novel descriptor of approximately convex surfaces,
called the convex template instance (CTI), which approxi-
mated surfaces by convex polyhedrons with quantized face

orientations; every polyhedron face corresponded to one
descriptor component.

It is hard to recognize specific fruits or locate them accu-
rately based solely on color or shape features. Hence, multi-
feature information fusion was adopted by researchers, which
used both the color feature and the shape feature to improve
the recognition rate of fruits. Wu et al. [10] developed an
improved method that combined multiple features, feature
analysis and selection, a weighted relevance vector machine
(RVM) classifier, and a bilayer classification strategy to rec-
ognize ripening tomatoes. Yamamoto et al. [11] proposed an
image processing method for accurately detecting individual
intact tomatoes on plants, including mature, immature and
young fruits, using a conventional RGB digital camera in
conjunction with machine learning approaches. The detec-
tion method was based on classification models generated in
accordance with the colors, shapes, textures and sizes of the
images. Fernández et al. [12] proposed a unique, modular and
easily adaptable multisensory system and a set of associated
preprocessing algorithms for detecting and locating fruits
from different crop types in natural scenarios. Gan et al. [13]
combined color and thermal images to detect immature green
fruits. Monta and Namba [14] used a cascading technique
to detect tomatoes; depth data were employed to distinguish
individual fruits that are part of a single color segment. Fruit
candidate regions were generated by setting thresholds for the
color channels, and single fruits were separated by examining
and setting a threshold for the spatial distance between adja-
cent pixels in the candidate regions. Patel et al. [15] developed
an algorithm for fruit detection based on multiple features;
different weights were assigned to different image features
such as intensity, color, orientation and edge. Li et al. [16]
developed a method for detecting and counting immature
green citrus fruits using outdoor color images as part of
the development of an early yield mapping system; multi-
ple features, including color, shape and texture, were com-
bined to remove false positives. Seng and Mirisaee [17]
proposed a recognition approach that combined color-based,
shape-based and size-based methods and used a nearest
neighbor model to classify fruit pixels. The class ‘tomato’
may include several intensity subclasses, such as ripe and
unripe tomatoes. Senthilnath et al. [18] proposed a method
for detecting tomatoes using spectral-spatial methods in
remotely sensedRGB images captured by aUAV that used the
Bayesian information criterion (BIC) to determine the opti-
mal number of clusters for the image. Spectral clustering was
conducted using K-means, expectation maximization (EM)
and self-organizing map (SOM) algorithms to categorize
the pixels into two groups i.e., tomatoes and non-tomatoes.
Barnea et al. [19] presented a color-agnostic, shape-based,
3D fruit-detection method for crop harvesting robots; they
proposed exploiting both RGB and range data to analyze the
shape-related features of objects in both the image plane and
3D space.

Feature extraction and selection are major challenges to
improve the recognition accuracy of any computer-based
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application. In recent years, deep learning approaches have
been widely used in image detection and classification.
Sa et al. [20] presented an approach using a deep con-
volutional neural network (DCNN) that combined multi-
modal (RGB and near-infrared, NIR) features to improve
single-feature DCNNs. Lin et al. [21] introduced a guava
detection and pose estimation method based on low-cost
RGB-D sensors in the field by utilizing a state-of-the-art fully
convolutional network to segment the RGB image and output
a fruit and branch binary map. Stein et al. [22] proposed a
novel multisensor framework to identify, track, localize and
map every piece of fruit by combining a faster region-based
convolutional neural network (Faster R-CNN) with LiDAR
data. Region detection with CNN features [23] is a widely
used method for detecting objects from images. The R-CNN
wraps all the proposed object pixels in a tight bounding
box, which can change the proposal information. Therefore,
the Fast R-CNN model [24] was proposed to detect objects
by adding a spatial pyramid pooling module [25]. Later,
to improve the region proposal selection time, Ren et al. [26]
proposed the Faster R-CNN model that detected objects by
adding a region proposal network. There are other ways
to detect fruit; for example, Korostynska et al. [27] used
microwave spectroscopy based on a planar electromagnetic
wave sensor to assess strawberry ripeness in real time.

Although all the above studies, which utilize color or shape
features and machine learning, have made some progress
toward automatic fruit detection and localization, several
issues remain in the ripe tomato detection problem: (1) some
color-feature-based methods cannot recognize single fruits;
(2) some shape-feature-based methods cannot quickly locate
a single fruit; (3) some methods cannot fully handle fruit
overlap and leaf occlusion; and (4) classical edge operators do
not work well in detecting the edges of overlapping tomatoes.

B. OBJECTIVES
The primary goal of this paper is to assess the feasibility of
combining deep learning with edge segmentation to detect
individual tomatoes in complex environments. To achieve this
goal, several sub-goals must be met, including (1) extraction
of ripe tomato features using Faster R-CNN to recognize and
locate candidate ripe tomato regions in complex greenhouse
environments; (2) utilization of the Gaussian density func-
tion of hue (H) and saturation (S) in the HSV color space
to remove background content from the candidate regions;
(3) separation of target tomatoes from adjacent tomatoes and
removal of sparsely connected pixels based onmorphological
processing; (4) performance of illumination compensation on
the tomato image using an illumination adjustment algorithm;
(5) detection of a single tomato in an image block using IFS;
and (6) calculation of tomato parameters such aswidth, height
and center.

II. MATERIALS AND METHODS
A. MATERIALS
Tomato images were captured from plants in a green-
house situated at the Jiangsu Academy of Agricultural and

FIGURE 1. Collection scene.

FIGURE 2. Flowchart of the tomato recognition and boundary
segmentation algorithm.

Sciences, Nanjing, China, between 9:00–11:00 a.m. and
4:00–6:00 p.m., using a consumer-level regular digital
camera (USB) and a Kinect v1.0 device. During the exper-
iment, 800 photos of tomato plants were taken under com-
plex backgrounds; these photos included green and red fruits
in the same bunch and under uneven lighting, as shown
in Fig. 1. The acquired images were saved at a resolution
of 640×480 pixels in JPG format. The study was executed on
a computer equipped with a 12 core CPU running @ 3.70 Hz
with 32 GB of RAM, a Nvidia GTX1080Ti GPU processor
and a Windows 10 operating system. The programming envi-
ronment was Visual Studio 2015. In this paper, GTX1080Ti
was used to perform GPU-accelerated calculations.

B. METHOD FRAMEWORK
In this section, we discuss in detail the method used in this
study to segment the contour of a single ripe tomato. The
flowchart of the recognition method for clustered tomatoes
is shown in Fig. 2.

The Kinect v1.0 sensor was used to acquire tomato images
in a greenhouse. Subsequently, a large number of ripe tomato
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images, including separated, adjacent, overlapping and leaf-
shaded images, were manually labeled and used in training
the Faster R-CNN detector. In a previous fruit segmentation
method,Wei et al. [1] used a combinedOHTAcolor space and
Otsu threshold algorithm to segment mature fruit with high
accuracy; however, that approach cannot handle occluded
fruit. Wu et al. [10] developed a multi-feature fusion method
that included the iterative RELIEF (I-RELIEF) algorithm,
a weighted relevance vector machine (RVM) classifier, and a
two-layer classification strategy to recognize ripening toma-
toes. Sa et al. [20] adopted a state-of-the-art object detector
termed the Faster Region-based CNN (Faster R-CNN) model
and combined color (RGB) with near-infrared (NIR) infor-
mation, which led to a novel multi-model Faster R-CNN and
achieved good results in fruit detection. Compared with these
methods, deep learning can overcome feature extraction diffi-
culties and identify overlapping tomatoes. However, in some
instances, deep learning misidentifies overlapping fruits as
a single whole fruit. Therefore, morphological processing,
contour segmentation, and redundant edge removal were con-
ducted subsequently to separate overlapping ripe tomatoes.

C. RIPE TOMATO RECOGNITION BASED
ON FASTER R-CNN
ACNN recognizes objects by performing convolutions, pool-
ing, rectified linear unit (ReLU) application and other oper-
ations on an entire image. In 2012, Krizhevsky et al. [28]
captured widespread attention for deep learning when they
obtained superior recognition results on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) by increas-
ing the depth of the CNN model and adopting ReLU and
dropout [29] technology. The CNN performs an exhaustive
selection process on the image to find all possible bound-
ing boxes for all objects. The features of these regions are
extracted first; then, an image recognition method is used to
classify them. During the recognition process, non-maximum
suppression (NMS) is used to obtain the candidate boxes
with the highest probability of classification. The softmax
function is used to form the final output before the last fully
connected layer. The softmax activation function is expressed
as follows:

yc =
exc∑C
c=1 e

xc
(1)

where xc denotes the input imported from class c in the last
output layer of the fully connected layer, and yc denotes the
output of the softmax activation function for class c. The total
number of classes is represented by C .
Compared with a CNN, an R-CNN [23] scales the regions

to a uniform size and then uses a CNN to extract features
from every detected region. Selective search [30] is used
to detect the candidate boxes with the highest classification
probability, which saves time. Finally, the R-CNN features
are sent to an SVM classifier for each class to predict whether
they belong to that class.

Because an R-CNN conducts a forward transmission of the
convolution calculations for each candidate box, it reduces
the calculation time. He et al. [25] proposed the spatial pyra-
mid pooling net (SPPnet) model, which involved a shared
computing approach that calculated a convolutional feature
graph of the entire image and then used the extracted feature
vectors to classify each region’s proposal box. Each training
region of interest (RoI) is labeled with a ground-truth class u
and a ground-truth bounding-box regression target v. Fast
R-CNN introduces multi-task loss, L, to jointly train for
classification and bounding-box regression as follows [24]:

L(p, u, tu, v) = Lcls(p, u)+ λ[u ≥ 1]Lloc(tu, v) (2)

where Lcls(p, u) = −log pu is the log loss for the true
class Lloc, denotes the bounding-box regression loss, and
λ represents a loss-balancing parameter. Here, (vx , vv, vw, vh)
and tu = (tux , t

u
v , t

u
w, t

u
h ). [u ≥ 1] equals 1 when u ≥ 1 and

0 otherwise.
Although Fast R-CNN achieves better results than R-CNN

does, it expends a considerable amount of time on its
selective search of the identified bounding boxes. In Faster
R-CNN [26], the region proposal network (RPN) replaces
the selective search for extracting the proposed regions. This
replacement greatly improves themodel’s speed and the accu-
racy of the results, largely because selective search uses the
CPU for calculations while RPN uses a GPU.

The RoI pooling layer is also known as a downsampling
layer, and it is located after a convolutional layer. After pro-
cessing by the RoI pooling layer, the size of the feature map
extracted from the convolutional layer is reduced; it retains
the effective information while reducing the amount of data
to be processed and preventing overfitting. For example, after
an image with 32×32 pixels is sent to an RoI pooling layer
with 2×2 pixels and a stride of 2, the size of the output feature
map will be 16×16 pixels. RoI pooling layers are generally
divided into two types: average pooling and max pooling.
Average pooling sums the elements in the pooling layer area
and then divides the result by the area of the pooling layer.
Max pooling, which is more common, replaces the current
area with the maximum element value in the pooling layer
area. The convolutional network structure for ripe tomato
image detection used in this paper is depicted in Fig. 3.

The network structure used in this experiment has two
convolutional layers, one max pooling layer and two fully
connected layers. We adopted the ReLU activation function.
The training architecture for ripe tomato detection based on
Faster R-CNN is illustrated in Fig. 4.

First, images in different states of the environment were
chosen and all the tomatoes including those far from the
camera were labeled in the images to ensure the robustness of
the dataset. Of the labeled tomatoes, some are separated (sep-
arated tomato, Fig. 5a), some are adjacent (adjacent tomato,
Fig. 5b), some are overlapping (overlapping tomato, Fig. 5c),
and some are shaded by leaves or branches (shaded tomato,
Fig. 5d). These conditions increase the robustness of the
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FIGURE 3. The convolutional network structure for ripe tomato image detection (Conv x represents the xth
convolutional layer; Pool represents the maxpooling layer; FC x represents the xth fully connected layer).

FIGURE 4. The training architecture for ripe tomato detection based on faster R-CNN.

FIGURE 5. Four state images from the greenhouse dataset. (a) Separated. (b) Adjacent. (c) Overlapping. (d) Shaded.

training set to meet the needs of practical applications in
tomato detection in complex greenhouse environments.

Second, we used Faster R-CNN to train the labeled images
using the network structure shown in Fig. 3. We fine-tuned
our network and then tested the effect of the trained detector
on the validation dataset. For example, an original image is
shown in Fig. 6a. Faster R-CNN was used to recognize and
locate tomatoes, as illustrated in Fig. 6b. Because background
content such as leaves, stems and other tomatoes occurs
near the target tomatoes, the tomatoes cannot be detected
accurately. To accurately acquire a single tomato, further
processing for the tomatoes in the bounding boxes created
based on Faster R-CNN recognition and location is necessary.

D. DETECTING A SINGLE RIPE TOMATO BASED ON
CONTOUR
To accurately and quickly find ripe tomatoes in the
bounding boxes obtained from the Faster R-CNN, we
collected a large number of ripe tomato images from dif-
ferent directions and at different times. After a large num-
ber of experimental analyses, the H and S color space
values can be used to quickly distinguish a sample from
the background. Therefore, in this study, we converted
the RGB images to HSV color space and established the
Gaussian density function of H and S to further seg-
ment tomatoes from backgrounds at a threshold of 0.85.
The Gaussian density function of H and S is defined
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FIGURE 6. The detection results using Faster R-CNN. (a) Original image.
(b) Candidate tomato regions.

FIGURE 7. The processing result using Gaussian density function and
morphology. (a) The candidate tomato region image using faster R-CNN.
(b) Image processed using the Gaussian density function of H and S.
(c) Morphological processing result.

as follows:

F(X ) = (2π
∑

)−
1
2 exp

(
−
1
2
(X − µ)T

∑−1
(X − µ)

)
(3)

whereX = (H , S) denotes the hue and saturation of tomatoes,∑
is the variance of X , and µ = (µH , µS ) is the average

of H and S.
If a pixel point function value in the image is greater

than the threshold, it belongs to a ripe tomato; otherwise,
it belongs to the background. Taking the right-hand tomato
block shown in Fig. 6b as an example for further segmen-
tation, the ripe tomato was extracted from the background
using the Gaussian density function of H and S in the HSV
color space. Taking the tomato in the bounding box on the
right in Fig. 6b as an example, the process of obtaining the
edge of the tomato is shown in Fig. 7. The original image
is shown in Fig. 7a. Fig. 7b illustrates the result obtained
using the Gaussian density function of H and S, which leaves
some subpixels at the edges of the target tomato. Hence,
the further segmentation for ripe tomatoes from backgrounds
is necessary.

A few connected pixels also exist that are outside the body
of the tomato in Fig. 7b. To remove as many of these as
possible while retaining the target image.We can use the open
function to separate overlapping tomatoes by interrupting
the connection area in the overlapping area. This method is
commonly used to separate objects with subtle connections
in an image and eliminate noise. The open function is defined
as follows:

A ◦ B = (A	 B)⊕ B (4)

where 	 represents erosion and ⊕ is dilation.

After morphological processing on the tomato image, most
of the background pixels are removed, as shown in Fig. 7c,
making contour extraction of the target tomato more precise
and simpler.

However, in some instances, the area of overlap between
tomatoes (as shown in Fig. 7c) is too large, and using the
open function to remove the intersecting parts will lead to
a considerable loss of tomato contour information. In these
instances, to detect a single tomato, it is important to fully
utilize the edge features of the overlapping area. Tradi-
tional edge detection methods such as Canny, Prewitt and
Sobel are based on derivative filtering and are affected when
the edges are blurred, noisy and inflexible [31]. Previous
studies [32], [33] developed edge feature descriptors for
detecting edges, but these methods have difficulty identifying
edges in fuzzy states, and the edge detected is not continuous.

Since Atanassov [34] introduced the concept of an intu-
itionistic fuzzy set (IFS), IFS has attracted the atten-
tion of scholars all over the world. IFS add an attribute
called the non-membership degree, which describes a neu-
tral state and considers uncertainties. Recently, IFS the-
ory was used to improve detection accuracy. Chaira [35]
detected edges in medical images using the IFS technique.
Melo-Pinto et al. [36] used Atanassov’s intuitionistic index
values to represent hesitance in image segmentation. Our pre-
vious work [31] used IFS theory with adaptive thresholding
to segment hardwood seedling leaves. To obtain the complete
contour of the whole tomato, in this paper, we adopt the
IFS method for the extraction of the fuzzy contour in the
overlapped area.

Because of non-uniform illumination, the edge segmenta-
tion algorithm can easily identify locations with large differ-
ences in illumination on the tomato surface as edges. Hence,
before conducting IFS on an image, we conduct illumination
compensation on the tomato image. There are many solutions
to the problem of non-uniform illumination (e.g., Retinex
algorithm, histogram equalization algorithm, gamma correc-
tion). In this paper, a novel Retinex-based light-processing
algorithm is used for image illumination adjustment [37]
because this method works best with our tomato dataset.
Following this step, we transformed the image without back-
ground to grayscale and used IFS to perform edge segmenta-
tion on the grayscale image.

In [31], we used IFS theory to handle fuzzy boundaries
and compared the results to those achieved with the classical
method, which proved that the IFSmethod works better when
the edges of objects are more complex. In the present paper,
a set of 4 fuzzy templates of size 3×3 representing different
types of edge profiles were used, as shown in Fig. 8.

In [31], the Otsu algorithm [38] was employed to adap-
tively select threshold T, which was used to compute an edge
image of the IFS clustering image. The Otsu algorithm is a
discriminant criterion used to select an optimal threshold, and
it can be formulated as follows:

f (t) = ω0ω1(µ0 − µ1)2 (5)
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FIGURE 8. Set of 4 3×3 templates. (a) Template of x direction.
(b) Template of y direction. (c) Template of 45◦ direction. (d) Template
of 135◦ direction.

FIGURE 9. Edge detection using IFS. (a) Illumination compensation result.
(b) IFS clustering image. (c) Edge image of IFS clustering image.

The class probability is computed from the histogram as
follows:

pi =
ni
N
, pi ≥ 0,

L∑
i=1

pi = 1 (6)

where L is the maximum luminance value in the image and
ni is the number of pixels at level i.
The foreground and background probabilities of occur-

rence are given by

ω0 =

k∑
i=1

pi, ω1 =

L∑
i=k+1

pi (7)

The class mean levels are denoted as follows:

µ0 =

k−1∑
i=0

i ∗ pi/ω0, µ1 =

L∑
i=k

i ∗ pi/ω0 (8)

The best threshold is computed by

T = arg
t
max f (t) (9)

However, our previous work [31] selected the thresholds
of the fuzzy template manually. To find better edge detec-
tor mask thresholds, according to the automatic threshold
selection method in [5], we used reinforcement learning
to select fuzzy template parameters a and b in this study.
Fig. 9a illustrates the result of morphological processing.
Fig. 9b is the IFS clustering image. Fig. 9c is the edge image
of the IFS clustering image.

In a natural environment, tomatoes are distributed in var-
ious positions. For adjacent tomatoes, as shown in Fig. 9c,
it is highly probable that the contour calculated by the edge
detector from an image will be connected with the contour
of an adjacent tomato. Therefore, a tomato edge contour
detectionmethod that connects edge breakpoints and removes
redundant edge points was developed to extract the contour

FIGURE 10. Target tomato detection using the edge contour detection
method. (a) Contour image after filling in the main body of the tomato.
(b) Contour image after removing pixels belonging to the contour of the
adjacent tomato. (c) Target tomato obtained after marking the original
image with a blue line.

of a single ripe tomato. Broken contours are completed using
the edge breakpoint connection method. The edge breakpoint
connection method for the tomato is a two-step process based
on the breakpoint positions. In the first step, the edge of the
tomato is truncated by the Faster R-CNN bounding box, and
the truncated edge breakpoint connection method is used.
If there are two breakpoints on the same block edge, that edge
is considered to be truncated by the Faster R-CNN bounding
box. To complete the contour, we connected the two break-
points on the truncated edge. In the second step, the edge
contour obtained using the edge method has a missing part.
To connect the breakpoints on the nonborder edges, we used
the cubic polynomial function to fit the curve of the missing
contour from several points near the two matching break-
points. In a natural environment, tomatoes are distributed in
various ways. For adjacent tomatoes, it is highly probable that
the contour calculated by the edge detected from an image
will include the contour of an adjacent tomato. To remove
redundant contours, a redundant edge point removal method
is required. First, the closed area of the main body of the
tomato is filled. Then, a threshold method is employed to
determine whether a point is a target point. For each point,
we define the number of its 8 neighborhood pixels that
have of a value of 1 as k . If k is less than a set threshold
value T1, the point belongs to the adjacent tomato. In this
study, the threshold T1 was set to 3.
As shown in Fig. 9c, the contours of the adjacent tomatoes

in the target tomato contour are not removed. To remove
these redundant contours, the redundant edge point removal
method is required. First, the closed area of the main body of
the tomato is filled, as shown in Fig. 10a. Then, a threshold
method is employed to determine whether a point is a target
point. The removal result is shown in Fig. 10b, and the
boundary of the target tomato is presented with a blue line
in Fig. 10c.

III. RESULTS
In this study, we conducted multiple steps to extract the final
contour of a single tomato. The tomato images were obtained
using a consumer-level regular digital camera (USB) and a
Kinect v1.0 device at the Jiangsu Academy of Agricultural
and Sciences, Nanjing, China, from 9:00–11:00 a.m. and
from 4:00–6:00 p.m. We acquired 800 sample images under
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different environmental states, including separated, adjacent,
overlapping and shaded tomatoes. Of these images, we used
600 images for training and 200 images for testing. We con-
ducted numerous experiments to evaluate the accuracy and
practicability of the proposed method. In Section III.A,
the accuracy and regression rate of Faster R-CNN for ripe
tomato detection were evaluated. In Section III.B, the contour
segmentation processes of tomatoes in four different states
were described to show the applicability of our proposed
method for tomato segmentation. In Section III.C, we report
the results of comparison experiments conducted to analyze
the error parameters for a single tomato.

A. RECALL OF FASTER R-CNN
The area under the P-R curve, known as the average precision
(AP), can be used as a single metric to summarize the perfor-
mance of an object detection model; P represents precision
and R represents recall. The performance metrics selected for
validation purposes in this study are as follows.

True positive (TP) is the number of ripe tomatoes that were
correctly identified as ripe tomatoes.

False positive (FP) is the number of background areas that
were misidentified as ripe tomatoes.

False negative (FN) is the number of ripe tomatoes that
were misidentified as background areas.

True negative (TN) is the number of background areas that
were correctly identified as backgrounds.

The precision of ripe tomato detection is a measure of
accuracy defined as

Precision =
TP

TP+ FP
× 100% (10)

The recall of ripe tomato detection is defined as

Recall =
TP

TP+ FN
× 100% (11)

A model that achieves high precision at all levels of recall
will have a high AP score, while a model that achieves high
precision at only some recall levels will have a low AP score.
Both recall and precision are important for characterizing
the performance of a detector. Accuracy decreases as recall
increases, but the precision of a detector with good perfor-
mance remains high as recall increases, which means the
detector will detect a high proportion of TP before it starts
detecting FP. The trajectory of the precision-recall curve of
the network is shown in Fig. 11.

Clearly, the precision is high at the beginning, but as
the recall increases, the precision decreases rapidly. One
reason for this phenomenon is that our tomato images are
complicated. Another reason is that some of the training
samples include small, fuzzy tomatoes that can easily be
confused with the background and are difficult to detect. The
study in [39] obtained an AP of 0.948. In that study, their
images were obtained by lighting a dark environment; thus,
their images contain only nearby, well-illuminated apples,
and blurred objects in the background are not captured.

FIGURE 11. Precision-Recall curves for the faster R-CNN detector used to
detect ripe tomatoes in the greenhouse.

FIGURE 12. Segmentation process of separated tomatoes. (a) Original
image of separated tomatoes. (b) Result after location using Faster
R-CNN. (c) Result after using the Gaussian density function of H and S.
(d) Result after morphological processing. (e) Resulting edge image after
using the illumination adjustment algorithm. (f) Resulting edge image
after using the Canny operator. (g) Result after using IFS for the image
after illumination adjustment. (h) Adaptive threshold edge image of
Fig. 12g. (i) Result obtained after marking the original image.

In contrast, our images were taken in a complex environment,
which has a strong impact on recognition rates.

B. RESULTS OF SINGLE TOMATO DETECTION
In ripe tomato detection, the detection results of ripe tomatoes
vary by tomato state. To conduct a comprehensive assessment
of the performance of the proposed method, we implemented
four experiments for different tomato states; the results are
analyzed in this section.

Fig. 12 shows the details of the ripe tomato detection
process under the separated condition. Fig. 12a is the original
image, where the two tomatoes in the figure are separated
from each other. Faster R-CNN was used to locate these
tomatoes, and the results are shown in Fig. 12b. The two
tomato blocks are separated, and the background around
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them is not complicated. To accurately localize a single
tomato, the tomato contour extraction method described in
Section II.D was performed. First, the Gaussian density func-
tion of H and S was used to segment the candidate tomato
region obtained by Faster R-CNN from the background,
as shown in Fig. 12c. Because some subpixels still remain
around the processed image, we conducted morphological
processing to precisely extract the target region for each
candidate region. The results are shown in Fig. 12d. However,
the stem of the tomato on the right side separates the top part
from the whole fruit, which is why, after morphological pro-
cessing, the tomato lacks a small top portion. After morpho-
logical processing, we applied the illumination adjustment
algorithm to the tomato image, as shown in Fig. 12e. Next,
we used the Canny operator and IFS theory to detect the
tomato edge. Fig. 12f shows the edges of the tomato detected
using the Canny operator. The clustering image using IFS
is shown in Fig. 12g. The edge image using the adaptive
threshold is shown in Fig. 12h with a threshold of 0.1647.
Parameters a and b for edge detection masks were 0.3 and 0.8,
respectively. Tomatoes in a separated state are the easiest
to segment in these states because there is no interference
from neighboring tomatoes during the segmentation process.
Compared with the edge detection result using Canny oper-
ator, which is shown in Fig 12f, the edge detection result
using IFS in Fig. 12h can obtained better edges located at
the boundary of the bounding box. That was why the tomato
contour in Fig. 12h was further connected with the contour
detection method involving edge breakpoint connection and
redundant edge point removal. Finally, we marked the results
of this process with different colors in the original image,
as presented in Fig. 12i. The tomatoes are delineated by the
yellow and blue lines.

Fig. 13 shows the experimental results for adjacent toma-
toes. In the original tomato image in Fig. 13a, two toma-
toes are adjacent. Faster R-CNN obtained the locations of
the two tomatoes, as shown in Fig. 13b. In this image,
the positions of the two tomatoes cause the two bounding
boxes to overlap, which interferes with subsequent contour
segmentation. Fig. 13e shows the result of the illumination
adjustment algorithm on the tomato. Fig. 13f illustrates the
results of segmentation using the Canny operator to make
a comparison with the IFS detection method. In this figure,
the Canny operator cannot detect continuous edge in the
fuzzy area where two tomatoes overlap. The contours of the
blurred area of the two tomatoes are disconnected from their
main contours. Fig. 13g and Fig. 13h illustrate the clustering
image using IFS and the edge image using adaptive threshold,
respectively; a= 0.3, and b= 0.8. The threshold for Fig. 13h
is 0.1137. As shown in Fig. 13h, IFS can detect the boundary
of a continuous fuzzy region, which facilitates the extraction
of individual tomatoes. So, we further processed the contour
in Fig. 13h using the contour detectionmethod involving edge
breakpoint connection and redundant edge point removal and
marked the results of this process with different colors in the
original image, as presented in Fig. 13i. The tomatoes are

FIGURE 13. Segmentation process of adjacent tomatoes. (a) Original
image of adjacent tomatoes. (b) Result after location using Faster R-CNN.
(c) Result after using the Gaussian density function of H and S. (d) Result
after morphological processing. (e) Resulting edge image after using the
illumination adjustment algorithm. (f) Resulting edge image after using
the Canny operator. (g) Result after using IFS for the image after
illumination adjustment. (h) Adaptive threshold edge image of Fig. 13g.
(i) Result obtained after marking the original image.

FIGURE 14. Segmentation process of overlapping tomatoes. (a) Original
image of overlapping tomatoes. (b) Result after location using Faster
R-CNN. (c) Result after using the Gaussian density function of H and S.
(d) Result after morphological processing. (e) Resulting edge image after
using the illumination adjustment algorithm. (f) Resulting edge image
after using the Canny operator. (g) Result after using IFS for the image
after illumination adjustment. (h) Adaptive threshold edge image of
Fig. 14g. (i) Result obtained after marking the original image.

delineated by the yellow and blue lines. The results validate
that the IFS detection method performs better than the Canny
operator in detecting blurred edges and that it can accurately
detect a single tomato in the adjacent state.

The process used to segment overlapping tomatoes is
shown in Fig. 14. In Fig. 14a, three tomatoes overlap. Tomato
images in this state are more difficult to segment than adja-
cent tomato images. Two of the candidate tomato regions
detected using Faster R-CNN have a large overlap: the result

VOLUME 7, 2019 154691



C. Hu et al.: Automatic Detection of Single Ripe Tomato on Plant Combining Faster R-CNN and IFS

FIGURE 15. Segmentation process of shaded tomatoes. (a) Original
image of shaded tomatoes. (b) Result after location using Faster R-CNN.
(c) Result after using the Gaussian density function of H and S. (d) Result
after morphological processing. (e) Resulting edge image after using the
illumination adjustment algorithm. (f) Resulting edge image after using
the Canny operator. (g) Result after using IFS for the image after
illumination adjustment. (h) Adaptive threshold edge image of Fig. 15g.
(i) Result obtained after marking the original image.

is shown in Fig. 14b. The large overlap makes it difficult for
morphological processing to separate the tomatoes in each
bounding box. In Fig. 14c, the background and stems con-
nected to the tomatoes were removed. Then, morphological
processing was conducted to extract the target region for each
candidate region; these regions were not detected accurately
by Faster R-CNN and were filtered out as background in
the morphological process because the third tomato was too
small, as shown in Fig. 14d. The result of the illumination
adjustment algorithm is shown in Fig. 14e. Fig. 14f shows the
result after using the Canny operator, in which the contours
are interfered by the tomato texture and the contour of the
blurred part is broken. The clustering image using IFS and its
edge image using adaptive threshold for overlapping toma-
toes are shown in Fig. 14g and Fig. 14h, respectively; a= 0.3,
and b = 0.7. The threshold for Fig. 14h is 0.2529. Contrast
to Fig. 14f, the IFS method filtered out the interference of
surface texture and successfully detected the contour at the
left end region of the intersecting part in Fig. 14h. After using
the contour detection method for the edges in Fig. 14h, As
shown in Fig. 14i, the results show the robustness of the
proposed tomato detection method in detecting intersecting
fuzzy region contours.

For shaded tomatoes, the segmentation process is shown
in Fig. 15. In Fig. 15a, the front tomato is shaded by leaves
and the back tomato is obscured by stems. First, the can-
didate regions of the two tomatoes were detected by Faster
R-CNN, as shown in Fig. 15b. The bounding boxes of the
two tomatoes include areas of the other tomato, which also
greatly increases the difficulty of obtaining the complete
tomato contour. By using the Gaussian density function of
H and S, the leaves and stems of the tomatoes were removed,

as shown in Fig. 15c. Next, morphological processing was
used to extract the target region for each candidate region,
and the good results shown in Fig. 15d were achieved.
Fig. 15e shows the result of the illumination adjustment
algorithm. In Fig. 15f, since the Canny operator has poor
anti-interference performance, there are many interruptions
on the contours where stem and nearby tomato cause errors in
contour detection. Fig. 15h presents the edge image produced
by using IFS with a threshold of 0.1255. Parameters a and
b for edge detection masks were 0.3 and 0.75, respectively.
As shown in Fig. 15h, the visible parts of contours with the
stem and the adjacent tomato were detected with fewer redun-
dant edges inside the contours, and the proposed method
was able to detect more blurred contours near the stem than
the Canny operator. The processed results for the edges
in Fig. 15h are shown in Fig. 15i. Although the left tomato
was shaded and split into several parts by tomato leaves and
stems, the proposed method still accurately detected a single
tomato in the shaded state.

After the training of the Faster R-CNN model, tomatoes in
separated, adjacent, overlapped, shaded states were tested and
analyzed statistically. The detection accuracy of separated,
adjacent, overlapped and shaded tomatoeswas 95.5%, 93.8%,
78.4% and 81.9%, respectively. The results indicate that the
proposed method has a lower detection rate for overlapped
tomatoes and shaded tomatoes, which is due to the fact that
a considerable part of tomatoes under complex environment
have a higher cover rate and some tomatoes in the image
are too small to detect. What’s more, to better evaluate the
detection performance of overlapped tomatoes, we randomly
selected 80 tomato images in the dataset and counted the
number of all overlapped tomatoes in the images. We use
cover rate to define the degree of overlap, which is defined as
the ratio of the number of observed pixels to the actual pixels.
The tomatoes in the picture are divided into three categories
according to cover rate, and the detection accuracy of the
proposed method for tomatoes with different overlapping
degree is tested. The detection accuracy of tomatoes with
cover rate less than 30% is 81.5%, the detection accuracy of
tomatoes with cover rate between 30% and 50% is 59.3%,
and the detection accuracy of tomatoes with cover rate greater
than 50% is 13.3%. The results indicate that this method has
a lower detection rate for tomatoes with larger overlap.

C. RESULTS OF PARAMETER ERROR ANALYSIS FOR
SINGLE TOMATO DETECTION
To further validate the performance of the proposed tomato
detection method, in this section, we measured the sizes
of different forms of ripe tomatoes in the image dataset.
The actual sizes, including the tomato width and height,
were obtained by manually labeling the true tomato con-
tours. We randomly chose 200 tomatoes from the testing
sample group with different widths and heights (ranging from
15 pixels to 300 pixels). Two comparison experiments were
carried out: one compared the tomato size measurements
after tomato contour detection using the proposed method
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FIGURE 16. Comparison results for tomato width measurements using
the proposed method and Faster R-CNN with the Canny operator vs.
manual measurement.

FIGURE 17. Comparison results for tomato height measurements using
the proposed method and faster R-CNN with the Canny operator vs.
manual measurement.

with the actual manual measurement, and the other compared
the tomato size measurements using Faster R-CNN and the
Canny operator with the actual manual measurement, as illus-
trated in Fig. 16 and Fig. 17.

Fig. 16 presents the results of the tomato width measure-
ments, where the black circles (◦) represent the measured
width using this proposed method. The corresponding black
line is a fitting function between the measured width and the
actual width; the slope is 0.971, the offset is 0.988, the root
mean square error (RMSE) is 2.996 pixels, the R-square value
is 0.997, and the fitting function is y = 0.971x + 0.988.
The red asterisks (*) and the corresponding red line repre-
sent the measured width and fitting function using Faster
R-CNN with the Canny operator; the RMSE is 3.496 pix-
els, the R-square is 0.995 and the fitting function is y =
0.968x + 0.814. Fig. 17 shows the tomato height detection
measurement results, where the green plus (+) and the green
line represent the measured height after extracting tomatoes

using the proposed method and its fitting function, respec-
tively; the slope is 0.968, the offset is 2.046, the RMSE is
3.306 pixels, the R-square is 0.995, and the fitting function is
y = 0.968x + 2.046. The blue squares (�) and the blue line
represent the measured height after extracting the tomatoes
using the Canny operator and its fitting function, respectively;
the RMSE is 3.731 pixels, the R-square is 0.994, and the
fitting function is y = 0.959x + 2.356. According to the
experimental data analysis, IFS is better than Canny operator
in edge detection. After the width and height were measured,
the relative error of the central coordinates was calculated.
Themean relative error percent (MRE%) values of the shifted
horizontal and vertical distances of center positions using
the proposed method are 0.261% and 1.179%, respectively.
These results indicate that the proposed method can be used
to effectively detect ripe tomatoes, even in the presence of
overlap or leaf occlusion.

IV. DISCUSSION AND CONCLUSION
A. DISCUSSION
Numerous studies have been proposed to detect toma-
toes based on different factors under natural conditions.
Studies [39], [40] that used only deep learning to detect
objects perform faster and extract deeper features but have
greater difficulty detecting overlapping tomatoes than the
method proposed in this article. Xiong et al. [41] proposed
a method based on color analysis and vertical suspension
angle analysis to detect green grapes. Wan et al. [42] used
a color model and shape analyses to detect tomatoes. How-
ever, these approaches cannot extract deeper features and
are prone to recognition errors in complex environments.
Whittaker et al. [43] used a shape-based method (circular
Hough transform) to detect tomatoes and demonstrated its
ability to locate tomatoes based on shape only in images
with substantial background noise. However, this method is
computationally intensive (it expends considerable time on
non-tomato processing); consequently, it is difficult to use
in real-time robotic harvesting. The proposed method has a
great advantage in terms of speed because it first uses Faster
R-CNN to recognize and locate candidate tomatoes and then
processes only tomatoes detected by Faster R-CNN. In our
experiment, different tomato states were tested to evaluate
the feasibility of the method. The experimental results prove
that the proposed method can detect overlapping tomatoes
under natural conditions. The proposed method using Faster
R-CNN and IFS is robust to complex background conditions.
Since the features of tomatoes can be extracted deeply based
on Faster R-CNN, candidate tomatoes can be detected even
though they overlap (Fig. 14a) or are divided into several parts
by stems and leaves (Fig. 15a).

The focus of this work is to separate single tomatoes from
overlapping tomatoes. In this paper, IFS is used to segment
the target tomato contour to separate it from the overlap-
ping tomatoes, and the illumination adjustment algorithm is
adopted to compensate for the illumination of the candidate
tomato region, reducing the probability of recognizing the
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uneven illumination position as the edge. For the contour of
overlapped areas, especially the two ends of an overlapped
contour, there is considerable interference. Traditional edge
detectors, such as the Canny operator, are too sensitive to
noise, but IFS can blur the region with large interference on
the edge of a tomato and effectively detect the edge of the
region by setting an appropriate threshold.

We identified the primary causes of error, showing that the
accuracy of the final contour segmentation result depends on
the accuracy of the initial location and the recall of Faster
R-CNN. We analyzed the detection results of Faster R-CNN
classifier for four kinds of tomatoes. The detection rate of
overlapped tomatoes and shaded tomatoes is relatively low,
which is due to the large ratio of overlapping and shading for
a part of tomatoes in the natural environment. For separated
and adjacent tomatoes, the reason that cause an effect on the
detection rate is that there are a few very small tomatoes in the
images which are difficult to detect by Faster R-CNN. Those
with an cover rate of more than 50% (Fig. 14a) have a 13.3%
probability of detection, and for those with too much cover
rate cannot even detect (seen in Fig. 14b). We found that the
detection rate will decrease with the increase of cover rate of
tomato.

The results show the applicability of the proposed method.
First, the proposedmethod can be applied to the visual system
for tomato location to increase the grasping accuracy of the
tomato picking robot. In addition, it can be applied not only
to tomatoes, but also to other partially shaded or overlapped
fruit detection and location systems. However, there are two
problems, one is that the computer visual system itself is
greatly affected by the light, when the light is too weak or too
strong, which result in the loss of image information. The
other is that excessively large errors in the deep learning
bounding box affect the tomato contour extraction, which
leads to inaccuracies in calculating the tomato’s height, width
and center.

In future work, we plan to improve the performance of
the deep learning classifier to detect distant tomatoes and
tomatoes with high cover rates in the image and increase the
recall rate of tomato detection. Further more, we will study
multi-sensor fusion technology to solve the inherent problems
of computer systems that RGB camera performs poorly in
extreme light conditions. For example, the combination of
infrared sensor and RGB camera can improve the perfor-
mance of computer vision system in the case of too strong
and too weak illumination.

V. CONCLUSION
In this paper, we introduced a method that can detect a
single ripe tomato by combining IFS with the Faster R-CNN
image detection method. The proposed method has several
advantages over traditional methods. First, we labeled ripe
tomatoes in different configurations (e.g., separated, adja-
cent, overlapping, and shaded) in a large number of images
to train the Faster R-CNN detector. We identified candidate
mature tomato regions in images using the trained Faster

R-CNN classifier. The results showed that the trained Faster
R-CNN classifier can accurately and quickly localize can-
didate ripe tomato regions. Then, we transformed the RGB
color space for the candidate tomato region to the HSV color
space. Different tomato samples were segmented manually
and used to establish the Gaussian density function to remove
the background from single tomatoes detected by Faster
R-CNN to obtain the candidate tomato body. In some cases,
subpixels or adjacent tomatoes that interfere with tomato
contour extraction remain around the tomato body. There-
fore, we conducted morphological processing on the tomato
binary map to remove these extraneous subpixels and sepa-
rate connected tomatoes to reduce the extra contour obtained
by edge detection. Finally, we proposed a tomato contour
extraction method to further detect tomatoes that uses the IFS
edge detection method to obtain the edge and then applies a
contour detection method to connect edge breakpoints and
remove redundant edge points. Together, these operations
connect the tomato contour and help to obtain accurate values
for a tomato’s width, height and center.

We conducted three experiments in this study. One exper-
iment analyzed the precision and recall of Faster R-CNN for
ripe tomato detection; the AP achieved was approximately
80% despite the complexity of the greenhouse tomato images
used, which include adjacent, overlapping and obscured
tomatoes. The second experiment presented the contour
segmentation process of tomatoes in four different states.
The results show the applicability of our proposed method
for tomato segmentation. The last experiment validated the
tomato localization performance. We conducted comparison
experiments to analyze the parameter errors for a single
tomato using the proposed method and Faster R-CNN with
the Canny operator, compared to manual measurement. The
proposed method is able to accurately calculate the width,
height and center position of a single tomato in an image;
the RMSE values for the width and height are 2.996 and
3.306 pixels, respectively. The mean relative error percent
(MRE%) for the shifted horizontal and vertical distances of
the center positions are 0.261% and 1.179%, respectively.
If we use Faster R-CNN without further contour detection
to detect the tomato, the RMSE values for the width and
height are 7.915 and 8.436 pixels, respectively. These results
demonstrate that the proposedmethod can localize the tomato
center more accurately than Faster R-CNN alone.
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