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ABSTRACT Based on a heuristic optimization algorithm, this paper proposes a new algorithm named
trajectory-planning beetle swarm optimization (TPBSO) algorithm for solving trajectory planning of robots,
especially robot manipulators. Firstly, two specific manipulator trajectory planning problems are presented
as the practical application of the algorithm, which are point-to-point planning and fixed-geometric-path
planning. Then, in order to verify the effectiveness of the algorithm, this paper develops a control model
and conducts numerical experiments on two planning tasks. Moreover, it compares with existing algorithms
to show the superiority of our proposed algorithm. Finally, the results of numerical comparisons show that
algorithm has a relatively faster computational speed and better control performance without increasing
computational complexity.

INDEX TERMS Beetle swarm optimization, robot manipulators, trajectory planning, optimization algo-
rithms, control systems.

I. INTRODUCTION
The robotic arm, or the manipulator, has similar functions to
a human arm and can be either a separate mechanism or part
of a more complex robot [1]. It can be considered that the
link of the robot arm forms a kinematic chain, and the end of
the kinematic chain is called an end-effector for performing
actual operations such as grasping, spraying, cutting, etc. The
robotic arm is widely used in modern society. In the field of
industrial manufacturing, it is used for assembly, spraying,
welding etc [2]. In the medical field, it is used as a surgical
aid [3], [4]. And in agriculture, for picking vegetables and
fruits. Even in space exploration the robotic arm can also find
its application.

In the research area of robot manipulator, trajectory plan-
ning has always been a hot spot, which is usually per-
formed with constraints that may come from dynamic equa-
tions or from the inputs [5]. There are several important issues
in the study of manipulator trajectory planning, one of which
is the solution of inverse kinematics transformation [6]–[10].
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Due to the high nonlinearity of inverse kinematics transfor-
mation, the solution process is difficult. Therefore, improv-
ing the efficiency and effectiveness of inverse kinematics is
very important in manipulator trajectory planning, especially
in redundant manipulator trajectory planning [11]–[18].
The second is obstacle avoidance. In many manufacturing
applications today, robot manipulators must use their end-
effector to pass through the desired curve while their fuselage
avoids collisions with obstacles in the environment. This
problem is very complicated, however, researchers have pro-
posed some relatively effective solutions. In addition, on-line
algorithms for continuous paths [19], [20], or tracking con-
trol [21]–[24], can be found in robotic applications such as
welding, painting process, and part assembly.

The original study used traditional planning algorithms
to solve such problems, however traditional optimization
techniques have many shortcomings, such as couldn’t find
global solutions, requiring gradients, not for discontinuous
functions, etc. Therefore, many heuristic and meta heuristic
algorithms, such as simulated annealing (SA) [25], [26],
genetic algorithm (GA), particle swarm optimization (PSO),
ant colony optimization (ACO), Teaching-learning-based
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optimization (TLBO) [27] etc. have been applied to trajectory
planning.

Bio-heuristic algorithms are the methods to solve prob-
lems learn from the survival skills of organisms. Like other
heuristic algorithms, bio-heuristics are used to solve some of
the most time-consuming problems [28]–[30] that traditional
algorithms are too slow to solve, or to find an approximate
solution when traditional algorithms cannot find any exact
solution [31]. The evolution of organisms under natural selec-
tion reflects good adaptability, which makes the effectiveness
of these algorithms guaranteed.

A. RELATED WORK
Some optimization indicators are usually set during trajec-
tory planning. Generally, these Zanotto Zanotto indicators
can be divided into the following three categories: min-
imum execution time, minimum energy [32], and mini-
mum jerk [33], [34]. Chen and Desrochers [35] addressed
the problem of the structure of minimum-time control
of robotic manipulators along a specified geometric path.
Faris et al. [36] proposed an energy minimization approach
for a two-link flexible manipulator. Piazzi and Visioli [37]
proposed a new approach based on interval analysis
to find the global minimum-jerk trajectory of a robot
manipulator within a joint space scheme using cubic
splines. Of course, there are also many kind of researches
use hybrid optimality criteria in practical planning [38].
Gasparetto and Zanotto [39] proposed a technique for time-
jerk optimal planning of robot trajectories.

In recent years, more and more researchers began using
bio-heuristic algorithms for trajectory planning. GA is used
for trajectory planning of mobile robots and manipulators,
including collision-free path planning, dynamic constrained
multi-path planning and redundant robots planning [40].
ACO can be used to mobile and articulated robots as well as
multi-robot systems in robot trajectory planning. As a broad
and effective algorithm, PSO is also used in many obstacle
avoidance trajectory planning, for multi-objective optimiza-
tion [41], soccer robot path planning [42], and mobile robot
smooth path planning [43]. In addition, ABC is used for
multi-robot path planning [44] from the beginning to the
target position. Savsani et al. [45] use artificial bee colony
algorithm (ABC) and TLBO for trajectory optimization of a
three-axis (3R) planar manipulator, where TLBO performed
better than ABC.

B. ORGANIZATION AND CONTRIBUTIONS
The structure of this paper is as follows. In Section II we
introduce the problem we are trying to solve as well as
some related concepts. In Section III, we will present spe-
cific planning methodology, including the definition of cost
function and the description of algorithm TPBSO we pro-
posed. In Section IV, we apply the TPBSO algorithm to two
types of manipulator trajectory planning problems and com-
pare the results with other algorithms. Finally, in Section V,

we summarize the content of the full paper. The main contri-
butions of this paper are listed as follows.
• In this paper, a new trajectory planning algorithm termed
TPBSO was proposed for the first time. Compared with
traditional algorithms, it inherently has the characteris-
tics of low computational complexity and fast optimiza-
tion speed;

• The BSO algorithm is used to optimize the control
parameters in trajectory planning problems of robot
manipulators;

• The proposed TPBSO algorithm is successfully applied
to two specific types of planning problem and compare
with the existing algorithms to verify its superiority.

II. PRELIMINARIES
Path planning and trajectory planning are the focus of
research in the field of robotics, and there is a difference
between these two terms [1]. Path planning simply generates
a geometric path without applying a specific motion rule,
while trajectory planning requires a motion rule to be speci-
fied for the geometric path. Therefore, trajectory planning is
usually done after path planning, one planning problem we
will test in section III is just like that. But sometimes, these
two steps can be combined, such as point-to-point planning
which is another planning problem we will test in section III.
Next, we will introduce some important concepts that are

used in trajectory planning:
• Configuration: Configuration is used to indicate the
position and orientation of the robot relative to the
fixed reference frame Fw. For mobile robots and
end-effectors, the configuration is their position and
orientation in a Cartesian coordinate system. But for
manipulators, the configuration consists of their joint
rotation angles.

• Configuration Space (C-space): C-space refers to the
space formed by all possible configurations of the robot,
and trajectory planning is performed in this space. It can
be divided into the space of free configurations (C-free)
and the space of obstacles (C-obs).

• Degrees of Freedom (DOF): For arm robots,
the degrees of freedom refers to the number of joints
it has. In three-dimensional space, the robot requires
at least 6 degrees of freedom: 3 rotational degrees and
3 translational degrees. When the robot has more joints
than it needs, we say that the extra degrees are redundant.

• Kinematic transformation: The kinematic transforma-
tion is divided into forward transformation and inverse
transformation. The forward transformation problem is
to find the position of the end-effector in Cartesian
space when the joint angles are known, and inverse
transformation is just the opposite. Because of its high
nonlinearity, the inverse kinematic transformation is
usually more difficult to resolve.

In this paper, we use the plane geometry to solve inverse
kinematics transformation. The specific method in the case
of the two-link planar manipulator is as follows:
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FIGURE 1. Flowchart of TPBSO algorithm applied to trajectory planning of robot manipulator.

Available from the cosine theorem, we have

cos(θ2) =
‖pe‖2 − l21 − l

2
2

2l1l2
, (1)

where θ2 represents the joint angle of the second joint, pe is
the coordinate of the end-effector, and l1 and l2 are the lengths
of the two links, respectively. If cos(θ2) > 1, this triangle does
not exist, and the coordinate of pe is beyond the reach of the
arm. This should be avoided.

Then we can obtain the joint angle of the first joint

cos(θ1) =
pe · p′e
‖pe‖2

, (2)

where θ1 represents the joint angle of the first joint, and p′e
is the coordinate of the end-effector when this joint is turned
back to the θ1 angle to make the first link horizontal.

The trajectory planning means to generate control signals
that are passed to the control system to ensure that the robot
performs the required motion. The conduction structure of
the control signal can be either hierarchical [46] or dis-
tributed [47], [48]. Typically, the algorithm used for trajectory
planning takes the path generated by path planner, as well as
kinematic and dynamic constraints as input. Then it provides
a set of position, velocity values to joints or end-effector as
output.

In order to plan the trajectory in joint space, a set of points
should be extracted from the path of end-effector that gener-
ated by the path planner. This set of points is then mapped to
the joint space by inverse kinematic transformation. The joint
space is used as the configuration space, and considering the
kinematic and dynamic constraints on each joint, the trajec-
tory planning is performed. A trajectory with sufficient pre-
cision is then generated by means of interpolation functions.

III. METHODOLOGY
As shown in FIGURE 1, we will present a method for
manipulator trajectory planning in this section. First, for a
specific problem, we find some representative variables as

control parameters and use them as input to TPBSO algo-
rithm. Then, the algorithm starts its iteration, and each time
the cost function is used as a basis to generate better control
parameters until a certain number of iterations is reached.
Finally, we use the generated control parameters to build a
complete trajectory.

The following content will be divided into three parts
to illustrate the method. Subsection III-A introduces the
overview method and control parameters of two robot tra-
jectory planning problems. Subsection III-B describes the
meaning and structure of the cost function. Subsection III-C
gives the algorithm framework of TPBSO.

A. OVERVIEW
The TPBSO algorithm is used to deal with two types of
trajectory planning problems: point-to-point planning and
along-a-specified-path planning. Further, we classify the first
type of problem into two situations with or without obstacle.

In the first case, the positions of initial point and final
point are given, the joint speed and acceleration of them
are both set to zero. We have two optimization indicators
when without obstacle, the minimum joint rotation and the
minimum execution time. And for the situation with obstacle,
we use the minimum travel length in workspace as indicator.
In order to find the optimal trajectory under this problem,
we use the traditional polynomial time function to describe
its motion behavior. We set a intermediate point of a path as
a control point. During the movement, the manipulator starts
from the initial point, passes through the intermediate point,
and then reaches the final point.

This intermediate point divides the path into two. For
the first segment, because there are five constraints: starting
position θ s, starting speed θ̇ s, starting acceleration θ̈ s, inter-
mediate point position θm and intermediate point speed θ̇m,
we have combined five equations and used a fourth-order
polynomial as its motion equation.

The first segment, from θ s to θm, is expressed as a fourth-
order polynomial time function:

θ (t) = a0 + a1t + a2t2 + a3t3 + a4t4. (3)
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Substituting the boundary conditions, and we can get the
solution of coefficients as follows:

a0 = θ s,

a1 = 0,
a2 = 0,

a3 =
4θm − θ̇mt1 − 4θ s

t31
,

a4 =
θ̇mt1 − 3θm + 3θ s

t41
.

(4)

After determining the time function for the first segment of
trajectory, we can find the acceleration when manipulator
passes the intermediate point. So in the second segment we
have six constraints and a quintic polynomial is used as its
equation of motion.

The time function from θm to θ f :

θ (t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5. (5)

The solution of coefficients:

a0 = θm,

a1 = θ̇m,

a2 =
θ̈m

2
,

a3 =
20θ f − 20θm − 12θ̇mt2 − 3θ̈mt22

2t32
,

a4 =
30θm − 30θ f + 16θ̇mt2 + 3θ̈mt22

2t42
,

a5 =
12θ f − 12θm − 6θ̇mt2 − θ̈mt22

2t52
.

(6)

The whole trajectory planning cannot be completed if just
the time function of motion is known. In order to relate the
time parameter t in motion equation (3) and (5) to the actual
time, the total time which the manipulator is executing in
reality is also required. After obtaining the total execution
time, the actual speed and acceleration of manipulator’s each
joint can be calculated at any time during the movement.
It is necessary to limit the speed and acceleration to meet
the practical significance, the detailed constraints will be
discussed in section III-B.

In addition, in this problem, we originally used a pla-
nar two-link manipulator to plan the trajectory between two
points on the plane, but it was too easy. In order to increase the
difficulty of planning, we have increased the number of links.
However, the coordinates of the two points on the plane are
still only two parameters, so themanipulator has extra degrees
of freedom.

In the second case, we gave the information about the entire
path in advance, and then the end-effector of the manipulator
needs to move along the given path. Here, we use a set of
ordered points to represent the path, and the end-effector fol-
lows the path through these points in turn. In addition, we use
a planar three-link manipulator to plan, so the manipulator
has one redundant degree of freedom, which also makes one

of the optimization indicators to minimize the joint rotation
has a planning significance.

The core of solving this planning problem is the determi-
nation of the time function of the redundant parameter. Once
the time function of the redundant parameter is determined,
the rotation angle of each joint when the manipulator passes
each point on the path can be obtained, according to the
coordinates of each point on the given path and using the
forward kinematics transformation. After that, we can get the
rotation angle of each joint at any time by interpolation. Here,
the redundant parameter has a value range of [−π , π], but
for geometric reasons, when the end-effector is in different
positions, the range of its value is different. The time func-
tion of the redundant parameter’s range can be obtained by
the geometric method. The time function of the redundant
parameter must be within this range.

To reduce the computational cost, we do not use all the
points on the input path, but take part of them, and gener-
ate the trajectory between these points through polynomial
interpolation in the joint space. Therefore, the generated tra-
jectory does not strictly pass through all points on the input
path. In order to reduce the difference between the planned
trajectory and the original path, we need to add a penalty
term named trajectory accuracy in the cost function. We will
discuss this more formally in section III-B.
As with the first problem, we also need information

about the real execution time of the manipulator. Since
a given path can be viewed as multi-point-to-point plan-
ning, we can specify the execution time for every interval.
However, this leads to an unnecessarily high dimension of
the solution vector. Since the actual time of each move-
ment is not much different, we still only use the total exe-
cution time tT and the execution time of each segment is
equal.

From two types of problems above, although the form is
different, we can find two types of parameters:

One type is called the configuration parameter, given at the
beginning of each problem, as an input variable. In the first
case, the positions of initial point θ s and final point θ f are
configuration parameters; in the second case, They are path
points.

The other type, called the control parameter, determines
the trajectory of the manipulator under the conditions given
by the configuration parameters, and is also parameters that
need to be optimized. In the first case, control parameters
are the execution time t1 and t2, the position and speed
of the intermediate point θm and θ̇m which including the
rotation angle and rotation speed of each joint. In addi-
tion, when the manipulator has redundant degrees of free-
dom, redundant parameters also serves as control parameters;
In the second case, control parameters are the total execu-
tion time tT and redundant parameters when the end-effector
passes through various points. Since there are too many
redundant parameters corresponding to each point, we only
take 5 variables and then generate the remaining values by
interpolation.
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We need to put all control parameters into a solution vector
when optimizing. The structure of the solution vector in the
first problem is as follows, where k is the number of links:
• k variables, the joint angles in joint space when passing
the intermediate point θm;

• k variables, the joint speeds in joint space when passing
the intermediate point θ̇m;

• 2(k−2) variables, redundant parameters φs at the initial
point and φf at the final point when k > 2;

• 2 variables, execution time t1 in the first segment and t2
in the second segment.

The structure of solution vector in the second problem is
as follows:
• n variables, with any value in the interval [0,1], xφ ;
• 1 variable, total execution time tT .

The n values within range [0,1] above are the normalized
redundant sequence xφ . As we discussed before, n should
be as small as possible to reduce the dimension, then more
precise sequences can be generated by interpolation. Since
the values of the redundant sequence xφ are normalized,
we still need to restore them to real value in the end.

φ = xφ(φmax − φmin)+ φmin. (7)

Equation (7) restores a normalized xφ value to the corre-
sponding φ value.

B. COST FUNCTION
In this section, we present a planning model and cost function
for the two problems. As mentioned in the previous section,
we have defined two optimization indicators, the minimum
joint rotation and the minimum execution time, for both
two problems. Therefore, for the first problem, point-to-point
planning, when minimum execution time is used as optimiza-
tion indicator, the goal of the planning model is:

min T = t1 + t2. (8)

And when minimum joint rotation is used as optimization
indicator, the goal of the planning model is:

min Fq =
n∑
i=1

m−1∑
j=1

1θij, (9)

where n is the joint number, m is the number of segments of
the total execution time, and1θij is the angular displacement
in the jth time segment of the ith joint. We discretize time and
then sum up the angles of each joint for each small period of
time.

When in obstacle avoidance situation, minimum travel
length in workspace is used as optimization indicator, the goal
of the planning model is:

min Fd =
n∑
i=1

m−1∑
j=1

1κ(θij), (10)

where κ(·) represents the forward kinematics transformation
of the manipulator. We discretize time and then sum up the

displacement of end-effector in workspace for each small
period of time.

Despite the speed and acceleration limits of joints, the
limitation of redundant parameters is also included in the
constraints of this planning model when manipulator has
redundant degrees of freedom. This is because some values
of the redundant parameters are not legal, and it is impossible
to use them for inverse kinematic transformation to calculate
joint angles.

Joint speed limits can be set as follows:{
∀t ∈ [0, t1 + t2],
|θ̇i(t)|6θ̇max.

(11)

Joint acceleration limits can be set as follows:{
∀t ∈ [0, t1 + t2],
|θ̈i(t)|6θ̈max.

(12)

Restrictions on the initial point redundant parameters φs and
final point redundant parameters φf :{

ks61,
kf61,

(13)

where ks, kf represent the value of cos(θ2) calculated by
φs, φf from (1) and (2).
When obstacles appear, restrictions of obstacle avoidance

can be set as follows:{
∀t ∈ [0, t1 + t2],
li(t)

⋂
Obs = ∅,

(14)

where li(t) represents the point set of ith manipulator link at
time t , and Obs represents the point set of Obstacle’s surface.
Thus, according to the planning model we propose the

following cost function:

F(x) =


f (x)+ λ1

3∑
i=1

hi(x)gi(x), ks, kf61,

λ2(ks + kf ), otherwise,

(15)

where f (·) is the objective function of the equation (8), (9)
or (10), g1(·) and g2(·) respectively calculate the sum of the
speed and the acceleration of each joint at each time interval
according to (11) and (12), g3(·) calculate the number of
lapped points according to (14). And functions h1(·) to h3(·)
denote respectively as

h1(x) =

{
1, |θ̇i(t)| > θ̇max,

0, |θ̇i(t)|6θ̇max,
(16)

h2(x) =

{
1, |θ̈i(t)| > θ̈max,

0, |θ̈i(t)|6θ̈max.
(17)

h3(x) =

{
1, li(t)

⋂
Obs 6= ∅,

0, otherwise.
(18)
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For the second problem, trajectory planning in different
specified path, when minimum execution time is used as
optimization indicator, the goal of the planning model is:

min T = tT . (19)

And the goal for minimum joint rotation indicator, just the
same as we proposed in the first problem:

min Fq =
n∑
i=1

m−1∑
j=1

1θij. (20)

This planning model is constrained by the redundant
parameter limit, the joint speed limit, and the joint acceler-
ation limit.

Joint speed limit can be set as follows:{
∀t ∈ [0, tT ],
|θ̇i(t)|6θ̇max.

(21)

Joint acceleration limit can be set as follows:{
∀t ∈ [0, tT ],
|θ̈i(t)|6θ̈max.

(22)

Redundant parameter limit can be set as follows:{
∀t ∈ [0, tT ],
φ(t)min6φ(t)6φ(t)max,

(23)

where φ(t) represents the value of redundant parameter at
time t , φ(t)min represents the lower bound of redundant
parameter and φ(t)max is the upper bound.

Path accuracy limit can be set as follows:{
∀i ∈ [1, n],
‖P∗(i)− P(i)‖ 6 accuracy,

(24)

where P∗ represents the point set of target path and P is the
point set of our planned trajectory, accuracy represents the
maximum distance of two compared point. The point set P∗

and P both have n points and generated by normalizing the
original trajectory points, so that they are comparable.

Again, we propose the following cost function where f (·),
g1(·) and g2(·) is the same meaning in the first problem,
g3(·) calculate the sum of the distance of each pair of points
in planned trajectory and target path according to (24):

F(x) = f (x)+
3∑
i=1

hi(x)gi(x). (25)

Notice that the constraint of redundant parameter is not
applied to the cost function, that’s because we normalized the
redundant parameter sequence in advance, and the restored
redundant parameter values must be within their range.
Through this way, the constraint in (23) is already satisfied.

C. ALGORITHM FRAMEWORK
In this paper, a new heuristic optimization algorithm called
BSO is used for trajectory planning. This algorithm was
first proposed in [49]. It combines the PSO algorithm with
another new heuristic algorithm BAS, which is being applied
to various practical problems [50], [51]. In this algorithm,
the optimization process is considered as a process of explor-
ing a group of beetles in the solution space. The position of
each beetle represents a solution to the problem. The BSO
algorithm has good robustness and speed. In addition, it also
exhibits higher performance when dealing with nonlinear
constraints. Therefore, we use it for trajectory planning prob-
lem optimization and name the algorithm TPBSO.

Next we will introduce the specific process of the
TPBSO algorithm. First, we randomly generate the initial
position x of each beetle which represents the solution vector
and calculate its fitness value F(x). The fitness value is
calculated according to the cost function we mentioned in
section III-B, the first planning problem corresponds to the
equation (15), and the second planning problem corresponds
to the equation (25).

Then we generate the next exploration position for each
beetle according to the following formula

x t+1 = x t + λV t
+ (1− λ)ξ t , (26)

where t is the number of iterations, V t derived from the PSO
algorithm is the speed of the beetle at the t-th iteration, and
ξ t derived from the BAS algorithm represents the increment
of the beetle’s displacement along the velocity direction at the
t-th iteration, λ controls the ratio of the former two.

V t+1
= V t

+ c1r1(Ptis − x
t )+ c2r2(Ptgs − x

t ). (27)

Equation (27) denotes the content of V t in (26). Where c1
and c2 are constants called learning factor, r1 and r2 are ran-
dom variables within the range of [0,1], Pis is the individual
optimal position, Pgs is the global optimal position.

ξ t+1 = δtV tsign(F(x trt)− F(x
t
lt)). (28)

Equation (28) denotes the content of ξ t in (26). Where δt

indicates step size at the t-th iteration, x trt and x tlt can be
expressed as

x trt = x t +
V td t

2
, (29)

and

x tlt = x t −
V td t

2
, (30)

where

d t =
δt

c
. (31)

The step size of the beetle is proportional to the length of the
antenna, c is its scale factor, and the length of each step is
reduced in each iteration:

δt = ηδt−1. (32)
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FIGURE 2. Minimum execution time trajectory planning in 2-link situation.

Algorithm 1 TPBSO Algorithm for Trajectory Planning
input: configuration parameters mentioned in section III-A
output: tmin or θmin, Ejout
1: Initializem, n, xi, Vi, δ0, c, η, velocity range vmin and vmax

2: Update the fitness of each beetle
3: Update xpbest and xgbest
4: for p = 1 to n do
5: for all x such that x ∈ X do
6: Update V according to (27)
7: Calculate F(xrs) and F(xls) according to (29) and

(30)
8: Update ξ according to (28)
9: Update x according to (26)
10: end for
11: Update the fitness of each beetle
12: Update xpbest and xgbest
13: for i = 1 to m do
14: if F(xi) < Fpbest then
15: Fpbest← F(xi)
16: end if
17: if F(xi) < Fgbest then
18: Fgbest← F(xi)
19: end if
20: end for
21: Update step size δ according to equation (32)
22: end for
23: Generate Ejout, tmin, θmin according to xgbest

In order to describe the TPBSO algorithm more clearly,
we write the detailed steps as pseudo-code in Algorithm 1.
The variables and steps are explained as follows: tmin and θmin
represent the result of two optimization indicator, minimum
execution time and minimum joint rotation. Ejout represents
the planning trajectory. m and n represent the population size
and the number of iterations respectively. Initial beetle group
position xi(i = 1, 2, ...,m) and velocity Vi(i = 1, 2, ...,m)
are random. δ0 represents initial step size, xpbest and xgbest
represent the individual optimal solutions and global optimal

solution. The remainder of the variables is the same as men-
tioned above.

IV. SIMULATION STUDIES AND COMPARISONS
In this section, we will apply the proposed TPBSO algo-
rithm in some robot trajectory planning applications. In
Subsection IV-A, we apply TPBSO algorithm to the point-
to-point trajectory planning which is the simplest scenario in
the real world. In Subsection IV-B, we apply TPBSO algo-
rithm to a more complex scenario of trajectory planning in
different specified path. In Subsection IV-C, we apply the
proposed TPBSO algorithm, the conventional GA and PSO
algorithm in the same environments and conduct comparative
simulations.

A. POINT-TO-POINT TRAJECTORY PLANNING
In this subsection, we divide the point-to-point trajectory
planning into two different optimality criteria: minimum
execution time and minimum joint rotation. Since this
experiment is performed in an obstacle-free environment,
to increase its work’s difficulty, we have increased the number
of links more than the original two links.

1) MINIMUM EXECUTION TIME
In this subsection, we take minimum execution time as our
optimality criteria, and we set up four situations for simula-
tion, from 2-link to 5-link differed from the number of links.

FIGURE 2 to FIGURE 9 have the same organization: a
trend of optimal fitness value and a path plan figure.

Figures such as FIGURE (2b) are a simple presentation of
the manipulator and the planned path. Links of the manipula-
tor are represented by the straight line in figure, and joints
are represented by ‘‘o’’ in the junction of two links. This
figure shows three snapshots of the manipulator when it’s at
initial position, middle position and final position. We give
two positions: initial position in the coordinate of (1,0) and
final position in the coordinate of (0.5,1.5). The middle point
that to be optimized is the control point of the path. The curve
with blue colour represent the planned path which from initial
position to final position.
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FIGURE 3. Minimum execution time trajectory planning in 3-link situation.

FIGURE 4. Minimum execution time trajectory planning in 4-link situation.

FIGURE 5. Minimum execution time trajectory planning in 5-link situation.

FIGURE 6. Minimum joint rotation trajectory planning in 2-link situation.

Figures like FIGURE (2a) present the execution time
of the manipulator varies with the number of iterations,
and it shows that the number of iterations required

for the algorithm to converge. The simulation result
in FIGURE (2c) present the movement status of each
joint.
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FIGURE 7. Minimum joint rotation trajectory planning in 3-link situation.

FIGURE 8. Minimum joint rotation trajectory planning in 4-link situation.

FIGURE 9. Minimum joint rotation trajectory planning in 5-link situation.

Through this series of experiments, we can find that as the
number of links grows, the TPBSO can converge well.

2) MINIMUM JOINT ROTATION
In this subsection, we takeminimum joint rotation as our opti-
mality criteria. Like we mentioned in section IV-A.1, we set
four situations from 2-link to 5-link to test our algorithm’s
performance, and the organization of experiment figures are
the same.

As shown in FIGURE 6(a) which is under the situation
of 2-link, the number of iterations required for algorithm
convergence is very small. This is because this task in 2-link
situation is pretty simple and the algorithm can easily find the
optimal solution in the solution space.

B. POINT-TO-POINT TRAJECTORY PLANNING WITH
OBSTACLE AVOIDANCE
This subsection is an extension of the previous point-to-point
trajectory planning. To make the simulation more complex,
we added an oval obstacle between the two points in the
workspace. Unlike the situation of obstacle-free, we chose
the minimum travel distance in workspace as its optimality
criteria. Like the previous task, manipulators with different
link number also used for simulation.

C. TRAJECTORY PLANNING IN DIFFERENT SPECIFIED
PATH
In this subsection, we test the TPBSO algorithm for the
scenario with two different paths: pentagram path and closed
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FIGURE 10. Obstacle avoidance trajectory planning in 3-link situation.

FIGURE 11. Obstacle avoidance trajectory planning in 4-link situation.

FIGURE 12. Obstacle avoidance trajectory planning in 5-link situation.

curve path. These two paths represent two types of and
smooth curve. To represent the two paths, we sampled
50 points of each and stored the point set by order.

1) IN PENTAGRAM
In this subsection, the pentagram path is chosen for test
purpose. We also made two sets of experiments with min-
imum execution time criteria and minimum joint rotation
criteria.

Figures shown in this section has the same organization:
a trend of optimal fitness value, a path plan figure and a
planning figure of the redundant parameter φ.

The simulation result in FIGURE 13(b) present the tra-
jectory accuracy varies with iteration times. The trajectory
accuracy, as mentioned in III, is a indicator to compare the

similarity of two path. The accuracy of planned trajectory is
higher if its value is smaller.

Figures such as FIGURE 13(c) show the presentation of
the manipulator and the planned path. The green asterisk
represents the input point of the specified path, and the blue
curve represents the planned path which manipulator actually
passed by. As the result shown in this figure, the manipulator
well followed the given point.

The simulation result in FIGURE 13(d) present the planned
path of the redundant parameter φ. The x-axis represents the
passed time, it shows the value of φ varies with time. The red
points above are the maximum of φ when manipulator passed
given points and the purple points below are minimum.

2) IN closed curve
Another path, the closed curve is chosen in this subsection.
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FIGURE 13. Minimum execution time trajectory planning while giving a path of pentagram.

FIGURE 14. Minimum joint rotation trajectory planning while giving a path of pentagram.

As we can see in FIGURE 15(a) and FIGURE 16(a),
the number of iterations that reach convergence does not dif-
fer too much compare to FIGURE 13(a) and FIGURE 14(a)
in Subsection IV-C.1.

D. COMPARISONS WITH PSO AND GA
In this subsection, we compared our TPBSO algorithm to
traditional bio-heuristic algorithms GA and PSO. To com-
pare the performance between them, we start in three parts.
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FIGURE 15. Minimum execution time trajectory planning while giving a path of pentagram.

FIGURE 16. Minimum joint rotation trajectory planning while giving a path of pentagram.

The first and second part is the comparison of their per-
formance in two simulation experiments we mentioned in
Subsection IV-A and Subsection IV-C. The third part is the

comparison of their computational complexity, both in time
and space. In each part, we performed multiple simulations
and took the average of the results.
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1) POINT-TO-POINT TRAJECTORY PLANNING COMPARISON
In this subsection, we performed two sets of experiments
with the goal of minimum execution time and minimum joint
rotation respectively, and in each set of experiments, we set up
four situations from 2-link to 5-link differed from the number
of links. In each situation, we tested different algorithms each
20 times and takes the average value.

From FIGURE 17, we can see that whether in the compari-
son of execution time or joint rotation, TPBSO shows the best
performance among three algorithms. PSO has a close perfor-
mance with TPBSO in minimum execution time planning but
has a poor performance in minimum joint rotation planning,
and GA is just the opposite.

FIGURE 17. Performance comparisons of different algorithms in
point-to-point trajectory planning.

2) TRAJECTORY PLANNING IN DIFFERENT SPECIFIED PATH
COMPARISON
The comparison of this subsection corresponds to the second
simulation, we also tested each algorithm 20 times in each
specified path with the goal of minimum execution time and
minimum joint rotation.

TABLE 1 shows the results, we compared the average
performance and the stability of each algorithm. t̄ represents
the average value of execution time, tσ represents the stan-
dard deviation of execution time. Similarly, θ̄ represents the
average value of joint rotation and θσ represents its stan-
dard deviation. Both in execution time and joint rotation,
TPBSO has lower variance and better performance compare
to PSO and GA.

TABLE 1. Comparisons of execution time and joint rotation of different
algorithms under different paths.

3) COMPUTATIONAL COMPLEXITY COMPARISON
In this subsection, we compare the computational com-
plexity between these algorithm. In order to compare the
performance, we need to make a more specific evaluation.

Therefore, we divide the comparison of computational com-
plexity into two parts: time and space.

a: TIME COMPLEXITY
The time complexity of the algorithm is a function, which
qualitatively describes how the running time of the algorithm
changes with the increase of the problem scale. We chose
some parameters as an indicator, and analysed the growth of
time when these parameters grow. In the case of time com-
plexity, we set four parameters: population size, parameter
dimension, number of points of the output trajectory, number
of iterations. The comparison result of time complexity is
shown in Table 2, where np represents the population size,
nd represents the parameter dimension, no represents the
number of points of the output trajectory, and ni represents
the number of iterations.

TABLE 2. A time complexity comparison table for two experiments.

b: SPACE COMPLEXITY
The space complexity of the algorithm is a function, which
qualitatively describes how the memory use of the algorithm
changes with the increase of the problem scale. In the case
of space complexity, the number of iterations does not affect,
andwe chose the number of input points as an alternative. The
comparison result of space complexity is shown in TABLE 3,
where nin is the number of input points.

TABLE 3. A space complexity comparison table for two experiments.

From TABLE 2 and TABLE 3 we can find that these three
algorithms are not significantly different from the perspective
of either time complexity and space complexity. In other
words, our algorithm achieves better planning performance
without increasing the computational complexity of the
algorithm.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a new trajectory planning
algorithm called TPBSO. Based on a heuristic optimization
algorithm called BSO, TPBSO is applied to the manipulator
trajectory planning. In addition, we have discussed two types
of manipulator trajectory planning problems in this paper,
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and establish corresponding planning models and cost func-
tions. Moreover, we use TPBSO to simulate these two kinds
of problems, and compare it with two other heuristic opti-
mization algorithms PSO and GA.

We mainly compare them from two aspects. One is task
performance, which is measured by the optimization indica-
tors of the planningmodel we built; the other is computational
performance, which is measured by computational complex-
ity. Through the comparison of task performance, we can find
that our algorithm can find a relatively better trajectory which
consume less execution time and joint rotation. And through
the comparison of computational performance, our algorithm
has the same level computational complexity with PSO and
GA in both time complexity and space complexity.

Our current work is only a preliminary combination of
heuristic optimization algorithm and manipulator trajec-
tory planning. Especially, our simulation is only in two-
dimensional space, and the motion of the manipulator in
reality is more complex. Also, we haven’t taken the dynamics
of manipulator into account in our planning model, which
seemed simply. Therefore, to improve our algorithm, our
next research direction is to combine robotic dynamics and
apply our algorithm to a more realistic environment. In this
way, more complex robot trajectory planning problems like
dynamic obstacle avoidance can also be added in.
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