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ABSTRACT Two-parameter diagrams obtained through the 0–1 test of chaos for nonlinear oscillatory
continuous systems are presented in this paper. The diagrams are the results of a parallel approach to tackle
enormous memory and computational time requirements due to the known oversampling problem associated
with the use of the 0–1 test for chaos in continuous systems. Our rectangular diagrams with black-and-white
shades of gray levels correspond to the numbers between 0 and 1 obtained as the result of the 0–1 test
for chaos. A comparison between the two-parameter diagrams for the 0–1 test with the color bifurcation
diagrams for oscillatory systems obtained from another method (period-n identification) is also considered.
Illustrative examples are based on both the well-known Lorenz model and a model describing two equivalent
electric arc circuits.

INDEX TERMS The 0–1 test of chaos, two-parameter bifurcation diagrams, oscillatory continuous dynam-
ics, parallel computation, electric arc circuits.

I. INTRODUCTION
The 0–1 test for chaos is a computational tool to analyze non-
linear dynamical systems based on their time series responses
[1]–[5]. Mathematical model of the system is not needed
in the analysis. If such a model is known, then one can
generate a time series response and feed it into the 0–1 test
for chaos. The purpose of the test is to differentiate between
periodic and chaotic responses. Typical situation is that a
dynamical system is periodic for a particular interval of
parameter values while chaotic for others. The well-known
Lorenz, Rössler and Chua systems are examples of such con-
tinuous nonlinear systems or circuits. Time series periodic
and chaotic signals can also be analyzed by other available
tools, such as, for example, Lyapunov exponents, Fourier
transforms, bifurcation diagrams, return maps, and others [6],
[7], [14]. The 0–1 test for chaos is a relatively new test that
can be applied to both continuous and discrete nonlinear sys-
tems or their time series responses. However, because of the
possibility for a time series to be oversampled, the continuous
case seems to be more challenging than the discrete one [3].
The oversampling phenomenon has been analyzed in [13] and
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its relation to the Fourier spectrum of the time series has been
established.

In this paper we further analyze the use of the 0–1 test
for chaos in the case when two parameters of a continu-
ous nonlinear system vary slowly, yielding oscillatory time
series of various properties. It is quite common in nonlinear
systems and circuits that changing one particular element
(i.e. a resistor) results in a change of the values of two, three
or more parameters (coefficients) in the underlying mathe-
matical model. See, for example, [15] showing an example
of a nonlinear circuit in which one resistor value impacts
two parameters of the circuit’s model, while another resis-
tor impacts three parameters simultaneously. Thus, varying
many parameters in mathematical models of nonlinear sys-
tems or circuits is a quite natural scenario. Varying slowly two
parameters, say a and b, with small step sizes 1a and 1b,
within certain interval values, amin ≤ a ≤ amax , bmin ≤
b ≤ bmax , may result in a two-dimensional (rectangular)
diagram in which each of the hundred of thousand (or even
a few million) of discrete pairs of parameter values (ai, bj) is
assigned a particular number 0 ≤ Ki,j ≤ 1 from the 0–1 test
for chaos, or a specific colorbar is used, describing the nature
of the response for each of those pairs of parameter values.
The later type of two-parameter color diagrams are typical in
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such an analysis [16], [18]–[20]. The novelty of this paper
is that the former type of two-parameter diagrams, obtained
from the 0–1 test for chaos with two varying parameters,
has not yet been considered in the literature and this paper
attempts to report on such two-parameter diagrams for the
0–1 test, their computations and comparison with the later
type of diagrams.

The first of two important features of using the 0–1 test
for chaos is a necessity of analyzing time-series responses
hundred of thousand or a few million of times, as each of
the integer indices i and j above typically runs up to, or even
exceeds, the value of 103 (depending on 1a and 1b), giving
a matrix of 103 × 103 values of (ai, bj). If a continuous
nonlinear model is available, then such a model is solved
about 106 times, and for each of the million times the 0–1 test
of chaos is applied.

The second important feature is that in many cases of
nonlinear continuous chaotic systems and circuits the time
horizon of each of the 106 solutionsmust be large enough, due
to the oversampling problem and one needs to use time series
of suitable lengths, to assure that the 0–1 test is applied in a
meaningful way, and the obtained Ki,j values fully character-
ize the nature of the response under consideration. When the
underlying mathematical model (system of ordinary differen-
tial equations, or ODEs) is solved numerically and the time
series is available at certain n · dt instants (n = 0, . . . , nfinal),
then to feed the time series values into the 0–1 test, one needs
to use every T instant, where the positive integer T depends
on the system being analyzed. Thus, the time series at time
instants n · T · dt is used in the 0–1 test. Examples reported
in [13], [21] show that the values of T could range from a
single integer value (T = 7 in [13]) to thousands (T = 3000
in [21]). The danger is, that the oversampling phenomenon
in the 0–1 test, when not properly addressed (incorrect value
of T chosen), may give incorrect results of the 0–1 test for
chaos [22], [23].

Our analysis applies to the following scenarios. First,
we assume that amathematical model of a continuous dynam-
ical process is available in the form of a system of ordinary
differential equations (ODEs). The system is solved by a
numerical solver with constant or variable step size and an
output is created at uniform spacing, say 0, dt, 2dt, 3dt, . . . .
A possible example of such a case is to use any numerical
ODE solver in Matlab with the options feature, as in the
following hypothetical sequence which yields a time series
(solution of an ODE system) at time instants with constant
step dt, initial condition [0.5, 4, 1] for 0 ≤ t ≤ 500:

dt = 0.001;
options = odeset(’RelTol’,1e-8,’AbsTol’,[1e-8 1e-8

1e-8]);
[t,x] = ode45(@f,0:dt:500,[0.5; 4; 1],options);

where @f is a Matlab function for the analyzed ODE system.
See Appendices A and B for a relevant example.

Because of the above two features, obtaining two-
parameter diagrams by using the 0–1 test for chaos is rather
time consuming with significant memory requirements.

Therefore, our diagrams are obtained using parallel comput-
ing, as it is practically impossible to obtain such diagrams
using a single processor computing.

The paper is organized as follows. Section 2 describes the
results of using the 0–1 test for chaos when one parameter is
changed only. The ‘false-negative’ and ‘false-positive’ out-
comes of the 0–1 test are described and a ‘false-negative’
outcome is illustrated based on the chaotic Lorenz sys-
tem. Then, two-parameter diagrams obtained for a rela-
tively simple continuous model of electric arc circuits are
presented in section 3. Those two-parameter diagrams are
obtained using parallel computation described in section 4.
Both software and hardware details of our computations are
provided. Next, a comparison between the two-parameter
diagrams obtained from the 0–1 test and the traditional color
bifurcation diagrams reported in [21] for the same circuits,
is presented in section 5. Conclusions and final remarks are
given in section 6. Appendices A and B complete the whole
presentation.

II. THE 0–1 TEST FOR CHAOS WITH ONE VARYING
PARAMETER
A. PRELIMINARIES
When one parameter, say R, in a mathematical model of
a nonlinear system (for example described by a system of
ODEs), varies in certain interval, then one may obtain the K
values from the 0–1 test for chaos as is shown in Fig.1(a).
The parameter R is the resistance value in the simple arc
circuits shown in Fig.2, whose mathematical model is given
in Appendix B (see (2)). Thus, for any fixed value of R in the
interval [5, 25] we obtain the corresponding K value from the
interval [0, 1]. The values of K close to 0 indicate periodic
time series, while those close to 1 are obtained for chaotic
ones. Transition from the values close to 0 to 1 (or vice-versa)
are sometimes obtained almost instantly, as, for example, for
the R values in the narrow interval marked by the letter γ
in Fig.1(a), or for R ≈ δ, R ≈ ε and R ≈ ζ . For other larger
intervals of R the transition from the values close to 0 to those
close to 1 is not as sharp, and several windows of very narrow
lengths with values K ≈ 0 occur in the interval of increasing
values of K : 0 → 1, as in the interval 9 < R < 13.8.
The first part of that interval is due to the period doubling
bifurcation (approximately from R = 9 to R = 10.3. Then,
at the value of R = β we obtain a purely periodic time series,
so K drops to the value close to 0.

The 0–1 test for chaos does not differentiate between vari-
ous types of periodic time series. For example, for R = 5 we
have a period-1 time series, while at the value of R ≈ α,
we have a period-2 time series.1 Also, the 0–1 test does
not give the local maximum values in various period-n
oscillations as does the corresponding bifurcation diagram
shown in Fig.1(b). This bifurcation diagram was obtained
by a conventional analysis of oscillatory systems based on

1Period-n time series has n local maximum values in one period of
oscillations.
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FIGURE 1. (a) K values from the 0–1 test. (b) the corresponding 1D
bifurcation diagram.

identification of the number and values of maximum points in
oscillatory systems. Based on Fig.1(b) one can easily estimate
the values of the two local maximum values (in one period) of
variable iθ for R = α, six local maximum values for R = β,
and five local maximum values for R = γ . These three cases
illustrate the period-2, period-6 and period-5 oscillations of
iθ , respectively.

B. THE ‘FALSE-NEGATIVE’ AND ‘FALSE-POSITIVE’
OUTCOMES OF THE 0-1 TEST
Problems with using the 0-1 test were observed, well doc-
umented and could be summarized by the footnote quote
from [22].2 The footnote quote continues with the follow-
ing statement: ‘‘. . . our negative results do not invalidate the
0-1 test as a proper mathematical test for distinguishing reg-
ular motion from fully developed chaotic motion. We believe
that so long as the system under study is truly deterministic
and the motion is far away from the boundary between chaos
and regular motions, the test is valid.’’

Unfortunately, the above statement is not quite correct. The
problems with weak chaos and stochastic noise are only a
part of the wider array of problems with the 0-1 test. Another
issue that may lead to erroneous results of the 0-1 test is the
oversampling phenomenon [1], [16]. Even when the system
or signal is deterministic and the motion is far away from
the boundary between chaos and regular motion, the 0-1 test
may incorrectly classify a chaotic motion as regular and, vice
versa, a regular system or signal may be classified as a chaotic
one. Paper [16] showed examples when a periodic signal

2‘‘By studying three different types of data, (i) edge of chaos, (ii) weak
chaos, and (iii) 1/f α noise with long-range correlations, we have shown that
the 0-1 test for chaos misclassifies deterministic and weakly stochastic edge
of chaos and weak chaos as regular motions, while strongly stochastic edge
of chaos and weak chaos, as well as 1/f α noise, as deterministic chaos.’’

TABLE 1. Results of 0-1 test for Lorenz system: σ = 10, ρ = 28, β = 8/3.
The ‘false-negative’ outcomes correspond to the combination of dt and T
values with outputs written in the red color.

with multiple frequencies in its spectrum can be erroneously
classified as a chaotic with the K parameter from the 0-1 test
being close to 1. This is the case of ‘false-positive’ outcome.
It as also shown in [2], [16] that the typical chaotic systems of
Lorenz, Rössler and Chua, may be classified as periodic by
the 0-1 test, even when other tools (i.e. Lyapunov exponents,
power spectrum) indicate otherwise.
Example:Consider the coefficientsK shown in Table 1 that

were obtained from the 0-1 test applied to various solutions of
the Lorenz system having its coefficients σ = 10, ρ = 28 and
β = 8/3, initial condition [10−10, 0, 1] with various dt values
and the ode45 solver. It is well-known that the Lorenz system
is chaotic for the chosen values of σ , ρ and β. The solutions
were output using tspan=[0:dt:800] and the options feature.
Then, the last 5000 solution values were inserted into the
0-1 test. The K values from the 0-1 test are shown in the first
row in Table 1 (for T = 1). Next, again, we considered a
sequence of the last 10001 solution values and skipped every
other value to form a new sequence of 5000 solutions values.
Such a sequence was fed into the 0-1 test. The test results
are shown in the second row (for T = 2). Following the
same pattern, we considered the last 20,000 solution values,
skipped every fourth solution value to form another sequence
of 5000 solution values to be tested by the 0-1 test again. The
results are shown in the third row in Table 1 (for T = 4).
The empty entries in Table 1 do not exist, since the respective
combination of the dt and T values do not allow for a creation
of a sequence of 5000 values for the time interval 0 ≤ t ≤
800. For example, if dt = 0.08, then 800/0.08 = 10, 000,
so only 10, 001 discrete solution values are available. The
last 5000 values are fed into the 0-1 test if T = 1, while
the whole sequence but one value is used when T = 2. The
cases with T > 2 are not possible (see the dt = 0.08 column
in Table 1 with no entries for T > 2). Notice that all the
entries in Table 1 written in red indicate periodic solutions
(since K ≈ 0), and, therefore, the corresponding cases are
clearly of the ‘false-negative’ nature. The 0-1 test fails to
provide correct answers in those cases. On the other hand,
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FIGURE 2. Two electric arc circuits.

the cases corresponding to the values written in bold (black
color) represent the correct outcomes that could be marked
as ‘true-positive’. In those cases the nature of the solutions is
correctly identified as chaotic (since K ≈ 1).

III. THE 0–1 TEST FOR CHAOS WITH TWO VARYING
PARAMETERS
The nonlinear circuits shown in Fig.2 have been recently
analyzed in [14] where their 1D and color 2D bifurcation dia-
grams were obtained through the identification of the number
of local maximum values in one period of oscillation. When
the number of such maximum values exceeded 16 or the
circuit’s response was chaotic for certain pairs of two param-
eter values, then such cases were assigned the white color.
Period-1 through period-15 oscillations weremarked through
a colorbar ranging from dark brown to light yellow colors.
Similar approach was used elsewhere [15]–[21], where the
rectangular color bifurcation diagrams were reported.

Based on the equivalence between the results of the
0–1 test and 1D bifurcation diagrams illustrated through the
graphs in Fig.1, one expects a similar correspondence in
the 2D (two-parameter) case. When two parameters (any
pair of the three parameters R, L and C) in (2) vary simul-
taneously, then the 0–1 test for chaos results in a matrix,
possibly of very large size (say, 103 × 103) with the values
0 ≤ Ki,j ≤ 1. Then, one simply obtains a discrete 2D function
f (i, j) = Ki,j with Ki,j ≈ 0 for period-n response (with n
being a natural number), while Ki,j ≈ 1 for chaotic response.
In this paper, the interval [0, 1] of possible Ki,j values has
been divided into 256 levels k/255, k = 0, 1, . . . , 255,
and for each entry of Ki,j one of those 256 gray levels
has been assigned. The black color represents Ki,j = 0,
white color is for Ki,j = 1, and the remaining values of
Ki,j = {1/255, 2/255, . . . , 254/255} are represented by the
remaining 254 shades of gray.

The two-parameter bifurcation diagrams obtained from the
0–1 test for chaos have not been reported in the literature.
This paper shows such diagrams for the circuits in Fig.2 with
256 gray levels of Ki,j between 0 and 1. The two-parameter
diagrams are presented for various three sizes: 300 × 300,
600 × 600 and 2000 × 2000 discrete points of (Li,Cj) or
(Ci,Rj). Moreover, our two-parameter diagrams are com-
pared with the diagrams obtained by another method of com-
puting such diagrams that is based on the identification of the
number n in the period−n oscillations or a failure to identify
n when chaotic responses occur. In particular, for the circuits

in Fig.2 we identify periodic oscillations with the value of
n from 1 to as high as 64. Another novelty of this paper
is an analysis of parallel computation of the two-parameter
diagrams for the 0–1 test as we provide the values of the
parallel efficiency coefficients and parallel computing times
in comparison to the sequential (single processor) computa-
tions. Our analysis can be applied to any other oscillatory
circuit or system described by sets of nonlinear ODEs of
various sizes.

IV. PARALLEL COMPUTATION OF BIFURCATION
DIAGRAMS WITH TWO VARYING PARAMETERS
A. SOFTWARE AND HARDWARE USED
To reduce the computing time burden and high memory
requirements when solving the ODE system (2) hundred of
thousand (or a few million) times and performing the 0–1 test
for chaos in the two-parameter case, the Intel Phi MIC (Many
Integrated Core) architecture and parallel computing were
utilized. The computer system had 3 Intel Xeon Phi Copro-
cessor 7120 units, each equipped with 61 cores clocking
1.238 GHz frequency. Individual core enabled running maxi-
mally 4 threads, which, as a consequence, made an execution
of 244 threads on one card possible. The code launched on
one core could be executed sequentially as well as by using a
2-piped processing. In order to maximize the computational
capabilities of the Intel Phi MIC architecture, it is advisable
to run at least two threads on one core, so that the 2-piped
processing is implemented. Each card was fitted with 16 GB
RAMGDDR5 memory, while the communication with other
devices and cards was being performed by the PCI bus.

The Intel MIC architecture was installed on the main-
board Supermicro X10DRG-OT+–CPU with two Intel Xeon
E5-2650 v3 2.30GHz processors and 112 GB RAMmemory.
The operating system managing co-processors was 64-bit
Ubuntu 14.04.5 LTS, while the installed cards were shared
as three Linux hosts working in TCP/IP network. Our com-
putations of two-parameter diagrams require both the high
CPU performance and significant amount of RAM memory.
For solving a nonlinear system of three ODEswith the chosen
Runge-Kutta method of order 4, integration step dt = 0.001
in the interval t ∈ [0, 10000], with each of the coprocessors
running 120 threads, the size of allocated memory should be
equal (10000/0.001) · 120 · 8 · 3 = 28.8 GB, where 8 bytes
is used for storing a double precision floating point number.
The 0–1 test was being run only on one of the vectors so the
value of 28.8 GB could be reduced to 9.6 GB, which is still
quite big, and in the case of using a smaller integration step
dt or larger than 10,000 seconds of time interval of solving
of ODEs, becomes an issue. Since the 0–1 test is using a
vector of 5000 time samples, the needed memory amount can
be minimalized to the value of 5000 · 120 · 8 = 4.8 MB,
irregardless of the integration step size and length of the
interval of integration.

The application was written in the C language and,
to obtain a parallel effect, the Intel MPI and OpenMP were
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FIGURE 3. The E(P,N) coefficients and time computing tpar (P,N) values.

used. Also, the Intel C++Compiler (icc) supporting theMIC
architecture was used. A programmer has an option to use the
Intel MKL (Mathematical Kernel Library), too. The use of
MKL will certainly improve code performance, but that was
not a goal set in this paper.

In order to create the bifurcation diagrams in this paper an
algorithm with parallelization on two levels was used. The
first parallelization takes place on the node level (3 coproces-
sors), while the second parallelization is done on the level of
individual nodes. A creation of a 600×600 diagram (consist-
ing of 360000 discrete points) was statically divided between
3 nodes, each of which performed parallel computing for
120000 points of the diagram. Next, the resulting matrix was
assembled on the main node. Depending on the way in which
the task was divided and on the implemented mechanisms,
the application was built into three versions, (1) through (3),
as follows:

(1): level 1 - MPI static task allocation, level 2 - MPI static
task allocation,

(2): level 1 - MPI static task allocation, level 2 - OpenMP
static task allocation,

(3): level 1 - MPI static task allocation, level 2 - OpenMP
dynamic task allocation.

The entire task, comprising N 2 diagram points, was
divided into P = P1 · P2 parallel tasks, where P1 and P2
are the numbers of coprocessors and processes (or threads)
running on coprocessors, respectively. In the versions (2) and
(3) above it is necessary to consider both local and global vari-
ables, whereas version (1) implements local variables only.
The additional asset of version (3) is the OpenMP scheduling
for the main loop, where the pool of N 2/P1 tasks is assigned
to P2 threads dynamically. After performing computations by
individual nodes, the results are assembled by the MPI on the
main node.

The objective of the following part of this section is to
demonstrate effectiveness of the parallel implementation in

FIGURE 4. The E(P,N) efficiency coefficients for parallel computation.

comparison to the sequential algorithm, as well as to illus-
trate how the effectiveness depends on the way in which the
coprocessor architecture is used. In addition, the effectiveness
of the above mentioned three application models is exam-
ined. For comparison, the following efficiency coefficient was
defined and used

E(P,N ) =
tseq(1,N )

tpar (P,N ) · N
(1)

whereP is the number of parallel processes or threads (we use
the word threads from now on), N is the size of the task
(diagrams are of N × N size), tseq(1,N ) is the time of com-
pleting a task of size N by one thread, while tpar (P,N ) is
the time of completing the same task of size N by P parallel
threads. The coefficient (1) is a number from the interval
(0, 1), reaching higher values for better parallelization effec-
tiveness. Due to the fact that obtaining tseq(1,N ) for large
N is extremely difficult, if not impossible, (for 600 × 600
diagrams it requires about 840 hours of computation), it was
assumed that tseq(1,N ) = tseq(1, 1) · N . Thus, (1) simplifies
to E(P,N ) = tseq(1, 1)/tpar (P,N ). For estimating tseq(1, 1),
100 measurements of the time computing were performed
and the mean of tseq(1,N ) = 8.3723 seconds with standard
deviation of σ = 0.0149 seconds was obtained.
Fig.3 shows the E(P,N ) coefficients and tpar (P,N )

(in seconds) computing times depending on the size N and
the number of threads P. The computations were done by
version (3), see above, where each task is performed with the
use of
• individual coprocessor cores for P ∈ [12, 180],
• 1-2 logical cores for P ∈ (180, 360], and
• 3-4 logical cores for P ∈ (360, 720].
In Fig.3(a) a nonlinear scale was used, where for P ∈

[12, 360] a measurement with the step size of 12 · P
was implemented, whereas for P ∈ (360, 720] the
size of 24 · P was used. To illustrate the difference in
tpar (P,N ) computing time a nonlinear gray scale was applied
in Fig.3(b).

It can be noticed that the most effective parallelization
appears when P ∈ [12, 180], where for N > 36 the coef-
ficients E are high with ¯E(P,N )N>36 = 0.976. Relatively
high coefficients E(P,N ) together with short computation
times are observed when P ∈ (180, 360]. On the order hand,
the shortest computations are obtained when the number of
threads is close to 720 and all logical cores are involved.
In this case the coefficients E(P,N ) are the lowest ones.
As a result, there is a little time saving in the case when
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FIGURE 5. Two-parameter 600× 600 diagrams obtained with the 0–1 test for chaos with T = 1700 and
dt = 0.001.

P ∈ (180, 360]. This fact is illustrated in Fig.3(b), where, for
N = 120 the gray levels change significantly for P ∈
(12, 360], but there is practically no difference for P ∈
(360, 720].

From the three analyzed implementations, version (3)
(based on dynamic tasks scheduling OpenMP andMPI distri-
bution) was proved to be the most beneficial. The effective-
ness of particular implementation for P ∈ {12, 24 . . . , 180}
and N ∈ {12, 24, . . . , 120} was analyzed as shown in Fig. 4.
The values of coefficient E for the implementation ver-
sions (1) and (2) are similar and the mean values equal
E(P,N )(1) = 0.8999, E(P,N )(2) = 0.8883 and E(P,N )(3) =
0.9452, respectively.

Both the parallel mechanisms and the way in which the
computer architecture is used impact the computing time.
In all implementations, the task scheduling between the three
coprocessors was static. For size N with N 2 mod 3 6= 0,
the coprocessors were assigned different numbers of tasks.
This has an impact on the parallel efficiency coefficients.
The optimal results are delivered through the use of dynamic
scheduling on the second level of parallelization. A sim-
ilar effect is expected when the task scheduling is done
dynamically also on the first level. The key 600 × 600 dia-
grams for the 0–1 test for chaos presented in this paper were
created by version (3) described above. The tpar (P, 600),
P = 180, 360, 720, and tpar (720, 2000) computing times and
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FIGURE 6. Two 2000× 2000 two-parameter diagrams obtained with the 0–1 test for chaos. They correspond
to the diagrams shown in Fig.5(a) and Fig.5(d), respectively. T = 1700 and dt = 0.001 for both diagrams.

FIGURE 7. Various 300× 300 two-parameter diagrams obtained with the 0–1 test for chaos. L = 0.2 = const
for diagrams (a), (b) and (d), while R = 15 = const for diagram (c).

E(P, 600), P = 180, 360, 720, and E(720, 2000) coefficients
were obtained as follows:
• tpar (180, 600) = 16984.7383 seconds (4.72 hours),
E(180, 600) = 0.9857,

• tpar (360, 600) = 10478.9354 seconds (2.91 hours),
E(360, 600) = 0.7990,

• tpar (720, 600) = 8691.8441 seconds (2.41 hours),
E(720, 600) = 0.4816,

• tpar (720, 2000) = 96234.9790 seconds (26.731 hours),
E(720, 2000) = 0.4833.

It can be noticed that the coefficient E(180, 600) is close
to 1. Around 98.6% of the coprocessor time was used for
computations, while the remaining 1.4% was used for the
parallelizationmechanisms. The granulation of the tasksmin-
imized the use of synchronization mechanism and access to
the critical section. Moreover, the dynamic allocation of the
tasks on the second parallelization level improved the overall
efficiency of computations. Notice the difference between the
coefficients E(P, 600) and the close values of tpar (360, 600)
and tpar (720, 600)) above.
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FIGURE 8. First part of a two-part figure (with Fig.9). For an extensive caption see Fig. 9. The above four
diagrams correspond to the diagrams in Figs.5(a) and 5(b).

B. RESULTS OF NUMERICAL EXPERIMENTS: PROPERTIES
OF TWO-PARAMTER DIAGRAMS FOR THE 0–1 TEST
Figs.5, 6 and 7 show the two-parameter diagrams for the
0–1 test for chaos when the pairs of parameters (L,C) and
(C,R) vary. The gray level bars with 256 levels (from the
black level corresponding to K = 0 to the white level
corresponding to K = 1) are shown on the right-hand side
of each diagram. Figs.5(c) and 5(e) on the left-hand side
correspond to two zoomed-in rectangles in Fig.5(a). Simi-
larly, Figs.5(d) and 5(f) on the right-hand side correspond
to two zoomed-in rectangles in Fig.5(b). Any sharp edge in
those diagrams - a rapid change between the white and black
colors, or equivalently from the values K ≈ 1 to K ≈ 0)
shows a dramatic change from a chaotic response to a periodic
one - as, for example, for the values of R = δ and R = ζ

in Fig.1. Notice the relatively high value of parameter T used
in most of the two-parameter diagrams in Figs.5, 6 and 7. The
value of T chosen according to the recommendation of [13],
depends, in general, on the nonlinear system of ODEs, and
for a particular system, on the step of integration dt . From
the qualitative point of view, even observed with a naked
human eye, the diagrams in Figs.5, 6, 7(c) and 7(d) have the
product T · dt = 1700 · 0.001 = 1.7 and exactly the same
product T · dt = 340 · 0.005 = 1.7 is for the diagrams in
Figs.7(a) and 7(b).

Notice also, that the two 2000 × 2000 diagrams shown
in Figs.6(a) and 6(b) correspond to the 600 × 600 diagrams

in Figs.5(a) and 5(d), respectively. Although each of the for-
mer two diagrams required solutions of 4·106 systems (2) and
each of the later two diagrams required only 3.6·105 solutions
(ratio of the number of solved systems is about 11.1), there is a
very little difference in the quality of the two sets of diagrams
under comparison. Obviously, a slightly worse granulation is
observed in Figs.5(a) and 5(d) than in Figs.6(a) and 6(b), but
the difference is difficult to be observed with a naked human
eye.

V. COMPARISON WITH ANOTHER TEST FOR CHAOS
In this section we compare the two-parameter diagrams
obtained for the 0–1 test for chaos applied to system (2),
as described in the previous two sections, with the corre-
sponding two-parameter diagrams obtained by the method
described in [15]. Identification of the value of n in any
period-n oscillatory response results in color two-parameter
diagrams shown in Figs.8(a), 8(c) and Figs.9(a), 9(c). The
black color corresponds to n = 1, that is period-1 oscillations,
while the light yellow color represents n = 63, that is
period-63 oscillations. The periodic oscillations with n ≥ 64
and chaotic oscillations are represented by the white color
at the top of the color bars on the right sides of the color
diagrams. The color diagrams in Figs.8(a), 8(c) correspond to
the diagrams for the 0–1 test in Figs.5(a), 5(b), respectively.
Also, the color diagrams in Figs.9(a), 9(c) correspond to the
diagrams for the 0–1 test Figs.5(c), 5(d), respectively.
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FIGURE 9. Second part of the two part figure (with Fig.8). Figs.8 and 9 show various 600× 600
two-parameter diagrams obtained with the identification of the maximum values of the periodic
responses (up to 63 maximum values in one period) and assigning the value n = 64 and the white color
for other responses (including chaotic ones). System (2) was solved for 0 ≤ t ≤ 4000 with integration step
dt = 0.001. Identification of maximum points done for 2000 ≤ t ≤ 4000. Color diagrams on the left hand
side represent periodic solutions with the number of maximum points in one period from 1 (period-1
oscillatioins) to 63 (period-63 oscillations), while all periodic oscillations with 64 or more maximum
points in one period and chaotic solutions are represented by the white color. For the black-and-white
diagrams on the right hand side the black color represents all periodic solutions from period-1 to
period-63 oscillations, and the remaining solutions are represented by the white color. The above four
diagrams correspond to the diagrams in Figs.5(c) and 5(d).

The parameters used in obtaining the color diagrams in
Figs.8(a), 8(c) and Figs.9(a), 9(c) were: step of integration
dt = 0.001 (the same as in computation of most of the dia-
grams using 0–1 test for chaos), time interval of computation
t ∈ [0, 4000] seconds, time period for finding the maxi-
mum values and identification of the type of period-n, n =
1, . . . , 63 (or assigning n = 64 (white color)), was 2000 ≤
t ≤ 4000 seconds (half of the interval of solution). Also,
the color diagrams in Figs.8(a), 8(c) and Figs.9(a), 9(c) were
obtained by parallel computingmethod, different than the one
described in Section 4 of the present paper. In the method of
identification of the values of maximum points the issue of
oversampling does not occur, so the solutions required signif-
icantly shorter time intervals than in the case of the 0–1 test
for chaos. However, other issues need to be considered that do
not appear in the 0–1 test for chaos. For example, the issue of
accuracy of numerical identification of the maximum points
in one period is important. In general, making a comparison
between the two methods of identifying periodic and chaotic
solutions is difficult, if not impossible. Also, in this paper we
identified periodic solutions up to period-63, while assigning

n = 64 for all other periodic solutions and chaotic ones.
On the other hand, theK values obtained from the 0–1 test for
chaos were digitized at 256 gray levels. The binary black-and-
white diagrams in Figs.8(b), 8(d) as well as in Fig.9(b), 9(d)
were obtained from their respective color counterparts on the
left side, by assigning the black color to all period-1 through
period-63 solutions, while the white color is assigned to the
solutions with n = 64, as explained before. Those black-and-
white diagrams in Figs.8(b), 8(d) as well as Fig.9(b), 9(d)
agree extremely well with the diagrams obtained with the
0–1 test for chaos, that is the diagrams in Figs.5(a), 5(b) as
well as in Figs.5(c), 5(d). The method used to compute the
color diagrams in Figs.8(a), 8(c), 9(a) and 9(c) is described
in details in [15].

VI. CONCLUSION
Parallel computations of two-parameter bifurcation diagrams
for the 0–1 test for chaos were presented in this paper.
Due to enormous memory requirement and computation time
burden it is practically impossible to obtain such diagrams
using single processor computation. Effectiveness of parallel
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computation has also been analyzed from the point of view of
the size N ×N of the computed diagrams and the value of P,
the number of threads. Moreover, the obtained two-parameter
diagrams were compared with the corresponding diagrams
obtained by a conventional method of analyzing periodic
and chaotic diagrams, based on the identification of period-n
responses (for n = 1, . . . , 63) through the maximum values
in one period or determination that n ≥ 64, for which the
white color is assigned in the color bifurcation diagrams. It is
also possible to compare out approach to the 0–1 test for
chaos and two-parameter bifurcation diagrams with similar
diagrams for the largest Lyapunov exponents. Our illustrative
examples utilize a nonlinear ODE model for two equivalent
electric arc circuits. The method presented in this paper is
applicable to any nonlinear dynamical system whose math-
ematical model is based on nonlinear ODEs. Each such a
system, for example considered in [24]–[26], [28], has its own
proper combination of the dt and T parameters that should be
examined before the 0–1 test is applied.

APPENDIX A
AN ODE SYSTEM IN MATLAB FOR THE ELECTRIC ARC
CIRCUITS IN APPENDIX B
The code below shows @f for the circuits described in
Appendix B below and the dimensionless system of three
ODEs on the right-hand side of (2).

function xdot = f(t,x)
global R
m = −2/3; C = 3.14; L = 1;
xdot(1) = (1/L)*(x(2)-x(1)*(x(3)ˆm));
xdot(2) = (1+R-x(2)-R*x(1))/(R*C);
xdot(3) = x(1)ˆ2-x(3);
xdot = xdot’;
end

APPENDIX B
THE CIRCUITS AND THEIR MODEL [14]
The electric arc circuit in Fig.2(a) is described by the system
of three equations on the left side of (2) below and its dimen-
sionless version on the right side [21]

di
dτ
=

1
L
(uC −

U (iθ )
iθ

i)
dx
dt
=

1
L
(y− xzm)

duC
dτ
=

1
RC

(E − uC − Ri) →
dy
dt
=

1
RC

(R+ 1− y− Rx)

di2θ
dτ
=

1
θ
(i2 − i2θ )

dz
dt
= x2 − z (2)

where x = i/I0, y = uC/U0, and z = i2θ/I
2
0 , with iθ being

the arc current, i and uC denoting the current through L and
voltage across C , respectively (see Fig.1(a)). The U0 and I0
are constants from the static arc volt-ampere characteristic
U (iθ ) = U0(iθ/I0)n with n < 0. This means that the voltage
across the element representing the arc column in Fig.1(a) is
U (iθ )i/iθ , which follows from the dynamic and static rela-
tions in the welding arcs - see [29] for more details. The
θ = τ/t , L, C and R are the time constant, inductance,

capacitance and resistance, respectively. The m in (2) is such
that −1 < m = (n − 1)/2 < 0 and, typically, m = −2/3,
which follows from U (iθ ) = inθ , with n = −1/3. Also, one
may consider the system on the right side in (2) as the system
on the left side with U0 = I0 = θ = 1 and the fact that
E = RI0+U0. The circuit in Fig.2(b) is also described by (2)
with an appropriate change of variables [29].

It can be shown that (2) has two equilibrium points:
(1, 1, 1) and (xa, xna , x

2
a ), where xa is the solution of 1+ R−

Rxa − xna = 0. The second equilibrium is unstable provided
that R+n > 0, which is assumed to be satisfied in this paper.
Qualitative analysis of the two equilibrium points, the asso-
ciated eigenvalues and Hopf bifurcations of (2) are derived
in the case of 1D bifurcations in [29] and an interesting
link between AC models of electric arcs and memristors is
discussed in [30].
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