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ABSTRACT Recently, the study of emotion recognition has received increasing attentions by the rapid
development of noninvasive sensor technologies, machine learning algorithms and compute capability
of computers. Compared with single modal emotion recognition, the multimodal paradigm introduces
complementary information for emotion recognition. Hence, in this work, we presented a decision level
fusion framework for detecting emotions continuously by fusing the Electroencephalography (EEG) and
facial expressions. Three types of movie clips (positive, negative, and neutral) were utilized to elicit specific
emotions of subjects, the EEG and facial expression signals were recorded simultaneously. The power
spectrum density (PSD) features of EEG were extracted by time-frequency analysis, and then EEG features
were selected for regression. For the facial expression, the facial geometric features were calculated by
facial landmark localization. Long short-term memory networks (LSTM) were utilized to accomplish the
decision level fusion and captured temporal dynamics of emotions. The results have shown that the proposed
method achieved outstanding performance for continuous emotion recognition, and it yields 0.625±0.029
of concordance correlation coefficient (CCC). From the results, the fusion of two modalities outperformed
EEG and facial expression separately. Furthermore, different numbers of time-steps of LSTM was applied
to analyze the temporal dynamic capturing.

INDEX TERMS Continuous emotion recognition, EEG, facial expressions, signal processing, decision level
fusion, temporal dynamics.

I. INTRODUCTION
Emotion is a psychophysiological process of perception and
cognition to object or situation, and it plays an impor-
tant role in human-human natural communication. How-
ever, the emotion recognition was neglected in the field of
human-computer interaction (HCI). Due to the explosion of
machine learning in the cognitive science, affective com-
puting has emerged to integrate emotion recognition into
HCI. Nowadays, emotion recognition system aims to estab-
lish a harmonious HCI by endowing computers with the
ability to recognize, understand, express and adapt to human
emotions [1]. Hence, it provides potentially applications for
emotion recognition in many fields, such as human robot
interaction (HRI) [2], safe driving [3], social networking [4]
and distance education [5]. These applications manifested the
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different modalities interaction which provides complemen-
tary information to improve the precision and robust of the
emotion recognition system.

In order to represent emotions, the discrete models and
dimensional models were proposed by psychologists [6].
The discrete emotion models turned emotion recognition
into classification problem. Six basic emotions (happiness,
anger, sadness, surprise, fear and disgust) can be recognized
as prototypes from which other emotions are derived [7].
However, the emotions expressed in communication are com-
plex, and one basic emotion can hardly describe the human
feeling under certain situation. In addition, emotions could
be mapped in multi-dimensional spaces that could maxi-
mize the largest variance of all the possible emotions [8].
The valence-arousal plane is one of the well-known dimen-
sional models of emotion that maps the emotions into a
two-dimensional circular space. Valence ranges from nega-
tive to positive and arousal is the concentration of physical
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activity from calm to excited [9]. Based on the valence-
arousal plane, the emotions can be represented to the dimen-
sional space in continuous time. The core of continuous
emotion recognition is to analyze the time-varying affect
phenomenon that are elicited by stimulus [10]. Different
materials are utilized to elicit emotions such as affective
pictures [11], music videos [12], movie clips [13], and con-
versation [14]. The characteristics of time-varying visual and
audio stimuli in context makes movies seem to be the one of
the most effective ways to elicit emotions [15].

In this paper, we focused on continuous movie-induced
emotion recognition by the fusion of EEG and facial expres-
sion. The goal of this work is to improve the precision of
emotion recognition. Three classes of movie clips that repre-
sent the negative, neutral, and positive emotions were utilized
to elicited emotions, and the EEG signals and facial expres-
sions of the subjects are recorded simultaneously. Firstly,
facial expressions response of subjects watching movie clips
were annotated continuously by ten annotators. The averaged
continuous annotations were considered as the ground truth
for the regression of continuous emotions. Next, EEG is
preprocessed by 4-47 Hz bandpass filtering and independent
component analysis (ICA) based spatial filtering to weaken
the influence of eyes gazing and head moving. PSD fea-
tures of different frequency bands were extracted from EEG
by short-time Fourier transform (STFT) and feature selec-
tion algorithm t-Distributed Stochastic Neighbor Embedding
(t-SNE) was applied to eliminate irrelevant or redundant fea-
tures to improve the regression performance. For the facial
expression, facial geometric features are extracted by the
facial landmark localization model. The predictions of EEG
and facial expressions were obtained by the Support Vector
Regression (SVR) separately. Finally, LSTM was used to
accomplish the decision level fusion and temporal dynam-
ics capturing for the continuous emotion recognition. The
performance of different numbers of time-steps of LSTM
was analyzed for temporal dynamic capturing. The main
contributions are as follows. (ş) We adopted an LSTM-based
decision level fusion framework for the fusion of EEG and
facial expressions based emotion recognition. (şş) Temporal
dynamics of emotion were captured and analyzed to improve
the precision of continuous emotion recognition.

The structure of the remaining parts of this paper is as
follows. The related work of multimodal emotion recognition
and temporal dynamics of emotions are given in Section 2.
The methods for the fusion of EEG and facial expres-
sion based continuous emotion recognition are displayed in
Section 3. The experimental results are presented in Section 4.
The discussions of the results are shown in Section 5. Finally,
the paper is concluded in Section 6.

II. RELATED WORK
A. MULTIMODAL EMOTION RECOGNITION
The performance of multimodal emotion recognition is gen-
erally better than single modality [7]. Recent advances in

emotion recognition tended to evaluate the affects by multi-
modalities. Zheng et al. [16] proposed EEG and eye-tracking
combined emotion recognition method. The results showed
that both feature level fusion and decision level fusion of
EEG signals and eye tracking can improve the performance
of emotion recognition model. Song et al. [17] designed
a multi-modal physiological emotion database, including
EEG, galvanic skin response (GSR), respiration (RSP) and
electrocardiogram (ECG). Physiological signals are sampled
for discrete emotion recognition. The attention-long short-
term memory (A-LSTM) algorithm was proposed to extract
discriminative features to improve classification accuracy.
The multimodal emotion databases DEAP [12] and MAH-
NOB HCI [18] including both physiological signal and facial
expression response were widely used in emotion recognition
researching. Huang et al. [8] performed binary classification
of the statues of valence and arousal by combining the EEG
and facial expressions. The best accuracies of valence and
arousal were achieved 80.30% and 74.23% for the DEAP
database. Soleymani et al. [19] fused EEG and facial expres-
sions for movie-induced continuous emotion recognition,
the results demonstrated that EEG signals could provide the
complementary information in presence of facial expressions.

B. THE TEMPORAL DYNAMICS OF EMOTIONS
Many researchers focused on time window based method to
model the complex correlations of emotions in the temporal.
Liu et al. [20] clipped EEG data every 1 second, and use the
2 s window with 50% overlap to construct temporally related
EEGdata segment. Hence, the current emotional state are pre-
dicted by three consecutive EEG data segment. That is poten-
tial to improve the performance of online emotion recognition
system. Khosrowabadi et al. [21] proposed a biologically
inspired feedforward neural network for emotion recognition
by the EEG signal. This network concludes six layers, and
genetic algorithms are applied for selecting the optimum
length of EEG data to achieve the short-term memory at
the second layer. Compared with various feature extraction
algorithms, the proposed network achieved the best accura-
cies of valence and arousal classification. Nicolaou et al. [22]
proposed output-associative relevance vector machine (OA-
RVM) to learn non-linear input and output associations and
temporal dynamics. OA-RVM significantly outperforms both
SVR and RVM in classification accuracies by employing a
predefined time windows, which could induce the learning
of temporal dynamics. Thus, temporal dynamics capturing is
potential to improve the robustness and precision of emotion
recognition.

Recurrent neural network (RNN) is the classic model for
time series prediction, and it is widely used in emotion
recognition. Weninger et al. [23] changed mean squared
error (MSE) loss function of RNN to the CCC [24],
it improved the performance of continuous emotion recog-
nition obviously. Banda et al. [25] proposed Nonlinear Auto
Regressive with eXogenous inputs recurrent neural network
(NARX-RNN) that speeds up convergence and increases
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FIGURE 1. An overview of the fusion of EEG and facial expression based continuous emotion recognition framework.

generalization ability. To solve the potential gradient van-
ishing and explosion problem of RNN, the LSTM was pro-
posed which added gate controlling and memory cells on
the basis of RNN to obtain the ability to learn long-range
dependencies. Nakisa et al. [26] proposed a new frame-
work to automatically optimize LSTM hyperparameters
using differential evolution (DE) and that improve the accu-
racy effectively. Moreover, bidirectional LSTM (BLSTM)
was also used to explore the complex relationship between
features and labels [27], [28]. However, the current emo-
tional state could not be predicted by future information
in practical applications. The LSTM has the advantages
in time series analysis and long-range dependencies learn-
ing for temporal dynamics capturing in continuous emotion
recognition.

III. MATERIALS AND METHODS
A. ARCHITECTURE
In this paper, EEG and facial expressions were fused to
constitute the continuous emotion recognition system. Firstly,
EEG and facial expressions are recorded by the EEG acqui-
sition device and camera during the experiment separately.
Facial expressions response of subjects was annotated contin-
uously, the averaged continuous annotations were considered
as the ground truth. Next, PSD features are extracted from
EEG, and then the feature selection was also necessary to
achieve. For the facial expression, the facial geometric fea-
tures are calculated by the facial landmark localizationmodel.
Finally, the LSTM is utilized to accomplish the decision
level fusion and capture the temporal dynamics of emotions.
The continuous multimodal emotion recognition framework
is described in Figure 1.

B. EXPERIMENT PARADIGM
For inducing spontaneous emotions of the subjects, the movie
clips from the SEED dataset [29] are chosen as stimuli in this
work. The film clips are divided into three classes which are
positive, neutral and negative. Table 1 shows the details of
selected film clips.

TABLE 1. The description of SEED dataset film clips.

Ten healthy subjects participated in the experiment, includ-
ing 5males and 5 female age from 22 to 26. The process of the
experiment is shown in Figure 2. Six film clipswere presented
to each subject. The length of each clip is about 200 s (M =
201.33 s, SD = 17.18 s). We asked subjects to keep the body
as fixed as possible during the experiment. Before viewing
film clips a prompt will appear on the screen, the subject
should keep in the relax state for the next 10 s which aims
to get the baseline to capture the changing of emotion. EEG
and facial expression response are recorded simultaneously
in duration of movie clips viewing. The subjects can have a
rest between the two sessions for 30 s.

The EEG data was sampled by the Emotiv EPOC head-
set. Emotiv EPOC is a low-cost dry electrode EEG signal
acquisition equipment, including 14 acquisition channels and
a 2-axis gyroscope, following the international 10-20 position
layout: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
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FIGURE 2. The process of the experiment.

FIGURE 3. The Emotiv EPOC headset and electrodes distribution.

FIGURE 4. The Valence and Arousal of the SAM. (a) Valence and
(b) Arousal.

F8, AF4, which also has the reference electrode (CMS/DRL)
of the ear. Figure 6 shows the distribution of all electrodes
of the Emotiv EPOC headset. The internal sampling rate of
EPOC is 2048 Hz, which is converted to a 128 Hz output
by down-sampling, and data is transmitted to the computer
via Bluetooth. In this work, we choose all the 14 acquisition
channels. The EEG and facial expressions are recorded simul-
taneously. We applied the HUAWEI Honor 8x mobile phone
(30 FPS, 1920x1080 image size) fixed with a holder as the
low-cost facial expression sampling equipment.

In this work, 10 postgraduates majored in psychology
was guided to finish the continuous annotation of sub-
jects’ facial expression response. We applied DARMA for

FIGURE 5. (a) The annotation environment and (b) annotation examples.

emotion annotation. DARMA is a media annotation pro-
gram that collects continuous ratings of valence and arousal
while displaying audio and video files and the annotators
can complete continuous emotion annotation visually with
a joystick [30]. The annotation environment and annotation
examples are shown in Figure 5. Here, the values of valence
and arousal were defined by the Self-Assessment Manikin
(SAM). It is a generally accepted model of emotion evalu-
ation that uses the image of a cartoon manikin to represent
the values of different dimensions of emotion are applied
as criterion of emotion evaluation [31]. Figure 4 shows the
valence and arousal of SAM, the annotators could complete
the emotion annotation according to the state of the manikins.
Each dimension of the emotion was continuously valued in
the range of -1 to 1. Each annotator needs to finish the valence
rating for 60 facial videos. The sample rating of the joystick
is 20 Hz, and the averaged value of 1 s was as the real
output. Considering that the subjects carefully and quietly
watch the movie clips during the experiment, it is difficult for
the annotators to rate arousal by facial videos of subjects [19].
Therefore, only the valence annotations were used to evaluate
the emotional state in this study.

C. EEG PREPROCESSING AND FEATURE EXTRACTION
The raw EEG signal contains a variety of artifacts, especially
the Electrooculogram (EOG) and utility frequency. The pre-
process of EEG is accomplished by the EEGLABwhich is the
toolbox for physiological signal analysis on Matlab [32]. The
original EEG data are processed by a 4-47 Hz bandpass filter
to reduce the utility frequency artifacts. The EOG related
to eyes movement which could be rejected by topographic
maps. The ICA can decompose the EEGdata into 14 (Number
of the acquisition channels) independent components. The
independent components can be visualized by of EEG field
as 2-D circular views which maps the original EEG data
to the spatial domain. Ultimately, the EEG signal will be
reconstructed for feature extraction.

The EEG signal can be seen as a type of non-stationary
random signal that is hard to extract features only in the time
domain. However, time-frequency analysis can capture the
dynamic change in the time and frequency domain. Hence,
we used STFT to decompose signal into small segments
by the time window, and each segment is considered to be
stationary signal approximately. The EEG data are mapped
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to the time-frequency plane by STFT, and the Hamming
window is chosen as the short-time analysis window. The
PSD features of EEG signals in different bands are corre-
lated with emotions, and theta bands (4-7 Hz), alpha bands
(8-12 Hz), beta bands (13-30 Hz) and gamma bands
(30-47 Hz) are the general selections [33]. The 56 features
(14 channels ×4 frequency bands) was selected for repre-
senting the EEG signal. The subtraction of power spectrum
between the movie clips viewing durations and neutral dura-
tions (10 s before the movie clips viewing) of each subject
are calculated. This may present the change of emotions
more obviously and minimize individual variability to some
extent. Finally, PSD of theta, alpha, beta and gamma bands
are calculated separately.

D. THE FEATURE SELECTION OF EEG
Feature selection is a necessary step for EEG analysis.
In practical, some of the EEG features are irrelevant or may
be interdependent. Feature selection aims to simplify the
model and improve generalization performance by reducing
irrelevant or redundant features. In this paper, we apply a non-
linear dimensionality reduction algorithm for EEG feature
selection.

Traditional linear dimensionality reduction algorithm,
Principal Components Analysis (PCA) [34] and Partial Least
Square (PLS) [35], have been widely used in feature selection
of EEG. A major problem of linear dimensionality reduc-
tion algorithms is that they preserve as much of the sig-
nificant structure of the high-dimensional data as possible
in the low-dimensional map by maximize the variance, that
caused data points are far apart even the points are simi-
lar [36]. However, it’s very essential to keep similar data
points close together in mapping the high-dimensional data to
low-dimensional. Hence, in this work we utilized the t-SNE,
a non-linear feature selection algorithm, make the features
more characteristic to improve the prediction performance.
The t-SNE has been demonstrated its advantage in the field
of computer vision [36].

Stochastic Neighbor Embedding (SNE) was proposed by
Hinton and Roweis [37]. Its main principle is to convert the
high-dimensional Euclidean distance between data points to
the conditional probability of similarity. Though SNE mani-
fests the outstanding performance in imaging dimensionality
reduction, the complexity of cost function and the crowding
problem are worth to optimize. t-SNE employed the student’s
t-distribution as heavy-tailed distribution in low-dimensional
to compute the similarity between points which could allevi-
ate the growing problem. The similarities of low-dimensional
and high-dimensional can be presented by equation (1) and
equation (2):

qij =
exp

(
−
∥∥yi − yj∥∥)∑

k 6=l exp (−‖yk − yl‖)
(1)

pij =
exp

(
−
∥∥xi − xj∥∥ /2σ 2

)∑
k 6=l exp

(
−‖xk − xl‖ /2σ 2

) (2)

where X = {x1, x2, . . . , xi} is the input data which is high-
dimensional, Y = {y1, y2, . . . , yi} is the low-dimensional
mapping of X . pij and qij are the pairwise similarities in the
high-dimensional space and low-dimensional space respec-
tively. σ is the variance of the Gaussian that is centered on
datapoint xi. Furthermore, the cost function of t-SNE is the
symmetric version of SNE that could simplify the form of
the gradient, and it is given by:

C = KL (P||Q) =
∑
i

∑
j

pijlog
pij
qij

(3)

The cost C which is represented by the Kullback-Leibler
divergence between joint probability distribution P (in the
high-dimensional) and joint probability Q (in the low-
dimensional). And the gradient of t-SNE was calculated to
minimize the cost C which is simpler than the gradient of
SNE, it can be shown as:

δC
δyi
= 4

∑
i

(
pij − qij

) (
yi − yj

)
(4)

In this work, X refers to the raw EEG features, and Y refers
to the mapped EEG features. The feature dimension is settled
as 50 by the PCA preprocessing. The parameter of perplexity
is 30, and the number of iterations is set to 1000. At last,
the mapped dimension is needed to optimize in the range
of 15 to 30.

E. FEATURE EXTRACTION OF FACIAL EXPRESSIONS
Facial expression is a simple way to express emotions in daily
life, so facial expressions are always applied in multimodal
emotion recognition. The facial landmark localization is an
effective method to extract facial geometric features. The
68 points facial landmark model was established by Dlib
C++ library on the Python platform [38]. In this study,
we selected the slope of the brow, the extent of eyes opening,
the extent of mouth opening, and slope of a corner of the
mouth as the facial features. These features are calculated by
coordinates of 29 landmarks that mainly located at the area of
eyes and mouth. The detailed description of facial landmarks
has been shown in our previous research [39], and examples
of facial landmarks are expressed in Figure 6.

IV. TEMPORAL DYNAMICS OF EMOTIONS
The continuous emotion recognition could be considered as
a type of the time series prediction, and LSTM has the capa-
bility of time series analysis. Thus, the LSTM was utilized
to accomplish the decision level fusion of EEG and facial
expression and capture the temporal dynamics of emotions.

A. LONG SHORT-TERM MEMORY NETWORKS AND
HYPERPARAMETERS SELECTION
The LSTM was implemented by Keras [40], a high-level
neural networks API, and the Tensorflowwas chosen as Keras
backend. The model of LSTMs was running on NVIDIA
GeForce GTX 950M with Compute Unified Device Archi-
tecture (CUDA) acceleration. The weights of LSTM are
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FIGURE 6. The facial landmark localization of different subjects.

TABLE 2. The average performance of different LSTM schemes.

TABLE 3. The hyper-parameters of LSTM.

randomly initialized according to the normal distribution to
improve the efficient of gradient descent.

The hyper-parameters of LSTM are settled as follows,
the number of hidden layers L∈ {1,2}, the number of hidden
units in the first hidden layer NU1 ∈ {10, 20, 30, 40}. If the
LSTM has two hidden layers, the units in second hidden layer
(NU2) will be the half or a quarter of the first layer. The
loss function LF∈ {Mean Squared Error (MAE), Root Mean
Squared Error (MSE)}. The gradient descent optimizer GD∈
{SGD, Momentum, Adam}. The learning rate LR∈{0.0005,
0.001}. The mini-batch size MS∈{10, 20, 30, 40}. To avoid
overfitting, we add the dropout in the hidden layer and the
coefficient C∈{0.1, 0.2}. The results were evaluated in a 10-
fold cross validation which is subject-dependent. The best
performance parameters on the test set are selected as the final
hyper-parameters. The selected hyper-parameters are listed
in Table 3 and we gave the performance by different hidden
layers and hidden units in the Table 2. In this paper, CCC was
used to evaluate the performance.

B. TEMPORAL DYNAMICS OF EMOTIONS AND
DECISION LEVEL FUSION
The minimum time window of EEG is settled as 1 s, 128 sam-
ple points in total. According to the EEG, the images of

facial expression are picked out in 1 s video. The raw EEG
data should be preprocessed by bandpass filtering and ICA
spatial filtering, and then PSD features are extracted by STFT.
Meanwhile, the facial expression images are processed by the
facial landmark model, the facial features are calculated by
the coordinates of significant landmarks.

EEG and facial expressions can get the current predic-
tion of valence by inputting the processed features to SVR
respectively. What’s more, inherent temporal dependencies
exist in emotion recognition research [22], so the tempo-
ral dynamic of emotion should be considered in continuous
emotion recognition. In the paper, the decision level fusion
of EEG and facial expressions was implemented by LSTM
which could capture temporal dynamics, and Figure 7 has
shown the decision level fusion framework. For example,
the current valence prediction not only correlated with the
current time-step predictions but also the previous time steps.
And each time-step of LSTM is fed with 1 s affective data,
so the number of the time-steps can be selected as 1, 2, 3 and 4
that correspond to decision level fusion by different time
length.

V. RESULTS
A. CONTINUOUS AFFECTIVE ANNOTATION
The ground truth of each trail was the averaged annotations by
10 annotators. The intraclass correlation coefficients (ICC)
are calculated tomeasure the consistency of the valence anno-
tations (M= 0.730, SD= 0.083), and 51.67% of annotations
of the movie clips are over 0.75. The appropriate movie
clips selection and visual annotation by DRAMA potentially
improved the consistency of annotations that made the ground
truth more reliable. Figure 8 shows an example of negative
clip session detection result.

B. THE RESULTS OF FEATURE SELECTION
Figure 9 shows precision of EEG-based emotion recognition
by two feature selection methods (PCA and t-SNE) with
different dimensions. The results indicated that the precision
of EEG-based emotion recognition was promoted as the
decreasing of feature dimensions. The PCA and t-SNE shows
the effectiveness in EEG-based emotion recognition. More-
over, t-SNE achieved more significantly improvement than
PCA. The best performances achieved by t-SNE and PCA
were 0.534 ± 0.028 and 0.464 ± 0.032 separately when the
dimension of the mapped feature is 15.

C. THE ANALYSIS OF DIFFERENT TIME-STEPS
We applied different numbers of time-steps (1, 2, 3, 4) of
LSTM to accomplish the decision level fusion and temporal
dynamic capturing. The results are summarized in Figure 10.
Overall, all classes of movie clips achieved the highest CCC
at three time-steps. And the averaged CCC at one time-step
is 0.567±0.041, two time-steps is 0.615±0.037, three time-
steps is 0.625±0.029 and four time-steps is 0.614±0.027.
The averaged performances were not significantly different
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FIGURE 7. The LSTM decision fusion with different time-steps.

at two, three and four time-steps, but that obviously
outperformed the performance one time-step. Moreover,
the previous time-step information is beneficial to the pre-

diction of current time-step. Thus, the LSTM with multi-
time-steps could capture the temporal dynamic of emotions
effectively.
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FIGURE 8. The annotation results were annotated by ten annotators An
annotation example of the subject’s response to the Aftershock (a
negative movie clip).

FIGURE 9. The performances of mapped features by different feature
selection algorithm.

FIGURE 10. The decision level fusion performance by LSTM with different
time-steps.

D. THE RESULTS OF CONTINUOUS
EMOTION RECOGNITON
The results of continuous emotion recognition are shown
in Table 4. The fusion of two modalities achieved bet-
ter results than EEG and facial expressions separately.
For the results of single modality, the facial expressions

TABLE 4. The average CCC evaluations of different modalities and three
classes of movie clips.

outperformed EEG. This might be the annotations are based
on the facial expressions video and facial expressions, and
facial expressions are easier to express the emotion. What’s
more, the negative movie clips yield better results than the
other two classes. The war and disaster related plots of the
negative movie clips conveyed pain feelings to subjects that
would elicit sadness intuitively. For the neutral movie clips,
a better result was achieved by facial expressions. Subjects
did not show the significant fluctuations in mood, so facial
features and annotations were more reliable. Three examples
of continuous emotion detection are given in Figure 11.

VI. DISSCUSSION
In this work, we aimed to improve the precision of contin-
uous emotion recognition by the fusion of EEG and facial
expression. From Table 4, the multi-modal emotion recogni-
tion yields better results than a single modality, suggesting
multi-modalities provides comprehensive and complemen-
tary emotional information.

However, the performance of positive movie clips did not
achieved a desirable results (as shown in Table 4). Though we
guided the subject to maintain stability during the experiment
period, the subjects watched the video for a longer period
would blink and move the head inadvertently, especially in
some exciting or ridiculous plots. The features extracted by
the facial landmark localization are very sensitive to landmark
coordinates, and the artifacts would also influence EEG.
In response to this situation, we applied ICA spatial filtering
in EEG preprocessing to partially eliminate the effects of
blinking and head moving. Although facial landmark local-
ization has defects in the above cases, the extracted features
are explainable and it is convenient to implement. The extent
of mouth opening and slope of mouth corner are the most
relevant features. Besides, negative movie clips conveyed
the pain of disaster and war has triggered subjects’ sadness
successfully. In future work, we will attempt different types
of negative movie clips as stimulis.

Measurements recorded over various parts of the brain
including the amygdala potentially enable observation of
the emotions felt [41]. The amygdala plays an important
role of emotions, the measurement via EEG could obtain
emotions correlated information from amygdala. Therefore,
EEG is significantly related to valence. In order to analyze
the relationship between EEG and valence, the correlations
between PSD features with different electrodes and valence
labels are calculated. The top 5 valence related electrodes
are given in Table 5. And statistical significance with all the
p-values are smaller than 0.05. T7 and T8 which distributed
in left and right temporal accordingly have shown the strong
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FIGURE 11. Examples of continuous emotion recognition results. (a) is the
negative emotion state example which elicited by Aftershock. (b) is the
neutral emotion state example which elicited by World Heritage in China
II. (c) is the positive emotion state which elicited by Lost in Thailand.

correlations in the gamma and beta bands. In the theta and
alpha bands, the electrode O2, O1, and P8 which distributed
in the occipital region are the most relevant. Similarly, Koel-
stra et al. found that valence led to an increase of power
of the occipital region in the low-frequency bands and right
temporal increase of power in the high-frequency bands [12].

According to Figure 9, t-SNE has the obvious advantage
over PCA in EEG feature selection. It may be because of
removing the redundant features can simplify the model to
improve the precision of the model. It perhaps that linear
feature selection algorithm (such as PCA) cannot map non-
linear EEG features to low dimensions very well. What’s
more, PCA pursues the maximization of sample variance that
causes the feature points mapped to low dimensions are far
apart. However, it’s very critical to keep similar feature points
together. In contrast to this, the core of t-SNE is to convert

TABLE 5. Top 5 valence related electrodes.

the high-dimensional Euclidean distance between data points
into conditional similarity probability. The conditional simi-
larity probability is calculated between the low-dimensional
data points, and then construct the loss function through KL
divergence to compare the similarity of the probability distri-
butions between the low-dimensional and high-dimensional.
The reliability of the low-dimensional mapped feature is
improved by the gradient descent to the minimization loss
function. Therefore, t-SNE mapped nonlinear EEG feature
into low dimension more reliably.

The LSTM captured temporal dynamics of emotions and
achieved ideally decision level fusion results. According to
Figure 10, LSTM has shown the ability to capture the tem-
poral dynamics and obtained the best result 0.625±0.029 at
three time-steps. And decision level fusion obviously outper-
formed single modality except for the one time-step. It might
be when the time-step is one, the LSTMwould be played like
the BP neural network. Hence, it may hardly capture the tem-
poral dynamic appropriately. Moreover, the period of 1-4 s is
needed to discriminate an emotional state by EEG signal [42].
The reason is that EEG is assumed to remain stationary during
short intervals [20]. Therefore, we set the different number
of time-steps from 1 to 4 of LSTM to improve precision of
continuous emotion recognition by temporal dynamic capu-
truring based on previous research.

For comparing our work with the related works, the fusion
of EEG and facial expression based emotion recognition
works are listed in Table 6. Here we analyzed these works
from the methods level. Decision level fusion outperformed
feature level decision in the majority. That is one of the
reasons we selected the multi-steps LSTM-based decision
level fusion, another is that LSTM could capture the tem-
poral dynamics of emotions and it could improve the per-
formance. For EEG feature extraction, most works extracted
temporal-frequency features, especially the PSD features of
theta, alpha, beta, and gamma bands. More than that, we also
noted the EOG artifacts in the long-time video-induced exper-
iment, and the EOG was removed by ICA. Furthermore,
feature selection is the essential step of EEG signal pro-
cessing and the half of the works considered it [43]–[48].
Compared with variance maximized linear feature reduc-
tion/selection algorithm, manifold learning algorithm t-SNE
might more suitable for nonlinear and nonstationary EEG
signals. For the feature extraction of facial expression, CNNs
and facial landmark localization are the primary methods.
CNNs and improved CNNs have shown the strong ability in
facial expression recognition [49], [50]. On the other hand,
facial landmark localization is easier to implement, and it
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TABLE 6. The fusion of EEG and facial expression based emotion recognition works.

extracts facial geometric features of emotion related regions
(eyes, eye brows, and mouth). What’s more, CNNs and

facial landmark localization are both unnecessary to complete
feature selection.
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VII. CONCLUSION
In this paper, we have presented a framework for the fusion
of EEG and facial expression based continuous emotion
recognition which achieved significantly better results than
the single modality. The LSTM was applied for decision
level fusion and it captured the temporal dynamic of emo-
tions that improve the performance significantly. From the
experimental results, we found that three time-steps of LSTM
yielded the best CCC (0.625±0.029). For the EEG modality,
the ICA spatial filtering was utilized to weaken the eye gaz-
ing and head moving artifacts. The t-SNE feature selection
was not only eliminated redundant features but also got the
characterized features. Though facial expressions based emo-
tion recognition outperformed EEG overall, it didn’t achieve
desirable results. The reason might be that ridiculous and
exciting plots and fatigue would caused the eye gazing and
head moving, and facial expression features are sensitive to
the coordinates of the landmarks. To this situation, more
suitable facial expression recognition algorithms are valuable
to explore in future work. Besides, we also attempted a wear-
able and low-cost equipment, Emotiv Epoc headset, for EEG
sampling. The application of this low-cost equipment may
be essential to the further online experiment and apply EEG-
based emotion recognition to daily life. In the future, we will
keep on researching the emotion recognition system based
on the fusion of EEG and facial expression by appending
machine learning algorithms and HCI.
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