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ABSTRACT Chemical and infra-red sensors generate distinct responses under similar conditions because
of sensor drift, noise or resolution errors. In this paper, we develop novel machine learning methods for
detecting and identifyingVOC andAmmonia vapor from time-series data obtained by uncalibrated chemical
and infrared sensors. We process time-series sensor signals using deep neural networks (DNN). Three
neural network algorithms are utilized for this purpose. Additive neural networks (termed AddNet) are
based on a multiplication-devoid operator and consequently exhibit energy efficiency compared to regular
neural networks. The second algorithm uses generative adversarial neural networks so as to expose the
classifying neural network to more realistic data points in order to help the classifier network to deliver
improved generalization. Finally, we use conventional convolutional neural networks as a baseline method.
Our findings indicate that using raw time-series data obtained from uncalibrated sensors and processing them
using deep-learning-based methods yield better results than using hand-crafted feature parameters.

INDEX TERMS VOC gas leak detection, sensor drift, additive, convolutional, and generative adversar-
ial (GAN) neural networks, time-series data analysis.

I. INTRODUCTION
Ammonia and Volatile organic compounds (VOCs) are asso-
ciated with numerous health problems. Although VOCs and
Ammonia are naturally occurring, they can nonetheless cause
serious health issues in high concentration. For example,
exposure to Ammonia in high concentration causes harm to
skin, lungs and eyes. Methane and other VOC compound
leaks contribute to global warming. VOC compounds such
as benzene and toluene are carcinogenic [1]–[4].

In this paper, we develop novel machine learning methods
for uncalibrated VOC and ammonia vapor sensors.1 We show
that there is no need to use either expert-crafted features
or thresholds for the purpose of interpreting the time series
data that these sensors generate. This is advantageous in that
it exempts system designers from extracting discriminative
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approving it for publication was Seyedali Mirjalili .
1This work was presented in part at the 2019 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
May 2019 [5].

and robust features from the raw time-series sensory data,
which is a nontrivial task. To the best of our knowledge,
this is the first work that uses the raw time-series signal
for VOC detection and ammonia vapor sensing using deep
learning. We train the deep learning structures using only
the time-series data. Our algorithms are applicable to both
infrared (IR) and chemical sensor systems. In particular, they
can be used for early detection and, thus, prevention of dan-
gerous gas leaks. Mobile infrared and chemical sensors can
be part of an open air cyber-physical system (CPS) [5]–[7].
We use the time-series data obtained by the sensors in order to
detect accidental and/or deliberate gas vapor leaks. The main
contribution of this paper centers on the exploitation of the
time-series data that sensors produce rather than conventional
reliance on a single or a couple of sensor readings for leak
detection.

Some VOC gas vapors such as ethane and ammonia absorb
infrared light in the LongWave Infrared (LWIR) while others
such as methane in the Medium Wave Infra-red (MWIR)
bands. Absorbance by ammonia of infra-red light at different
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FIGURE 1. Infrared spectrum of ammonia. The figure is taken from
NIST [16].

FIGURE 2. Two infrared images of VOC gas leaks. Red rectangles contain
gas-leak regions. Green rectangles contain leak-free regions. Images are
downloaded from FLIR systems and Infrared Cameras Inc. [17], [18],
respectively.

wavelengths is shown in Fig 1. We can easily observe the
existence of VOC gas vapor using Infra-red (IR) cameras in
open air as shown in Fig. 2. In this figure, a dark smoke-like
region denotes the image of VOC gas vapor. However, the dis-
tance between the sensor and the source, and infrared reflec-
tions from the background significantly affect the recorded
level [8], [9].

Conventional optical devices, such as gas chromatographs
and MWIR cameras, are generally expensive. A cheaper
alternative would be the use of IR sensors and chemical gas
sensors. Yet chemical gas sensors incur degradation in their
sensitivity over time. Consequently, identically manufactured
sensors are likely to yield significantly different responses
upon exposure to gas analytes under identical conditions
[10]–[14]. This problem is known in the literature as the
sensor drift problem.
Causes of sensor drift can be summed up by two

phenomena, namely, the physical changes in the structure of
the sensor and the changes in the operating environment. The
former case is known as first-order sensor drift. It is caused
by sensor aging or by sensor ‘‘poisoning’’.2 Unfortunately,
neither poisoning nor aging are reversible as the physical
structure of the sensor will have been permanently damaged
or at the least affected. The latter case is known as second-
order sensor drift and is caused by external uncontrollable
environmental changes, such as temperature and humidity
variations. In this regard, the sensor response will be different
from that expected from the original settings. Consequently,
any decision thresholds that are optimal prior to sensor drift
are likely to exhibit sub-optimal sensitivity and/or specificity
once the aforementioned changes take place.

2A process by which the sensor surface absorbs some compounds irre-
versibly, thus reducing its resistance sensitivity [15].

FIGURE 3. Example infrared sensor time-series data. The red-colored time
series are acquired from the vicinity of gas leak, whereas blue-colored
samples correspond to time-series with absence of any gas leak.

Similarly, while it is not possible to detect the concentra-
tion of the gas using MWIR and LWIR sensors in open air,
it is possible to record a time-varying signal and detect the
existence of gas leakage using IR sensors as shown in Fig. 3
using a machine learning algorithm such as a neural network.
The sensor signal exhibits sudden jumps and fluctuations due
to gas vapor leak. Uncalibrated IR sensor intensity measure-
ments suddenly drop from 95 to 70 and fluctuate because
of wind as shown in Fig. 3. As one can see from Fig. 3,
it is not possible to find a threshold that can isolate leak-
free intensity signals from those corresponding to a gas leak.
Furthermore, the intensity of leak-free point signals is time-
varying. This demonstrates the effect of noise, resolution and
lighting factors that in turn lend further complexity to the task
of distinguishing between the two classes of signals. The two
sets of examples are distinguished by dotting.

In this paper, we analyze the temporal sensor signals using
convolutional, additive neural networks and the discriminator
of a generative adversarial network (GAN) to detect and clas-
sify VOC gas leaks and other dangerous gas emissions. The
proposed analysis is applicable to both Chemically-sensitive
Field Effect Transistors (ChemFETs) and Electrochemical
Impedance Spectroscopy (EIS) and infra-red sensors as they
all produce time-varying signals.

The rest of the paper is organized as follows. Section II
describes the machine learning algorithms used in this paper.
Section III presents experimental results. We use an infrared
data set and two publicly available chemical sensor drift data
sets obtained at the University of California at San Diego
(UCSD) [13] and [19]. The paper finishes by offering a brief
set of conclusions in Section IV.

II. DEEP LEARNING ALGORITHMS FOR IR AND
CHEMICAL SENSOR DATA PROCESSING
In this paper, we consider three tasks. Task 1 is infra-red
sensor-based gas-leakage detection. In tasks 2 and 3, we iden-
tify different types of gas analytes.
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Our first network is an energy-efficient network, namely,
an additive neural network, which is a neural network that
performs no vector-multiplication except in its last layer.
Our second neural network is the discriminator of a gener-
ative adversarial neural network, to which we refer shortly as
DiscGAN.

A. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (or ConvNets) have been
extensively used in computer vision [20], [21] and time-
series data analysis [22]. In ConvNets, convolutions (or local
correlations) between the inputs and the filter weights are
used to extract local features at different scales in subsequent
layers.

B. ADDITIVE NEURAL NETWORKS (ADDNET)
Despite their ability to learn and recognize images and sig-
nals, deep learning algorithms are computationally expen-
sive. This is attributed to the large number of add-multiply
operations needed to be implemented in order to realize
convolutions. This poses a problem when it comes to using
such methods on platforms where energy is limited. As a
result, simpler and, thus, more efficient algorithms are gen-
erally required to implement computationally expensive deep
learning algorithms in such cases.

Nevertheless, there have been attempts to leverage con-
volutional neural networks across energy-limited devices by
means of methods that aim to either implement fewer dot-
product operations, or to replace dot-product operations with
computationally simpler operations. . Binarizing the weights
and/or the activations results in replacing real-number mul-
tiplication operations with binary logical operations when
realizing convolution, as in the case of BinaryConnect [23],
XNOR-Net [24] and Binarized Neural Networks [25].

An additive neural network (AddNet) falls under the
second category, i.e., replacing real-valued multiplication
operations in vector-vector and matrix-vector product oper-
ations by special addition operations. The new ‘‘prod-
uct’’ operation comprises binary sign calculation, unsigned
addition and regular addition.

In what follows, we define the scalar version of our binary
operation and extend it straightforwardly to its vector oper-
ation. In this regard, let x and y ∈ R, the multiplication-
devoid (abbreviated md) operation denoted by⊕ and defined
as follows:

x ⊕ y := sgn(x.y)(|x| + |y|) (1)

where sgn denotes the signum function. Alternatively, we can
express the ⊕ operation as follows:

x ⊕ y := sgn(x)y+ sgn(y)x (2)

This is because x = sgn(x)|x|. One key property of the md
operation is that it preserves the sign of regular multiplication
operations [26], [27]. We define the vector version of the
md operation as follows. Let x and w be two vectors in RN .

The md dot ‘‘product’’ is defined as:

wT
⊕ x :=

N∑
i=1

sgn(xi.wi)(|xi| + |wi|) (3)

It can be seen that the md operation expressed in Eq. 3
requires no real-valued multiplication whatsoever. As such,
instead of using add-multiply operations as in an ordinary dot
product, we use ordinary addition and addition with sign mul-
tiplication in the md vector operation. Furthermore, we can
restrict the operands xi and wi to be 8-bit numbers in order to
speed up the vector addition operations. Another property of
the md operation is that it induces the `1 norm. This is shown
as follows:

xT ⊕ x =
N∑
i=1

sgn(xi.xi)(|xi| + |xi|) = 2||x||1 (4)

In the context of neural networks, we use convolution and
matrix-vector multiplication operations in convolutional and
dense layers, respectively. In AddNet, we replace the afore-
mentioned dot-product operations with the md vector prod-
uct. The feed-forwarding pass in dense layers in a neural
network can be expressed as follows:

oli = φ
(
wl
i
T
ol−1 + bli

)
(5)

where the superscript denotes the layer index, the
subscript the neuron index, wl

i the weights connecting the
output of the previous layer (the (l − 1)st layer) to the ith
neuron, oli the output of the ith neuron, and bold ol−1 the
vector output of the previous layer. φ is the non-linearity
function applied element-wise and, finally, bli denotes the bias
term added to the pre-activated response wl

i
T ol−1. Similarly,

we can define AddNet layers by replacing the dot-product
wl
i
T ol−1 by our md operator as follows:

oli = φ
(
wl
i
T
⊕ ol−1 + bli

)
(6)

Since the md operator is additive, it will result in a larger
output than ordinary multiplication does when either of the
operands is of small magnitude, e.g. 3 ⊕ 0.1 = 3.1 >

3 × 0.1 = 0.3. In the context of neural networks, the layer
outputs and the weights are usually small values. As a result,
the responses of the md layers will be of larger variance than
those of the regular layer. This poses a problem in deep layers,
where the dimension of the dot-product is quite large. In other
words, if the depth of a convolutional layer is 64 and the
kernel size is 3× 3, the convolution operations will carry out
dot-products between two vectors, each of which ∈ R3×3×64.
In the case of themd layer, this will cause the output to exhibit
inordinately high magnitudes. In order to overcome this,
we introduce a scaling factor α. As such, the feedforwarding
pass in Eq. 6 becomes

oli = φ
(
αli (w

l
i
T
⊕ ol−1)+ bli

)
(7)

The scaling factor αli enables us to control the range of the
output prior to applying the activation function φ and, thus,
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leads to a controlled range of responses in subsequent layers.
Note that the scaling by αli in Eq. 7 implies real-valued
multiplication. Nevertheless, it requires only one real-valued
multiplication per neuron. Therefore, carrying out scaling is
not computationally expensive. Numerous options exist for
selecting the scaling factor αli . One possibility may be the
setting of αli to 1

||wli ||1
, i.e., the reciprocal of the `1 norm

of the associated weights. Another option would be having
αli be trainable by backpropagation. The latter delivers more
flexibility for the model.

Nevertheless, batch normalization is a common practice in
neural networks and has shown to be quite effective in accel-
erating the training of deep networks [28]. Therefore, one
can simply apply batch normalization to the pre-activation
responses in AddNet. Such normalization eliminates the need
to carry out scaling by αli as it will be subsumed by the scaling
induced by batch normalization.

The proof of AddNet with linear and/or ReLU activation
functions satisfying the universal approximation property
over the space of Lebesgue integrable functions can be found
in [29].

As for training the md layers by backpropagation, it is
worth mentioning that the derivative of the signum function
used in the definition has to be computed. This is because
d sgn(w)

dw = 2δ(w), where δ is the Dirac-delta function. In
practice, this means that the derivative of the signum function
is zero almost everywhere except when w = 0.
The partial derivative of the md operator w.r.t. w is:

∂(w⊕ x)
∂w

= sgn(x)+ 2xδ(w) (8)

We approximate the derivative of the signum operator using
the hyperbolic tangent as follows:

d sgn(w)
dw

≈
d tanh(aw)

dw
= a sech2(aw) (9)

where sech(x) = 2
ex+e−x is the hyperbolic secant function,

and a is a hyperparameter indicating how sharp the hyperbolic
tangent is. The larger the hyperparameter a is, the closer tanh
is to the signum function. Figure 4 shows the approximate
derivative of the signum function for a = 10. As we can see
from Fig. 4, the derivative has high magnitude for w values
close to zero, whereas it is effectively zero for large values.
This can be seen as allowing small weights to have finer
updates than larger weights and thus allowing them to change
their sign more often during training. We found empirically
that this approximate derivative computation provides satis-
factory convergence rates in Google’s Tensorflow software.

C. DISCGAN (DISCRIMINATOR OF GAN AS CLASSIFIER)
Generative Adversarial Networks (GAN) have become the
benchmark in image synthesis [30], [31]. A typical GAN has
a generative network, which attempts to generate images (or
data) resembling real images from noise input, and a discrim-
inator network, which attempts to discriminate between the

FIGURE 4. The derivative of tanh(aw) = a sech2(aw) as a function of
parameter w , with a set to 10.

real images and those synthesized by the generator. The gen-
erator and the discriminator are optimized in an adversarial
scheme, i.e., the generator tries to fool the discriminator by
the synthetic data it produces, and, in turn, the discriminator
tries to counteract the generator by discriminating between
the real data samples and the fake ones.

In this paper, our aim is not to synthesize realistic data
but rather to make use of the adversarial nature of GAN
training in order to obtain a discriminator network capable of
classifying the input with an unbalanced set of training data.
As the recordings of gas leak data may fall short of the clean
air recordings for this purpose, we have the generator of the
GAN to compensate for the data set with a smaller number of
data instances by producing ‘‘artificial’’ gas leak data during
training.

In this regard, we perform a two-phase training of the
GAN. First, we carry out adversarial training of both the
discriminator and the generator using the data of one of the
classes. In the second phase, we use data from both classes
and carry supervised binary-classification training of the dis-
criminator which now acts as a classifier. In this setting, let
x i represent the ith data instance of one of the classes. In this
case, x is denote the gas leak recordings (or the anomalous
class). Let z be a random noise vector, e.g. Gaussian noise
or uniform noise. Let D be the discriminator and G be the
generator, with each having a set of parameters θD and θG,
respectively. In the adversarial-training phase, we seek to
optimize the following loss function:

max
θD

min
θG

∑
i

log(D(x i))+
∑
i

log(1− D(G(zi)) (10)

where D(x i) is the soft prediction result of the discrimina-
tor corresponding to data point x i. From the discriminator
perspective, the prediction output D(x i) should be close to
1 because x i is ‘‘real’’. The generatorG produces ‘‘fake’’ data
signals from noise vector zi, that is G(zi), and the prediction
D(G(zi)) should be close to zero because G(zi) is an artificial
data instance. The generator, on the other hand, will try to
produce G(zi) that will be assigned the prediction D(G(zi))
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close to 1. Once training the first stage is accomplished,
we move on to the second stage of supervised training of
the entire training data, in which the cost function we seek
to minimize is the regular binary cross entropy function CE
expressed as follows:

CE := −
1
N

(∑
i

(1− t i) log(1− D(x i))+ t i log(D(x i))
)
(11)

where t i ∈ {0, 1} denotes the true class of x i.
When there are multiple classes we can still use the

discriminator of a GAN with a slight modification of the
loss functions. In this regard, let us assume that there are
N -classes. In this case, the one-hot encoded label for each
input is an N -dimensional vector, with all entries equal to
zero, except for the kth entry, where k is the true class. During
training, the discriminator (or classifier) will minimize the
cross entropy of the softmax layer applied at the output layer
(N logits). The generator G will attack the output of the kth
node. Here we consider the output of the kth node to be
the logit of a binary class, i.e., the adversarial loss criterion
becomes:

maxθDminθG log(Dk
(
G(z)

)
(12)

whereDk
(
G(z)

)
is the discriminator sigmoidal response of

the kth node, i.e., we apply the sigmoid function to the logits
before taking the logarithm in determining the loss.

Note that the loss here is different from the multi-class
case, in which we consider multi-class logits, i.e., we use
sigmoid normalization instead of the softmax normalization.
In practice, since we do a mini-batch update, we take the
average of the loss functions and minimize the loss functions
based on the mini-batch gradients.

III. DATASETS AND EXPERIMENTAL RESULTS
A. INFRA-RED VOC DATASET
Our first data set consists of infra-red imaging signals of VOC
gas leaks in open air and clean air recordings.3 Specifically,
we have two classes of discrete-time signals corresponding
to VOC gas leaks and clean air, respectively. Each signal
is a time series containing 50 samples corresponding to
two seconds of recording with a sampling rate of 25 samples
per second. The recorded value varies in open air because of
background temperature variations and low resolution error
as it can be observed in Fig. 3. Furthermore, the sensors
may not be calibrated in practice, so their sensitivity may
differ across time. We gathered about 30,000 VOC gas leak
and 30,000 clean air data instances. The images are obtained
using an MWIR camera produced by FLIR systems and
Infrared Cameras Inc. [17], [18]. VOC gas absorbs the infra-
red light appearing as a white cloud in the black-hot mode
infra-red image as shown in Fig. 2. In these videos, a gas
leak erupts from the source with the gas spreading out as

3The data is available online at the following link:
https://github.com/Diaa0/ir_time_series_data/blob/master/data_60k.npz

TABLE 1. Architecture of the convolutional neural network used in
classifying the data set of Sec. III-A.

time progresses. We manually selected regions of interest
and assigned normal event designations to temporal measure-
ments where no gas is present throughout these series, while
designating the rest as anomalous events.

We used min-max normalization in order to scale signal
data points between 0 and 1. The normalized signal x̂ is
obtained as follows

x̂[n] =
x[n]−min(x)

max(x)−min(x)
, n = 0, 1, . . . , 49 (13)

where max(x) and min(x) represent the maximum and
minimum values of a given infrared signal x, respectively.
We used convolutional neural networks with the architec-

ture specified in Table 1. In order to obtain more temporal
data points, and in order to ensure the network is translation-
invariant to the gas eruption location, we chose to randomly
crop the input data into temporal signals of size 32 each.
We divided our data set into three disjoint sets. The training
data consists of 8,000 recordings of each class. Another set
of 8,000 recordings of each class is used as the validation data
set. The rest of the data was reserved for testing. We trained
our networks using the RMSProp optimizer algorithm [32].
We tested the hypothesis of whether dropout helps achieve
better results [33] by using a dropout rate of 50%. As for the
GAN approach, we used a generator which is a multi-layer
perceptron (MLP) with one hidden layer of size 256.

The regular convolutional neural network and AddNet
exhibit comparable results. We obtained an accuracy of
99.8% for no-gas data and 99.7% for gas-leak data for a reg-
ular ConvNet. AddNet attained a recognition rate of 98.9%
for no-gas data and 99.3% for gas-leak data.

In the second set of experiments, we assumed that we have
an unbalanced data set. In practice, we may not have VOC
or ammonia gas leak recordings as clean air. We trained the
models with only 50 recordings of gas leak signals against
8,000 recordings of clean air recordings. The test data set
contains 14,000 recording instances of VOC gas leaks and
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TABLE 2. Accuracy results for infra-red VOC data. Classifiers are trained
with only 50 VOC gas leak recordings vs 8000 clean air recordings.

TABLE 3. Confusion matrix for the best achieving neural network
(AddNet with no dropout) over the testing data. The true positive
rate (sensitivity) is 97.3%. The true negative rate (specificity) is 99.1%.

clean air recordings. Classification results are also summa-
rized in Table 2. AddNet produces the best results but the
discriminator of the GAN Network is also quite close to
AddNet. The confusionmatrix of the results of the best model
is given in Table 3.

We also investigated pruning the weights in both AddNet
and ConvNet during inference. In this regard, we discard the
magnitudes of the smallest magnitude weights while retain-
ing their sign information. We keep the bias coefficients and
the coefficients of the last layer intact. Results of various
pruning rates are shown in Table 4. Apparently, in AddNet,
we can discard the magnitude information of the weights up
to a high rate (67.4%) without severely degrading perfor-
mance. On the other hand, the magnitude information is quite
critical in the case of a regular ConvNet. These results clearly
show the advantages of AddNet, which requires reduced
memory space in a mobile device and consumes less energy
as it performs much fewer arithmetic operations during infer-
ence.

B. GAS SENSOR ARRAY RECORDINGS UNDER
DYNAMIC GAS MIXTURES
We consider a gas type identification problem, in which
we have three types of gases to identify, namely, CO,
Ethylene and Methane. We used the data set obtained by
Fonollosa et al. [19]. The data set consists of time-series
measurements of a sensor array of 16 chemical metal-oxide
sensors under exposure to two different kinds of gas mixtures,

TABLE 4. Effect of compressing weights of AddNet and ConvNet by
discarding the smallest K% magnitude while keeping the sign
information. ConvNet fails to produce reasonable results when the
compression rate exceeds 16.1%. The compression rate is estimated by
allocating 32 bits to intact weight values and 1 bit for every binarized
weight factor.

ethylene and methane in air, and ethylene and CO in air.
Sensors were exposed to volatile organic compounds at dif-
ferent concentration levels under tightly-controlled operating
conditions during the experiment. The data is obtained at a
sampling frequency of 100Hz. The 16 chemical sensors are of
four different types, with each having four identical sensors.4

Furthermore, switching between different mixtures of VOCs
may occur too fast making it challenging if not impossible for
the sensors to reach steady state. This makes identifying the
gas analytes difficult using a machine learning method.

The recorded sensor data is deposited to the UC Irvine
Machine Learning Repository online in the form of two long
time-series. We extracted portions of the time series such that
the sensor array is exposed to one type of analyte at a given
time. Each recording corresponds to 100 seconds of data.
We observed that it is enough to sample the sensor response
every 2 seconds.

Example sensor response signals to CO, ethylene and
methane gas vapor exposures are shown in Fig. 5. Each sub-
figure contains four different sensor responses.

We gathered a total of 215 instances from the raw record-
ings, in which we have 49 CO, 116 ethylene and 50 methane
time-series signals. Each instance has 50 time measurements
for each sensor. Thus, a total of 50 × 16 measurements
per instance are used. Since the number of instances in the
data set is small, we employed cross validation with holdout
method, where our validation set consists of 35 examples,
with the experiment repeated 4 times. Thus, we validated our
results over 140 examples. Furthermore, since the number of
instances is small compared to the input dimension 50× 16,
we opted to randomly crop data points during training into
smaller time series of size 40×16. This allows the classifier to
be invariant to the exact time where the exposure takes place.
Furthermore, it increases the number of data points during
training.

Since the sensors are of different types, and since even
the sensors of the same type produce different temporal
responses, we process the temporal sensor data using 1-D
convolutional networks. The input to each neural network is
a matrix of size 40×16, for 40 time instances and 16 sensors.

4For more details, the reader may refer to the original paper [19].
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FIGURE 5. Time-series data generated by four different sensors under exposure to different type of gases (50 time samples for each sensor).

TABLE 5. Architecture of the convolutional neural network used in
classifying the data set of Sec. III-B.

TABLE 6. Recognition rates for the two neural networks over the test
data set.

We used ReLU non-linearity between layers. Our loss
function is the cross-entropy with the softmax operator.
We used the RMSProp optimizer to carry out the parame-
ter updates during training. We trained a regular ConvNet
and an AddNet of the same architecture as in Table 5. Our
classification accuracy results over the testing data are shown
in Table 6. The confusion matrix of the results over the
validation data set obtained by AddNet is given in Table 7.

It can be observed in Table 6 that the recognition capabili-
ties of both AddNet and ConvNet are on par with one another.
It is worth emphasizing the computational frugality of the
scheme as use of the regular dot-product is confined solely
to the last layer in AddNet.

TABLE 7. Confusion matrix for AddNet over the validation data sets for
repeated trials.

C. CHEMICAL GAS SENSOR ARRAY DRIFT DATASET
The third data set is the publicly available chemical VOC gas
sensor drift data set compiled by Vergara et al. at UCSD [13].
The data set was obtained by exposing an array of 16 distinct
chemical sensors to 6 types of gas mixtures (ammonia, ace-
tone, ethylene, ethanol, toluene and acetaldehyde) at a variety
of concentration levels. Each data record is a vector time
series. Vectors contain 8 feature parameters extracted from
the sensor time series signals during a gas release experiment,
conducted over a period of three years at UCSD. The feature
parameters include the steady state resistance value and the
normalized resistance change. The remaining 6 parameter
features are the maxima and minima of the exponential mov-
ing average (emaα) transform governed by the following
input-output relation:

y[k] = (1− α)y[k − 1]+ α(r[k]− r[k − 1]) (14)

where r[k] is the resistance value at time step k , and y[k] is the
transformed value after applying the ema filter. The maxima
and minima features are reported for α values equal to 0.1,
0.01 and 0.001 over an entire experiment. These ema features
have distinct time constants for different α values, as they
contain temporal information.

Unfortunately, the raw time-domain sensor signals are not
available in this data set.

Since there are 16 sensors, a total of 16× 8 = 128 feature
values are recorded per experiment.

The data set is divided into 10 batches ordered chronolog-
ically. Full details about the experiment and the data set can
be found in [13].

We carried out our classification tasks by training neural
networks for N = 2 batches and testing on successive
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TABLE 8. Comparative accuracy (in %) results of the various models when training on batches 1 and 2 and testing on batches 3-10. Bold-text numbers
correspond to the best accuracy results obtained amongst the different algorithms for each batch.

batches. This is identical to the sensor drift estimation
approach given in [13].

Because feature values have huge variances, we opted to
apply the signed square root function element-wise to control
the ranges of the reported values. The modification deliv-
ered improved results in our experiments, especially for later
batches.

We trained an MLP model with two hidden layers, each
with 512 output units, and an output layer. Furthermore,
we trained the network for 100 epochs using the RMSProp
optimizer [32]. We applied a dropout rate of 20% and used a
batch size of 128 in order to prevent complex co-adaptation.
To augment the data, we added a zero-mean Gaussian noise
with standard deviation of 0.1.

We also tried combining AddNet with the GAN approach,
in which case, the discriminator is an AddNet and the gen-
erator is a regular MLP. The architecture of the network is
the same as that of the GAN we use. Furthermore, we tried
utilizing the other batches by passing them to the classifier
and carrying out backpropagation according to their guessed
labels. This is done in order for the network to utilize the cor-
rectly guessed labels so that it could be helpful in improving
the classification accuracy for the mis-classified data point.
A numerical comparison of the proposed methods to the
SVM-classifier ensemble used in [13] is given in Table 8.
In general, the AddNet-MLP, the MLP and the multi-class
GAN discriminator produce better sensor-drift compensated
results than does the SVM based method.

As we can see from Table 8, using DiscGAN (with a
regular discriminator or AddNet), we were able to obtain
better recognition rates for later batches (batches 7, 8 and 9).
This could be attributed to the fact that the generator did
expose the discriminator to novel unseen points in the data
space during training. Therefore, the discriminator would
have been able to learn additional meaningful features. As for
AddNet, it can perform as well as the regular MLP, either in
conventional binary classification or in the case of DiscGAN.
It is also worth noting that the domain adaptation scheme
we employed did not yield any significant improvements. We
believe that improved classification results would have been

attained, if the entire temporal sensor signal set were at our
disposal as input to our algorithms.

IV. CONCLUSION
In this paper, we have introduced a variety of deep-learning
based algorithms and applied them to VOC gas and ammonia
vapor leak detection and gas type identification problems.
This is the first work that uses the raw time-series signal
for VOC detection and ammonia vapor sensing using deep
learning. The first algorithm is based on AddNet. In AddNet,
we replace the computationally expensive dot-product oper-
ations in deep neural networks with a modified addition
operation that retains the sign of multiplication. Its computa-
tional efficiency enables AddNet to be used in embedded and
mobile systems, in which we envision a smart gas leakage
monitoring and detection CPS being reliably used.

The second algorithm is called DiscGAN, which uses the
discriminator of a generative adversarial neural network as a
classifier in a bid to enhance the recognition capabilities of
the system. The generator part helps in exposing the discrim-
inator to realistic synthetic data points that can be helpful in
classification tasks.

We considered three detection and classification tasks. The
first task is to detect VOC gas leakage from temporal IR
data. Our proposed algorithms achieved accuracy rates of
97 − 98%. The second task we considered is to identify gas
types using temporal data of sensor arrays. We were able
to attain recognition rates of 96.1 − 96.5%. Our third task
was to identify gas types using non-temporal data, where
the readings are obtained for the same sensor array over a
period of 36 months. The sensor measurements suffer from
degradation due to sensor drift.

Although our gas identification accuracy results for the
early batches in the last data set were quite high, the degrada-
tion incurred in later batches resulted in significant identifica-
tion accuracy drop. We believe that the non-temporal global
features reported for the experiments are highly affected by
sensor drift. As a result, the features are not sufficiently
expressive of the sensor responses for different gas analyte
types. Based on our high recognition rates for two temporal
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data sets considered in this work, we conclude that using
sensor measurements in their temporal presentation, and
feeding these recordings into deep neural network algorithms,
achieves better performance as these algorithms learn dis-
criminative features by themselves with no need to hand-craft
features that could be sensitive to error as in the case of the
sensor drift problem.
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