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ABSTRACT As an interdisciplinary topic, human travel-choice behavior has attracted the interests of
transportation managers, theoretical computer science researchers and economists. Recent studies on tacit
coordination in iterated route choice games (i.e., a large number of subjects could achieve the transportation
network equilibrium in limited rounds) have been driven by two questions. (1) Will learning behavior
promote tacit coordination in route choice games? (2) Which learning model can best account for these
choices/behaviors? To answer the first question, we choose a set of learning models and conduct extensive
simulations to determine their success in accounting for major behavioral patterns. To answer the second
question, we compare these models to one another by competitively testing their predictions on four different
datasets. Although all the selected models account reasonably well for the slow convergence of the mean
route choice to equilibrium, they account only moderately well for the mean frequencies of the round-
to-round switches from one route to another and fail to appropriately account for substantial individual
differences. The implications of these findings for model construction and testing are briefly discussed.

INDEX TERMS Route choice game, laboratory experiment, reinforcement learning, tacit coordination, nash
equilibrium.

I. INTRODUCTION
In both transportation and communication networks, where
the route choices are decentralized, utility-maximizing play-
ers facing strategic uncertainty often strive to avoid conges-
tion [1]. Examples include choosing a restaurant on Saturday
evening, selecting of a route in a traffic network, and deciding
whether to enter a capacitated market. The notion of equilib-
rium in such scenarios, once they are modeled appropriately
as non-cooperative n-person games, leads us naturally to ask
how players achieve this ‘‘meeting of the minds.’’

The focus of the present paper is on the choice of
routes in directed networks.We focus on computer-controlled
experimental studies of a class of network games, called
iterative route choice games. These games have multiple
equilibria that, depending on the architecture of the net-
work and the number of network users, are counted in
thousands or occasionally in millions. The study of such
games falls in the intersection of behavioral economics,
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transportation science [2], computer science [3], and
operations management [4].

If tacit coordination in large groups is neither reached
by communication nor deduced by introspection, then it is
achieved by learning ‘‘day by day’’ [5], [6]. Most previous
experimental studies of route choice games largely support
this assertion [3]. Variants of Markov adaptive learning mod-
els [7], simplified versions of the experience weighted attrac-
tion (EWA) learningmodel [8] and ruled-based learningmod-
els [9] been considered separately to account for the dynamics
of play in route choice experiments. Our purpose in this paper
is to test representative learning models competitively (e.g.,
[10], [11]). We wish to determine which learning models best
describe the adjustment process overmultiple iterations of the
stage route choice game.

In this paper, we compare each competitive model in a
particular route-choice context in two stages. In the first stage
of our procedure, we select experimental datasets that share
the same context and same game type, i.e., non-cooperative
n-person games on route choice in directed networks. In the
second stage, we select model candidates which exhibit
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alternative approaches to the study of learning in games
according to their potential to explain the robust observations
commonly emerging in the selected datasets.

The selection of datasets is achieved in the second stage.
We selected four datasets that vary from one another in their
research purpose, the architecture of the network, sources of
uncertainty, and the number of iterations of the stage game,
and then compared them to one another in terms of the fol-
lowing two behavioral regularities. These include (1) gradual
convergence to equilibria, as the mean route choice frequen-
cies approach – but do not necessarily reach – an equilibrium
point that is unique up to permutations of the players; and (2)
non-increasing fluctuations over time, namely, changes in the
mean number of round-to-round switches from one route to
another.

Previous experimental studies of route choice have demon-
strated themoderate success of learningmodels in accounting
for the gradual convergence of choices to equilibrium (1),
whereas in this paper we attempt to further explore the adjust-
ment process by studying the additional behavioral regular-
ity (2). Accordingly, we have selected representative learning
models that have the potential to account simultaneously for
coordination success and the dynamics of switching routes at
the aggregate level. These include theMarkov adaptive learn-
ing model (denoted by MAL) [7], the experience weighted
attraction (EWA) learning model [11] and two special cases
of the EWAmodel, namely, reinforcement learning (RL) [12]
and belief learning (BL).

After comparing the goodness-of-fit of learning models to
account for the subjects’ decisions, we further explored our
first research question, namely, whether learning could lead
the group to achieve coordination. To this end, we conducted
simulations of the learning models to test how well they
replicate observations (1) and (2) regarding the dynamics of
play [14]. To the best of our knowledge, the present paper is
the first to report a systematic comparison of learning models
in the context of route choice games in directed transportation
networks.We benchmark earlier studies on the comparison of
learningmodels by [12] but depart from them in the following
ways.

Not only do we evaluate the goodness-of-fit of mod-
els using the methodology of maximum likelihood estima-
tion via several statistical criteria, but we also test their
predictive power of replicating the dynamics of play, thereby
subjecting the models to additional stress. In model compar-
ison, we conduct in-sample fitting and out-of-sample testing
instead of using the entire dataset to estimate the model
parameters. In replicating the choices, we further compared
the changes in the simulated distribution of choices and sim-
ulated switch proportions over time with the experimental
results.

The potential implications of results of this paper include,
but not limited to, better understanding the bounded rational
behavior of commuters and thus designing routing guaidance
strategy given their most possible response patterns to infor-
mations and their last experience [13], [14].

The rest of the paper is organized as follows. Section II
first gives a brief literature review. Section III introduces the
route choice game on directed networks, the datasets and
the learning models examined in this study. In Section IV,
we discuss the methodology of our model comparison and the
results of the goodness-of-fit measures. Section V presents
a summary of the results of our model comparison, and
Section VI concludes.

II. A BRIEF LITERATURE REVIEW
Considered in the present study are two lines of experiments
on route choice in directed networks iterated over time,
namely, experiments which focus primarily on the realiza-
tion of the Braess Paradox [15], and experiments that focus
primarily on testing for convergence to equilibrium under
different conditions of network topology and information
structure. For theoretical studies that introduce route choice
games and investigate their properties see [3] and for a review
of experimental studies see [6].

The Braess Paradox illustrates quite dramatically that a
structural change of the network topology, while the number
of network users and the link cost functions are kept fixed,
may result in counterintuitive consequences. Experimental,
rather than theoretical, research aimed to determine if, and
under what conditions, the BP may be realized behaviorally
under the fully controlled conditions of the laboratory com-
menced by [16]. The general findings of this stream of
research is that when the stage network game is iterated in
time, the players approach to the Pareto deficient equilibrium
solution, route switches from round to round diminish with
time but do not disappear completely, and individual differ-
ences among the group members in the number of switches
are substantial. Reinforcement-based learning models and
minimization of regret learning models have been tested
individually in different experiments but with only moderate
success.

Rather than changing the architecture of the network by
adding (or deleting) one or more links within a given session,
the second stream of experiments on route choice has focused
on the social dilemmas in ridesharing [17], the protocol
of play (simultaneous vs. sequential choice of routes) [18],
the type of uncertainty that the players face [19], and the
information structure [19], [20]. A major result of this stream
of studies, that complements the results of experiments on
the BP, is the robustness of the equilibrium solution as a
descriptive model of the aggregate outcomes.

III. DATA AND MODELS
In this section, before introducing the selected experimen-
tal datasets, we first introduces the route choice games on
directed networks with basic notations.

A. ROUTE CHOICE GAMES ON DIRECTED NETWORKS
We consider in this paper directed networks with a common
origin and common destination that are modeled by a graph
G(V, E) comprising of a set V of vertices (nodes), a set E
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of edges (links, arcs), and a set K ⊆ (V × E) of origin-
destination (OD) routes. The network G(V , E) is undirected
if for all p, qεV , (p, q) ε E ↔ (q, p)εE . Otherwise, it is
directed. The network serves a finite and commonly known
number of players (users) n. We denote the finite action space
(pure strategies) of each player iεN by Si, consisting of mi
discrete choices of routes: Si = (s1, s2, . . . , smi−1, smi ). The
joint action space of the game is denoted by S = S1× . . .×Sn.
A strategy combination is denoted by s = (s1, . . . , sn),
whereas s−i = (s1, . . . , si−1, si+1, . . . , sn) is a combination
of the strategies of all players except player i. We denote by
fjk (fjk = 1, 2, . . . , n) the number of players who choose
the link jk from vertex j to vertex k in the network G (V, E).
In our formulation of the game, the cost of travel incurred
by player i in choosing the link jk is denoted by ci(fjk ); it is
used as a proxy for the delay in traversing link jk. As the n
group members are assumed to be homogenous, ci(fjk ) has
the same value for all the n players. The total individual cost
for choosing a route k from O to D, denoted by Ci, is the sum
of the costs of links along this route.

In route choice games with negative externalities, also
known as congestion games, ci(fjk ) is increasing in fjk . Mostly
for experimental reasons, costs of travel are often modeled by
affine functions:

ci(fjk ) = ajk (fjk )+ bjk , where ajk , bjk ≥ 0. (1)

The fixed constant bjk is interpreted as the minimum delay to
traverse link jk in the absence of traffic, whereas the variable
cost ajk models the effect of congestion [6]. Players are
assumed to independently choose an OD route in the set K
that minimizes their cost of travel.

B. DATASETS
Our datasets report the results of several experiments con-
ducted by Rapoport, Mak, Gisches, and their collaborators
from 2012 to 2015 [7], [8], [20]. Data were collected from
a total of 20 sessions, each including 18 or 20 players.
Overall, 370 persons participated in four computer-controlled
experiments. All were university students, who volunteered
to participate in decision-making experiments for payoff con-
tingent on their performance. Payments were cumulative and
made in tokens which at the end of the session were converted
into US dollars. The mean payment across sessions within
the same game ranged between $19.06 and $29.50, including
a show-up fee of $5. Each session lasted about two hours.
Communication among the subjects was not allowed.

Table 1 displays the design features of the four datasets
and the learning models that were tested in the original
papers. In all the four experiments, players were symmetric,
the games were conducted under complete information of the
cost functions and round-to-round travel time distributions,
and the individual decisions were submitted under the simul-
taneous protocol of play. Although each experiment included
more than a single condition, we only analyze the data
from a single condition in each experiment with complete

TABLE 1. summary of the data sets examined in this study.

information, simultaneous play, and choice of OD routes at
the network origin.

Our choice of datasets is not fortuitous; they have been
selected to cover different scenarios. First, the games dif-
fer from one another in the topology of their networks,
ranging from networks with only two parallel routes that
do not intersect each other in Game 2R to networks with
eight nonparallel routes in Game 8R (currently the most
complex network implemented in route choice experiments).
Fig. 1 exhibits the four networks. Except for the network in
Game 2R, all the networks induce nontrivial strategy spaces
that provide a challenge to learning models. Second, the cost
functions in Game 2R are nonlinear, and the players face both
strategic and environmental uncertainties. Specifically, travel
conditions on the two routes in Game 2R are perfectly and
positively correlated, and their cost functions depend on the
weather conditions. In contrast, the uncertainty in the other
games is only strategic. Third, the four games differ from
one another in the number of iterations (rounds) of the stage
game. Games with more rounds provide more data for the
estimation of model parameters and for detecting individual
differences in the frequency of switches, whereas games with
fewer rounds decrease boredom and fatigue. Analyzing data
jointly from both longer and shorter games places the learning
models under yet another source of stress.

C. ALTERNATIVE LEARNING MODELS
It is not plausible that theories of learning alone may explain
strategic choices in iterated interactive decisions without the
input of behavioral regularities and careful testing of the
theories [21], [22]. Moreover, because learning is a complex
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FIGURE 1. The networks presented to the players for the selected studies.

cognitive process that depends on the rules of the game,
strategy spaces, number of iterations of the stage game, size of
the group of players, degree of sophistication of the players,
and their motivation, it is equally unlikely that a single model
may account for learning under all circumstances in all types
of games. Consequently, mostly in psychology and subse-
quently in experimental economics, alternative approaches
to learning in games have been proposed, and the models
implementing these approaches have been experimentally
tested [12]. Among others, they include evolutionary dynam-
ics, reinforcement learning, belief learning; minimization of
regret learning, direction learning, and rule learning.

For the competitive testing of learning models in route
choice games, we have chosen four models that we describe
in detail below. They include a Markov Adaptive Learn-
ing (MAL) model that has been proposed and tested [7].
The MAL model is predicated on the assumption that route

choices in iterated games are made in an attempt to minimize
regret for choosing a route, which is not the best response
to the choices of the other group members. The second is the
Experience-Weighted Attraction (EWA)model first proposed
by [12] and subsequently tested extensively on multiple sets
of data mostly collected in matrix games. As noted by [11],
reinforcement learning models, which originate in math-
ematical psychology, assume that players ignore informa-
tion about foregone payoffs, whereas belief learning models
assume that players ignore information about their previous
choices. EWA is a hybrid of reinforcement- and belief-based
model that incorporates both sources of information. The
third (RL) and fourth (BL) models are special cases of the
EWA model that either negate the effects of beliefs or negate
the effects of reinforcement, respectively.

1) NOTATIONS OF LEARNING MODELS
Webegin this section by introducing notation that is shared by
the learning models. In the route choice game, players strive
to minimize their individual cost of travel by choosing at its
origin one of the OD routes of the network. Denote by Ci(j, t)
the travel cost that player i incurs if she chooses route j on
round t of the game, given the choices of all other players s−i
on round t .Ci(j, t) is computed separately for each player i by
summing the costs that she incurs in traversing the segments
of the route she has chosen. At the end of a round, each
player receives a reward E , the same for all the n players, for
successfully choosing one of the OD routes. The individual
payoff at the end of each round t , which is assumed to be
commonly known, is computed from

πi (j, t) = E − Ci(j, t), i = 1, 2, . . . , n. (2)

As noted earlier, πi may assume either positive or negative
values.

Next, for each player i and each OD route k , k 6= j,
we compute the player’s counterfactual travel cost, namely,
the cost that she would have incurred had she chosen route
k rather than route j, given the actual route choices of the
other n-1 group members on round t . The corresponding
counterfactual payoff is then denoted by πi(k , t). Clearly, the
difference score πi(j, t) - πi(k , t) > 0 indicates that route j
was a superior choice for player i than route k on round t ,
whereas πi(j, t) - πi(k , t) < 0 indicates the opposite. Route
j is said to be player i’s best response on round t , if πi(j, t) -
πi(k , t) > 0 for all routes k .
Suppose that the n players are about to start round t + 1,

t = 1, 2, 3. . . , T -1. Adaptive learning models comprise three
major processes that prescribe, respectively, generation of the
‘‘attractions’’ (or ‘‘propensities’’ towards choosing) of all the
strategies based on the most recent outcome (round t), weight
assignment of all the historical attractions during their expe-
rience (on rounds t-1, . . . , 1), and transformation mapping
from the attractions, Ai(t), into probabilities of the strategies
to be chosen on round t + 1, Pi(t + 1). Adaptive learning
models differ from each other in the generation of attractions
from the player’s decision history. Three forms of mapping
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function are commonly used, i.e., exponential (logit), power,
and normal (probit). Because of its advantages in addressing
negative attractions and its better fitness compared with the
other forms, the logit-form transformation function is applied
by all the alternative models. Next, the probability of player
i choosing route j in round t + 1 is computed from the
multinomial logit function:

Pji(t + 1) =
exp(λ · Aji(t))

mi∑
k=1

exp(λ · Aki (t))
, i ∈ N (3)

where λ is a measure of the sensitivity of the players to
payoffs to be estimated and is expected to be positive (when
λ = 0 all the routes are equally likely to be chosen, and
when λ = 1 the strategy with the highest attraction is always
chosen). In all the datasets, the players are symmetric with the
same set of alternative routes connecting the single OD pair
on a network. That is, m1 = m2 = · · · = mn, which means
that for all the n players, the total number of strategies is equal
to the total number of routes in the experimental networks.

2) MARKOV ADAPTIVE LEARNING MODEL WITH
REGRET AND INERTIA
To capture the rapid convergence to the equilibrium solution
in Game 8R, [4] proposed aMarkov adaptive learning (MAL)
model postulating regret minimization and inertia. To eval-
uate the strategies based on present outcomes, the MAL
model introduces reference-dependence effects. Specifically,
the player’s actual choice and payoff in round t serve as refer-
ence points. The evaluation of the actual chosen strategy j is
represented by a time-invariant parameter λ0, indicating iner-
tia with respect to the actual route choice in round t over and
above the payoff considerations. The impact of an unchosen
strategy k is positively proportional to the difference between
the actual and counterfactual costs, which is magnified by a
nonnegative regret parameter λ+. This assumption is based
on the players’ inclination to minimize regret. As for the
weight assignment among all historical evaluations, only the
most recent round counts in the MAL model because of its
consideration of recency effects. Therefore, the updating rule
of attraction of any strategy k for player i after each round t
is specified as:

Aki (t) =


Ci(j, t)− Ci(k, t)
+
λ+
λ
max[0,Ci(j, t)− Ci(k, t)], if k 6= j

λ0
λ
, if k = j

for ∀k ∈ Si (4)

where λ, λ+, λ0, are three parameters to be estimated for this
model and are all expected to be nonnegative. Note that λ is
the same parameter in the multinomial logit function in (4).

In theMALmodel, low-cost routes attract more switches in
their direction than in a model without postulated reference-
dependence effects. Thus, in the early periods of the
game, when cost differences among routes are considerable,
the regret parameter λ+ speeds up the elimination of cost

differences thereby induce faster convergence. With iner-
tia, once players move toward the equilibrium choice dis-
tribution, they have an additional tendency to stick with it
compared to the case of no inertia. Thus, during later peri-
ods,the inertia parameter λ0 serves to effectively stabilize
convergence.

3) THE EWA LEARNING MODEL
The multiparametric EWA learning model proposed by [10]
is selected because of its generality, simplicity and most
importantly its relative success in accounting for learning in
three out of the four route choice games that we consider.
In their original papers [10], the authors applied simplified
variants of the EWA model with φ = 1 and κ = 1, and
successfully reproduced some of the main findings in terms
of mean route-choice distribution over time and observed
differences between the conditions.

In the EWA model, with an indicator function I (k, j) that
equals to 1 if k = j, and 0 otherwise, the attraction of route k
at the end of round t is updated as:

Aki (t) =
φ · N (t−1) · Aki (t−1)+[δ+(1−δ)·I (k, j)]·πi(k, t)

N (t)
for ∀k ∈ Si (5)

where the imagination parameter δ measures the rela-
tive weight between foregone payoffs and actual payoffs,
the parameter φ is an index of (perceived) changes that regu-
lates the decay of past attractions, and the parameter N (t) is
the weighted experience. It is updated by

N (t) = φ · (1− κ) · N (t − 1)+ 1, for ∀t ≥ 1 (6)

where the parameter κ determines the growth rate of attrac-
tions. When κ = 1, attractions cumulate past payoffs quickly,
while if κ = 0, attractions are weighted averages of lagged
attractions and past payoffs.

In total, four parameters (δ, φ, κ , λ) of the EWA model
are to be estimated. In addition, we are also interested in
the explanatory power of two special cases of the EWA
model, namely, reinforcement learning (RL) and belief-based
learning (BL) with parameters δ = 0 and δ = 1, respectively.

We estimate the RL and BL models using the same ini-
tialization procedure and estimation methodology as with the
EWA model.

IV. MODEL COMPARISON
A. METHODOLOG
We start this section by describing the methodologies asso-
ciated with parameter estimation and model evaluation. The
method of maximum likelihood estimation (MLE) was used
to estimate the parameters of the various models. Several
general features merit mention.

First, only the first 70% of the data is applied to calibrate
the models and the last 30% to predict, which is a tougher test
than using the whole dataset to estimate parameters [23]. That
is, for each dataset (pooled five sessions of each game), we
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searched for a single parameter combination that maximized
the total likelihood value over the first 70% rounds of the data
across all players. Thus, the log-likelihood (LL) function for
the single-representative agent EWA model for a dataset is
computed as follows:

LL (δ, ϕ, κ, λ) =
N∑
i=1

0.7·T∑
t=1

ln
(
Pji (t)

)
(7)

where Pji (t) is the predicted probability for player i to choose
strategy j as the same with the actual choice in round t in (2).
Similarly, the LL function for the MALmodel is specified as:

LL (λ0, λ+, λ) =
N∑
i=1

0.7·T∑
t=1

ln
(
Pji (t)

)
(8)

Second, to keep it simple and parsimonious, we estimated
initial attractions Ai(0) from the first period of actual data,
rather than allowing them to be free parameters in likelihood
functions. In addition, for EWA models, we set N (0) = 1
(common to all players) due to the parsimony of the model
and the psychological interpretability of its parameters [24].

To evaluate model accuracy in the in-sample calibration,
two criteria we report are: Log likelihoods and the Bayesian
information criteria (BIC) that penalize theories with more
free parameters. Specifically, BIC is calculated by LL− k/2 ·
LogM , where k is the number of freedom degrees andM is the
size of the calibration sample. In this study, we also reported
two criteria for out-of-sample prediction, a tougher test than
in-sample fitting, to evaluate model fitness on the validation
sample. That is, Log likelihoods, a mean squared deviation
(MSD), which is defined as:

MSD =
N∑
i=1

T∑
0.7T+1

mi∑
j=1

[Pji(t)− I (s
j
i, si(t))]

2

0.3 · T · N · mi
(9)

Note that theMSD does not average observations across indi-
viduals. In addition, we report a criterion for overall goodness
of fit for models based on the whole sample, that is, pseudo-
R2, denoted ρ2, based on the Bayesian measure, indicating
how much better the models do than random choice. The
measure of ρ2 is the difference between the BIC and the log-
likelihood of a random-choice model in which all strategies
are chosen equally often in each round, normalized by the
random-model log-likelihood. As a rule of thumb, values of
ρ2 from 0.2 to 0.4 basically indicate excellent model fit [25].

B. GOODNESS OF FIT
Table 2 previews and summarizes results in all criteria of
model fitness. Within each game and measure, the best fit
statistics are printed in italics and the best fit model(s) is
marked with an asterisk. Close inspection of these results
yields three observations.

First, the explanatory power of the four models cluster
into two subgroups, that is, MAL very similar to BL, and
RL similar to EWA learning, but the former group is worse
than the latter. The MAL model with minimum cognitive

TABLE 2. Model calibration and valuation of four learning models in all
datasets.

sophistication assumes that players only respond to the most
recent environmental stimulus (i.e., payoff distribution over
routes) such as automatons, while others with higher cog-
nitive sophistication assume that players, to some extent,
utilize their memory or past experience, including payoff
history and decision history. The relatively poor performance
of MAL seems to imply that human subjects’ decisions are
more likely to be history-dependent. Moreover, switching
from MAL to BL models did not improve the performance
pretty much. Recall that the most critical difference between
the former group (MAL and BL models) and latter group
is whether the dependence on what other players have done
took on an important role. This might be one of the reasons
differenting the performance between them.

Second, in terms of the overall performance measured
by ρ2, EWA substantially outperforms others in all games,
although RL parallels it in part of the games. If EWA was
overfitting, it would do relatively better in calibration than in
validation, but this is not the case, judging from the similar
values of ρ2 based on overall data to that on in-sample
data (comparing columns 6 and 9 in Table 2). Importantly,
the overall ρ2 of estimated EWA models fit the real data
perfectly (higher than 0.2), regardless of the changes in the
network topology. Third, EWA does better relative to RL
in the calibration phase but the latter performs better in
the validation phase in terms of LL value. Reinforcement
learning assumes the utilization of two kinds of informa-
tion, that is, the decision maker’s own strategy and payoff.
However, EWA learners are assumed to utilize the choices
made by other players, aside from the above two pieces
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of information. It would thus seem that in the early stage
of the game, the additional consideration of the ‘‘forgone
payoff’’ of unchosen options, could improve the descriptive
power to some extent, while the edge vanishes over time.

Previous literature indicates the RL appears to fit better in
games with relatively low dimensional strategy spaces that
have a mixed strategy equilibrium [26], whereas BL models
appear to make relatively better predictions in coordination
games [27]. However, this may not apply to the route choice
games we investigated here. Because of the large size of
groups comprising of 18 to 20 individuals, keeping an eye on
all others’ choices throughout the repeated games is overly
complicated and far beyond the cognitive abilities of the
participants. Moreover, route-choice decisions in recurrent
games could be regarded as ‘‘small decision’’ problems,
in which the expected consequence of each decision is rela-
tively small. As such, participants would quickly realize that
such efforts to track choices made by other players did not
pay off and represent high inertia rates.

Next, we looked further into the parameter estimates of
EWA models, which may provide some clues to the above
results. Among the four datasets, the estimated δ (and φ)
range intensively between 0 and 0.30 (and 0.88 and 1),
respectively; whereas the value of k varies relatively much
in different games. Recall that the parameter δ measures
the relative weight given to foregone payoffs, compared to
actual payoffs, in updating attractions. Estimated values of
delta leaning towards 0 means that subjects’ choices are more
likely to be governed by the ‘‘law of actual effect’’, compared
to the ‘‘law of simulated effects’’. Moreover, the parameter
φ depreciates past attractions, A(t). Its value, much close to
1 among all datasets, indicates that subjects did not realize
other players were adapting as well, so the old observations
of what others did become less useful but with a very slow
decay rate. Experimental evidence of route choice games,
in fact, favors the dependence on the overall decision history
over recency effect, in which players were highly influenced
by what happened in the most recent round. Note that MAL
model is set up based on the assumption of this recency
effect, which may be the main reason for its relative worse
performance compared to EWA models.

Two hints about the human subjects’ learning suggested
by the model comparison analysis are that, (1) the past
of experience is of importance to make present decision,
(2) subjects’ choices seem to be governed more by the
‘‘law of actual effect’’ than by the ‘‘law of simulated
effects’’.

V. RESULTS
The model comparison analysis above indicates that EWA
learning models could in general account for the sub-
jects’ decisions rather well in terms of statistic criteria
at the population level. To further explore whether learn-
ing could lead people to coordination in route choice
games, we next move on to the dynamics of population
decisions predicted by learning models via simulations.

Specifically, we generated data for artificial subjects using
the best-fitting parameter values and compared simulated to
actual behavior in terms of two statistics at the aggregate
level: (1) the mean choice distribution over time and (2) the
proportion of subjects who switched from their last choice
over time.

A minor reason to proceed with such simulations of the
dynamic process is to complement or strengthen the results
based on the MLE method, in which decisions in two succes-
sive rounds are assumed to be mutually independent while
learning processes are always dependent on time and history.
That is also the reason that although we could reduce the dif-
ference between real and simulated players by re-estimating
parameters to meet the new criteria in this section, we have
opted not to do so. Rather, we applied the parameter estimates
estimated using the in-sample fitting method to maximize
the log-likelihood scores in the last section. If the models
could stand still in the new criteria regarding the adjustment
process, our results of model comparison would be more
convincing.

A. SIMULATION SETTING
As all learning models include stochastic elements, we sim-
ulated 1,000 groups of artificial agents (18 or 20 per group)
for each game to avoid the influence of statistical outliers.
In each simulation run, all agents act in accordance with the
same learning model using the same parameters estimated by
the in-sample fitting method to avoid potential over-fitting
problems [25]. The 1,000 groups of artificial players started
the game with randomization of equal probability on each
choice in the first round. They differed from one another only
in the value of the seed number that was used to generate the
random numbers, which, in turn, determined the probability
of route choices and the path of route choice distribution over
time. In each round, the route choice distribution is generated
endogenously by the artificial agents’ decisions; after each
round, the agents receive feedback information regarding the
choice distribution and payoffs distribution over all alterna-
tive routes, in parallel with the complete information setting
in experiments.

B. AGGREGATE CHOICE DISTRIBUTION
In a simulation of each game, we calculated the mean fre-
quency of each route j in the first half and second half
of rounds, respectively, termed by f sj . Similarly, f obj and
f eqj are calculated for each game and either of the two
blocks, which represent the average frequency of route j
observed in data and predicted by equilibrium solutions,
respectively. By means of the quadratic distances, defined
as (10), we will examine whether the learning models could
reproduce the observed route choice distribution and capture
the convergence tendency to equilibria. The mean quadratic
distances Qob and Qeq are the average quadratic distance
from equilibrium prediction and from observed data overR(=
1, 000) simulations and over the four games, respectively,
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FIGURE 2. The mean quadratic distances Qeq (left bars) and Qob (right
bars) across four experimental games, by learning model and by block,
with Random play as a benchmark.

defined as:

Qob =
1
4R

4∑
g=1

R∑
r=1

mi∑
j=1

(f̄ sj − f̄
ob
j )2

Qeq =
1
4R

4∑
g=1

R∑
r=1

mi∑
j=1

(f̄ sj − f̄
eq
j )2 (10)

wheremj indicates the total number of routes in networks that
vary in different games. The predictive success of a learning
model increases with a decreasing mean quadratic distance,
i.e., the smaller the mean quadratic distance is, the better the
learning theory fits the experimental data at the aggregate
level.

Fig. 2 displays the mean quadratic distancesQeq (left bars)
andQob (right bars) across four experimental games, by learn-
ing model and by block, with Random play as a benchmark.
Inspection of Figure 2 yields two observations:

(1) For all learning models, the values of Qeq seem to
decrease over time, while the values of Qob seems to
be stable across blocks.

(2) Both the distances of all learningmodels in either block
are much lower than the Random play benchmark, that
is, at most roughly half of the latter prediction, implying
that all the alternative models outperform the Random
play benchmark;

(3) In terms of capturing the observed distributions over
all games Qob, the performance of the EWA and RL
models are very similar to each other and both better
than that of MAL, and the performance of all three
models are, in turn, worse than that of the BL models.

Next, we proceeded with statistic tests to examine these
observations. To this end, we broke down the distance scores
Qeq and Qob separately for each game, instead of averaging
over all games. Our first test of observation (1) concerns how
the route choice distribution changed over time as predicted
by learning models.

FIGURE 3. The typical development of the mean frequency of choosing
route OED in Game 4R (the network referring to Fig. 1(b)) over all
1,000 simulation runs, compared with the moving average of the choice
frequency on it (step = 5 rounds) over all groups in the experiments
(dashed line), with two benchmarks as Nash equilibrium (dotted line) and
Random play (dash-dot line).

To check the capability to capture the convergence towards
equilibrium, for each learning model we compared their dis-
tance score from equilibrium, Qeq, in the first block with
that in the second block of periods, using a game as the
unit of analysis. We cannot reject the null hypothesis that
the distance from equilibrium does not decrease over blocks
according to the Wilcoxon Signed Ranks tests (one-sided)
for all learning models (p > 0.19). One possible reason is
that the models’ prediction converges towards equilibrium
rapidly within the first block (see Fig. 3 for an example).
To check the stability of the explanatory power of learning
models over time, we implemented similar tests but in terms
of the distance scores from the observed choice distribution
Qob. Similarly, we cannot reject the null hypothesis that no
difference exists between the two blocks according to the
Wilcoxon Signed Ranks tests (two-sided) for all learning
models (p > 0.46). This result implies that the explanatory
power of these models is rather stable over time, especially
considering that the predictions are based on parameter esti-
mates obtained using the in-sample fitting method.

Further analysis provides support for observations (2)
and (3). Using a simulation for each game as the unit of
analysis, we conducted Fisher-Pitman permutation tests for
every paired distance score Qob generated by a learning
model and by Random play benchmark in either of the two
blocks respectively. All comparison results were significant
(p < 0.001), which supports that all learning models explain
the observed route choice distribution over time significantly
better than the Random play benchmark. We proceed with
the same tests that compared the distance scores between any
pair of learning models. Consistent with the inspection of
Fig. 2, the difference between the EWA and RL models was
very small and irrelevant, the corresponding test yielded no
significant result with no surprise (p > 0.5). Except for that
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pair, all the results were significant (p < 0.01). Because of
the large number of observations (4,000 per learning type),
the order of explanatory power in the dynamics (in Fig. 2)
was statistically robust. The order from the best to the worst
is, BL, followed by EWA and RL with rare difference, and
then MAL, Random play.

Take Game 4R for example, Fig. 3 demonstrates the differ-
ence in predictions made by the alternative learningmodels in
more detail. Fig. 3 exhibits the typical adjustment process of
the mean frequency for choosing route OED in Game 4R over
all simulation runs, compared with the moving average of the
choice frequency on it (step = 5 rounds) over all groups in
the experiments (dashed line), with two benchmarks as Nash
equilibrium (dotted line) and Random play (dash-dot line).
The inspection of Fig. 3 suggests that all the learning models
except for the MAL model simulates the observed mean
choices on Route OED rather closely. However, the BLmodel
converges more quickly than RL and EWA, all of which have
significantly lower distance scores than theMALmodel. That
implies once again that the learning process shared by human
subjects is more likely to be history-dependent, instead of a
direct response to the latest information or situation.

C. AGGREGATE ROUTE SWITCHES
However, a more detailed analysis, which also focuses
directly on the adjustment process postulated by the learning
models, considers total switches in decisions among subjects
over blocks. Paired t-tests (with a group as the unit of obser-
vation) that compared themean number of switches in the two
halves in Games 6R and 8R yielded significant results (t(3)
> 6.36, p < 0.01), while there were no significant results
for Games 2R and 4R (p > 0.1). As such, we observed a
significant decreasing tendency of the number of switches
over blocks in part of the datasets, but not in others. These
diverse patterns are of particular importance for assessing the
performance of any learning model that presumes to capture
the dynamics.

In a simulation of each game, we calculated for each
round the proportion of subjects who switched from their last
choice, and then took the average for each simulated game
over the rounds in the first and second half, respectively.
Table 3 presents the means and standard deviations of the
simulated proportion of switches by game and block, com-
pared with the observed ones. Using each simulation as a
unit of analysis, pair t-tests that compared mean proportion
of switches predicted by the EWA, RL and BL models in
the two halves in all games yielded a significant decreasing
tendency (t > 96.09, p < 0.01), while the same tests indicate
that there is no significant difference between the number of
switches predicted by MAL models in the two halves (t <
−0.567, p > 0.5). Furthermore, we conducted four Mann-
Whitney tests (two-sided) to compare the simulated average
proportions of switches by each of the learning models with
the observed ones by game and by block. The null hypoth-
esis of no difference between BL predictions and observed

TABLE 3. The means and standard deviations of the simulated proportion
of switches predicted by different learning models, compared with the
observed ones, by game and block.

FIGURE 4. Percentage of players who switched routes, by round and
model for Game 8R, with two benchmarks, i.e., Random Play (dotted line)
and observed data (dashed line). Note that each point indicates the total
number of switches out of 90 (= 18 players × 5 sessions) individual data
points.

proportion of switches was significantly rejected (p = 0.01),
while the other hypothesis was not (p > 0.1).
Our result is twofold. On the one hand, the EWA, RL and

BL models, could predict a decreasing tendency among all
simulated games, while the MAL model could only roughly
predict a flat line in all cases. On the other hand, BL pre-
dicted a significantly higher proportion of switches than the
observed proportion over all games, while others did not.
To better illustrate this result, we took Game 8R as an exam-
ple, and drew Fig. 4 to display the percentage of players
who switched routes, by round and by model. A line-by-
line comparison shows that the simulated results of EWA and
RL models follow the observed decreasing tendency rather
well, but that the BL model and Random play benchmark
consistently predicted much higher switches. It appears that
the MAL model captures the average level of the number
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of switches over time rather closely. However, it is worth
mentioning that none of the tested learning models is capable
to capture the mixed patterns in switches over time across
different games; that is, switches over time decrease sig-
nificantly on some networks but not significantly in other
scenarios.

VI. CONCLUSION
In route choice games, a large group of self-interested users
must to traverse through the same and congestible network,
hoping for minimum delays. Given the high degree of strate-
gic uncertainty and large-scale multiple equilibria, the recent
experimental evidence of coordination success is rather sur-
prising.

In this paper, we investigate how learning theories could
contribute to explaining the consistently observed tacit coor-
dination using a comprehensive horse race between the alter-
ative learning models in four experimental games. To the best
of our knowledge, this paper is the first systematic compar-
ative study of learning theories in large-group route-choice
games. We organize the main results to correspond to the
order of our two research questions: which learning models
could best capture the population decisions, and how suc-
cessfully the learning models could reproduce the dynamics
towards coordination at the aggregate level.

Using maximum likelihood estimation to estimate the
parameters in the sample and several statistic criteria to
test models out the sample, we obtained the order of the
explanatory power of the four models from best to worst,
EWA ≈ RL > BL ≈MAL. Two hints about the human sub-
jects’ decisions suggested by the model comparison analysis
are that, (1) past of experience is important to make present
decision, (2) subjects’ choices appear to be governed more
by the ‘‘law of actual effect’’ than by the ‘‘law of simulated
effects’’ [12].

By comparing the simulations based on parameter estima-
tions with experimental data, all the learning models proved
to have stable predictive power in replicating the dynam-
ics of aggregate choice distribution, which did converge to
Nash equilibrium (although not significantly). Regarding the
dynamics of the proportion of subjects who switched from
their last choices, the results are two twofold. EWA, RL
and BL models could always predict decreasing tendency
in any games, while MAL always a flat line regardless of
the network topology. However, none of them were flexible
enough to capture the mixed patterns in real experiments.
In capturing the distribution of individual switching rates,
learning theories face collective failure.

In summary, adaptive learning models such as EWA,
in general, could both effectively account for the subjects’
decisions and generate the dynamics of coordination similar
to that in experimental games. Future research might test
whether employing various types of learning, such as rule-
based learning theory postulated [28], is a promising way of
simultaneously capturing the dynamics towards coordination
and substantial individual differences.
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