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ABSTRACT Face inpainting aims to repaired damaged images caused by occlusion or cover. In recent
years, deep learning based approaches have shown promising results for the challenging task of image
inpainting. However, there are still limitation in reconstructing reasonable structures because of over-
smoothed and/or blurred results. The distorted structures or blurred textures are inconsistent with surrounding
areas and require further post-processing to blend the results. In this paper, we present a novel generative
model-based approach, which consisted by nested two Generative Adversarial Networks (GAN), the sub-
confrontation GAN in generator and parent-confrontation GAN. The sub-confrontation GAN, which is in
the image generator of parent-confrontation GAN, can find the location of missing area and reduce mode
collapse as a prior constraint. To avoid generating vague details, a novel residual structure is designed in
the sub-confrontation GAN to deliver richer original image information to the deeper layers. The parent-
confrontation GAN includes an image generation part and a discrimination part. The discrimination part
of parent-confrontation GAN includes global and local discriminator, which benefits the reconstruction of
overall coherency of the repaired image while obtaining local details. The experiments are executed over the
publicly available dataset CelebA, and the results show that our method outperforms current state-of-the-art
techniques quantitatively and qualitatively.

INDEX TERMS Face inpainting, deep neural network, nested GAN.

I. INTRODUCTION
Face inpainting is a challenging task of recovering details
of facial features on high-level image semantics. It can be
applied in many face recognition occasions, such as wear-
ing sunglasses, microphone occlusion during performance,
and covering mask. The purpose of inpainting technology
is to repair the broken part of the image with known image
information. The most important goal of this task is to avoid
introducing noise into non-repaired areas and to generate
reliable repaired areas. Based on this technique, noise, hiatus
and scratch can be removed.

Because of the strong correlation between pixels in one
image, lost image information can be restored as much as
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possible based on undamaged or occluded area of the image
and its pattern priori. During inpainting process, the content
information of the whole image is considered, including low-
level texture information and high-level semantic informa-
tion. Traditional inpainting methods rely on low level cues
to find best matching patches from the uncorrupted sec-
tions in the same image [1]–[3]. These methods work well
for background completions and repetitive texture pattern.
However, low level features are limited for face inpainting
task as face image consists of many unique components,
and inpainting process needs to be carried out with a high-
level semantic level [4]–[6]. The traditional methods based
on finding patches with similar appearance patches does not
always perform well.

Rapid progress in deep convolutional neural networks
(CNN) and generative adversarial networks (GAN) [7]
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inspired lots of studies [6], [8]–[10] to restore damaged
images. The GAN model [6], [10], [11], [43] is proposed
to deal with both low-level textural features and high-
level semantic features, which can complete the blanks
in the images. However, one of the essential challenges
about inpainting via GAN model is that the reconstructed
area is blurry compared to global image [11]. The rea-
son is that the output of model approximates to the global
loss minimum, which will make intensity of output vague.
To tackle this problem, a complete training framework
based on nested generator adversarial network (NGAN) is
proposed in this paper. This generation network includes
a sub-confrontation GAN and a parent-confrontation GAN.
Applying sub-confrontation GAN, the location of missing
area is found and rough result is obtained. To avoid the loss of
defect area information and the degradation of the GAN, our
model adopts residual structure to jointly transmit features in
different layers to a deeper network. In order to solve the puz-
zle of ambiguity of repairing region, a special residual trans-
fer connection is utilized for four times in sub-confrontation
generation network, which can reduce loss in convolutional
network transmission process. In the parent confrontation
GAN, the global and local discriminators are combined to
capture both local continuity of image texture and pervasive
global features in images, which aims to achieve high-quality
local repair area and overall coordination.

We evaluate our method using CelebA [12] dataset com-
pared with other state-of-the-art methods. The contributions
of our work are summarized as follows:
• A NGAN based framework is proposed for face inpaint-
ing, which is a combination of a sub-confrontation and
a parent-confrontation network. The networks produce
a priori semantic constraint to reduce model collapse.

• A novel residual connection structure is introduced in
sub-confrontation generation network, which is benefi-
cial to generate high-quality details for facial image with
mask and eliminate ambiguity.

• Local discriminator and global discriminator are com-
bined in our framework, which can ensure global con-
sistency of inpainting results and guarantee the details
of the local inpainting area.

The remaining of the paper is organized as follows.
Section II presents a short review of relevant and recent image
inpainting techniques. The details of NGAN method are
presented in Section III. Section IV shows the experimental
results before we conclude the paper in Section V.

II. RELATED WORK
As an important branch of digital image processing,
the research of image inpainting is extensive. Methods for
image inpainting fall mainly into two categories: copy-paste
and learning-based.

Copy-paste inpainting methods are based on the informa-
tion relations between damaged areas and known areas in the
image and migrates the surrounding information to the blank
area. The idea of diffusion model is to iteratively propagates

the underlying texture information of known image areas
to damaged unknown areas [1]. The basic principle of this
type of models is from the thermal diffusion equations in
physics [2], [13]–[15]. Another type of inpainting approaches
based on geometric image variational model imitates the
process of image restoration by hand [16]–[19]. During the
processing of this method, the universal function is deter-
mined based on the data prior distribution, and the defect area
is repaired using the established model. These copy-paste
image restoration techniques have achieved good results in
smooth and continuous small-scale damaged images. How-
ever, when the loss area is large-scale, or the texture is rich
and complex, the diffusion or image data model will not be
able to accurately describe the lost information, resulting in
unnatural and unclear results.

To solve the above problem, texture synthesis technology
was presented [20]. The texture blocks with appropriate size
are determined, and the missing area is synthesized by the
similarity of blocks texture. Image energy optimization [1],
[3], [21], [22] was introduced to measure texture proximity,
and image gradient was integrated to the distance mea-
surement between reconstructed texture [23]. Texture mea-
surement was extended to include image segmentation and
texture generation [24]. This type of approaches can improve
efficiency and achieve a real-time image restoration through
the patch-match algorithms. In addition, some methods for
automatically estimating the structure of the scene have also
been proposed [25]–[29]. These methods improve the qual-
ity of image completion by preserving important structures,
such as points of interest [30], lines [31] and perspective
distortion [32]. However, the image structure guidance is a
heuristic constraint based on a particular type of scenes, and it
is limited to a specific structure. For different images, distinct
guiding rules of image results need to be designed, and these
rules cannot be applied to arbitrary images. Besides, these
approaches are difficult to reconstruct semantic information
because they only fix the underlying texture.

Although copy-paste methods have a good performance in
image restoration, it is difficult to produce textures that are not
in the original picture. In order to obtain more information,
a large images database was used [33]. However, compared
with the general method, the premise that the database con-
tains a large number of similar or same scenarios greatly
limits its applicability.

With the development of deep neural network, deep-
learning based methods are introduced to predict the
unavailable content and achieve semantic inpainting results.
The convolutional neural network-based image inpainting
method [8] can obtained pleasing result for small occluded
areas. It was applied to repair missing data from MRI and
PET [9]. Generative Adversarial Net (GAN) based on dual-
istic game theory combined with convolutional network [6],
[10], [34]–[36] could bring out very real impaired images.
In these networks, the input image data includes mask areas
which are to be repaired. These mask areas must be manually
annotated in the real word. To address this time consumption
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limitation, a novel end-to-end network is proposed in [6],
[43], which doesn’t need an additional mask as the input
information.

Although deep-learning approaches consider both con-
tent texture and semantic feature and have a good perfor-
mance in image inpainting, some features are easily lost,
resulting in reconstructing unreasonable structures, such as
over-smoothed and/or blurry [12]. Especially, the distorted
structures or blurry textures inconsistent with surrounding
areas will be produced [36]. In this paper, we propose NGAN
for semantic face inpainting. In our model, a nested GAN
structure is introduced to constraint generation process and
reduce noise introduction. A new residual connection is con-
structed to transmit missing information caused by network
forward propagation process to deeper layers. The global and
local discriminators are combined to reconstruct the overall
coherency image and to obtain local details.

III. APPROACHES
A. GAN REVIEW
GAN model was proposed by Goodfellow et al. [7], which
consists of two parametrized deep neural nets: generator, G,
and discriminator, D. G maps a random vector z, sampled
from a prior distribution pz, to the image space while Dmaps
an input image to a likelihood. The target of G is to pro-
duce images that are realistic enough, while D discriminates
between the image generated from G, and the real image, x,
sampled from the data distribution pdata.

The G and D networks are trained by optimizing the loss
function:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz (z)[1− D(G(z))]. (1)

The generator is trained to acquire minimum loss while the
discriminator is trained to acquire maximum loss. The loss
eventually approaches 0.5 when the training process finishes.

B. NESTING STRUCTURE OF GAN
GAN is an unsupervised learning model, which can generate
clear and realistic images [6]. We introduce a generative
CNN model and a training procedure for the hole filling
in face images problem. Our network consists of a nested
structure including two different generation networks, which
are called sub-confrontation generation network and parent-
confrontation generation network.

The sub-confrontation generation network identifies the
location of image defects, which can preserve the original
information in the non-repaired area of the image. After the
confrontation training, code generator can produce robust
coding information, which will be decode to generate output
image. In addition, the residual structure and the dilated
convolutional structure are adopted in code generator of sub-
confrontation generation network to improve the local details
of the output image. Meanwhile, the coding information are
used as a priori semantic constraint to reduce model collapse.

FIGURE 1. The sub-confrontation generation network consisted by a code
generator and a code discriminator. The parent-confrontation generation
network has two parts: generation part and discrimination part. The
output of the global and local discriminators are fed back into the image
generator. The output of the coding discriminator is fed back into the
code generator.

The parent-confrontation generation network has two
parts: generation part and discrimination part. The parent-
confrontation generation network takes the corrupted image
and tries to reconstruct the repaired image. The generation
part uses the coding information of sub-confrontation gen-
eration network to recover the input image through multiple
convolutional layers. Unlike traditional networks, the dis-
crimination part consists two different scales discriminators.
The overall structure of our framework is shown in Fig. 1.

1) SUB-CONFRONTATION GENERATION NETWORK
The sub-confrontation generation network is consisted by
code generator and code discriminator, and the corruption
image z is used as the input. After antagonistic training,
the code generator produce code information, z′, which is
judged by code discriminator to be the same classification
as ground truth coding. This network can obtain the ability
to extract the robust features of the damaged image. Fur-
thermore, it is also a prior constraint on the image genera-
tor, which effectively reduces the collapse of the generator
pattern.

The code generator is trained with an additional code dis-
criminator and can learn the features of the occlusive image
and retain the semantic information of the original image as
much as possible during the coding process. Code generator
and code discriminator form an antagonistic structure and are
iterated alternately until obtaining consistent coding for the
corruption image and the corresponding ground truth.

The code generator consists 5 convolutional layers and
5 dilated convolutional layers. Dilated convolution can
increase the receptive field of the network without increasing
the number of model parameters [37], which will be analyzed
in detail in III-D. To avoid losing information in calculating,
a specially designed residual connection is applied, which
transports original information to deep layers. The novel
residual connection structure will be described in III-C. The
code discriminator consists of three convolutional layers and
one fully connected layer. The structure of sub-confrontation
generation network is shown in Fig. 2.

2) PARENT-CONFRONTATION GENERATION NETWORK
The parent-confrontation generation network has two parts:
generation part and discrimination part. The generation part
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FIGURE 2. The structure of sub-confrontation generation network
consisted by code generator and code discriminator.

FIGURE 3. The parent-confrontation generation network in our
framework consists of a complex generator and two discriminators. The
defective image is as the input of the generation part. The semantic
repaired is carried out by the network and the result of reconstruction is
the output, which will be evaluated by the discrimination part.

is composed of a code generator of sub-confrontation gener-
ation network and an image generator. After coding process,
the image generator reconstructs broken image from code
information. Using the encoded information as input instead
of the image directly can improve the robustness of our model
and reduce model collapse.

The discriminator part consists of a global discriminator
and a local discriminator. The global discriminator judges the
authenticity of the whole image and enforce global consis-
tency on a large scale. Different from global discriminator,
the local discriminator only constrains the richness of image
detail information and local coherency. Both discriminator
networks have similar network structures, which are spliced
together and produced by the fully connected hierarchy. The
generation part and the discrimination part form a confronta-
tion structure. Through the confrontation training, the gener-
ation part can reconstruct pleasing image. The structure of the
parent-confrontation generation network is shown in Fig. 3.

C. NOVEL RESIDUAL CONNECTION STRUCTURE
When the information is propagated forward between layers,
the size of the feature map decreases by the convolution
kernel with stride 2 or larger, which will result in losing of
detail texture information and degradation of the generated
image. In addition, using the activation function will lose
the information of original image. For example, for a single

image x0 through a convolutional network, the previous con-
volutional feed-forward network connects the output of the
l th layer to the (l + 1)th layer, which applies the following
layer transition: x(l+1) = Hl(xl). In order to achieve sparse
network connections and avoid losing negative value, we usu-
ally use leaky ReLU function, which reduces the negative
value response of the former feature map. However, leaky
ReLU function does not completely reflect the impact of
information loss on image generation.

To tackle this limitation, our method takes advantage of
the original available data using novel residual connection
structure. Residual network structure was proposed in [38],
which added a skip-connection that bypassed the non-linear
transformations with an identity function:

xl+1 = Hl(xl)+ xl, (2)

where xl is output of the l th layer, x(l+1) is output of the
(l + 1)th layer, Hl(·) is Leaky ReLU function. Using residual
block structure, the original information can be delivered to
deep layer, which cannot only retain details of the input image
but also avoid introducing noise. In [39], an improvement
was made to reduce the number of residuals and improve
network performance. However, these two residual connec-
tions can only transport the original information directly. This
will transfer all the information from the damaged area of
the image to the deeper layers and degrades the quality of
the resulting image. Therefore, it is necessary to change the
residual connection structure in order to pass only valid infor-
mation. In our approach, we improved the structure in [39]
and change the residual structure as follow:

xl+1 = Kl(xl)+ φl(xl), (3)

where Kl(xl) is processing function in l th layer, which is
down-sample operation by convolutional layers and pooling
layers in our network; φl(·) is a robust information extractor
for the output of l th layer, which can filter out the original
information lost through layers. The extractor function φl(·)
is defined:

φl(t) = t − K∗l (Kl(t)), (4)

where K∗l (·) is an up-sample operation by single convolu-
tional layer structure. The original information t is implicitly
and adaptively transported to K∗l (Kl(t)) and the interpolation
between feature map in deeper layer and feature map in
shallow layer is the missing information in feed forward net-
work. By transmitting the missing information φl(t) to deeper
layers, our approach takes advantage of more primitive and
useful semantic information as well as the ability to generate
reliable results.

We compared different residual connection patterns and
presented the experimental results in Fig.4. The result illus-
trates that our method is outperform than those in [38]
and [39]. The inpainting images based on our connection
pattern have clear details of the left eye and good consistency
with the right eye, and the details of results based on the other
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FIGURE 4. Result images using different residual structure. Left to right:
(a) the ground truth from CelebA, (b) input images, (c) results based on
Element-wise Sum [38], (d) results based on Depth Concatenation [39],
and (e) results based on our proposed approach.

two methods are obviously missing. The repaired results
based on element-wise sum [38] have significant mosaic
effect, while the results using depth concatenation [39] are
seriously blurred in detail.

D. DILATED CONVOLUTION
When repairing large missing regions in an image, the net-
work needs to have a large area of receptive field. Using
large convolutional kernel or deeper network will increase the
parameters andmake training process more difficult. To elim-
inate this disadvantage, dilated convolution [37] is introduced
to our network. As there are some zero units in large kernel,
dilated convolutional layers can obtain large receptive field
without increasing the parameters.

The receptive field of dilated convolutional layer is:

fi = fi−1 +
k−1∏
i=1

Si × (Ki − 1), (5)

where fi is the receptive field of the ith layer, fi−1 is the
receptive field of the (i− 1)th layer, Ki is the size of kernel
of the ith layer and Si is the extension rate of the ith layer.
When the size of convolution kernel is fixed, the size of
receptive field for neural network increases exponentially
with the number of layers.

The increase of receptive field by using extended convo-
lution also introduces the problem of gridding effect [44],
which may note be good for learning. Because the local
information is completely missing and the information can
be irrelevant across large distances, the design paradigm
of Hybrid Dilated Convolution (HDC) [44] is adopted to
solve the gridding problem. There can be no common divisor
greater than 1 for the expansion rate of adjacent layers, which
ensures that every pixel in the receptive field participates in
the calculation. The convolutional rate is selected to follow
the zigzag structure design as [1, 2, 5], subject to the follow-
ing rules:

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri], (6)

where ri is the dilation rate of the ith layer, Mi is the max
dilation rate of the ith layer. As shown in Fig.5, when the

FIGURE 5. Illustration of the solution of the gridding problem. The
receptive field of sequence of 9 convolutional layers has dilation rates of
[1, 2, 5], respectively with kernel size 3 × 3. The times of pixel counted are
represented by the color depth.

dilated rates is [1, 2, 5], all pixels that participate in the
calculation and the gridding effect are completely eliminated.
The shallow receptive field has a checkerboard effect. As the
number of layers increases, the receptive field gradually tends
to concentric circles.

E. DISCRIMINATION PART
To achieve clarity of detail and overall consistency at the
same time, an additional local discriminator for detail dis-
crimination is used in our network. The input of the local
discriminator is only the local area of the image and the
discriminator only distinguishes the details. We compare the
results between only using global discriminator and using
both global discriminator and local discriminator in Fig. 6.
From the results, the left eyes based on global discriminator
tend to be blurred, while the results based on our method
are clear and real, and have good consistency with the sur-
rounding areas and the right eyes. The results deduce that our
method has good performance in fixing the details and gener-
ates detailed and consistent reconstructed images regardless
of the mask location.

F. OBJECTIVE FUNCTION
At the training stage, we use a combination of five loss
functions. They are optimized jointly via back propagation
using RMSProp optimizer [41]. In addition, an adaptive
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FIGURE 6. The comparison of results using only global discriminator and
our proposed method. (a) Ground truth, (b) input images, the sequence
(c) images that are based on only global discriminator, and the sequence
(d) images that are based on our proposed method.

step-by-step function is trained in our model. We describe
each loss function briefly as follows.

Code generator loss is the entropy deviation of informa-
tion between the input and output of code generator. Even
though it forces the network to produce a blurry output,
it guides the network to roughly predict the robust informa-
tion and the location of corrupted area. The code generator
loss comes from the reconstruction loss of the structure of
code generator, coding loss and the loss of GAN with code
discriminator. It is back-propagated through the code gener-
ator and defined as:

Lencoder = MSE(C(X ),C(X ′))+MSE(X ,Dcode(C(X )))
−Ex ′∼PX ′ [log(1− Dcode(C(X

′)))], (7)

where X is the ground truth, X ′ is the reconstructed image,
C(·) is the output of the code generator, and Dcode(·) is the
output of code discriminator,MSE(·, ·) is the pixel-wisemean
square error between two images.

Code discriminator loss is the distance between synthe-
sized image and ground truth.It is back-propagated through
code discriminator. It is the discriminator loss in GAN:

Lcode−dis = −EX ′∼Pdata[logDcode(X
′)]

+EC(X )∼PC [log(1− Dcode(C(X )))], (8)

Image generator loss is the loss in coding reconstruction
process and generator loss of the generative adversarial neural
network. It is back-propagated through image generator and
defined as:

Lgen = MSE(X ,Y )− Ez′∼Pz′ [log(1− DGL(G(C(X
′))))],

(9)

where G(·) is the output of image generator, Y is the recon-
struction result of broken image, DGL(·) is the sum result of
global discriminator and local discriminator.
Global discriminator loss and local discriminator loss

compute the accuracy of distinguishing synthesized image
and ground truth. Global discriminator calculates based on
whole image while local discriminator calculates only based
on reconstructed area. They are back-propagated through the
global discriminator and the local discriminator separately.
They are defined respectively by:

Lglo−dis = −EY∼Pdata [logDG(Y )]

+EC(X ′)∼PC(X ′) [log(1− DG(G(C(X
′))))], (10)

Lloc−dis = −Ey∼Pdata[logDL(y)]

+EC(x ′)∼PC(x′) [log(1− DL(G(C(x
′))))], (11)

where x ′ is the missing area of corrupted image, y is the
corresponding region in ground truth, DG(·) is the result of
global discriminator,DL(·) is the result of local discriminator.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION
In our work, we utilize the architecture of deep convolutional
GAN (DCGAN) to train the five parts of the model. The
implementation environment of the experiment is Tensor-
Flow 1.14.0, CUDA 10.0.130, Indel(R) Core(TM) i7-6700K
CPU and NVIDIA GeForceGTX1080. Our NGAN is trained
on the CelebFaces Attributes (CelebA) dataset, which con-
sists of 10,177 identities with 202,599 face images. By adding
occlusion to the original face image as the input of themissing
image to be repaired, the fabrication of occlusion dataset
CelebA-Mask was realized. We randomly selected 10 per-
centage of CelebA-Mask as the test set and the remaining
90 percentage of the images as the training set. The activation
function of our network uses Leaky ReLU, which can reduce
the loss of information caused by negative shielding.
Our framework consists of five neural networks, and the

network is constrained step-by-step during training. The
training process is as follows:
1) Train code generator and image generator only;
2) Fix code generator and image generator, and train code

discriminator, local discriminator and global discrim-
inator. The number of iterations is fixed so that the
training degree of the discriminators is close to that of
the code generator and image generator.

3) Alternately train code generator, image generator and
discriminators using the training method of GAN.

Fig. 7 shows our face completion results on the CelebA
dataset. The essential facial component in an image of
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FIGURE 7. Example results of our proposed method. (a) Ground truth,
(b) input corrupted images, (c) the inpainting results.

FIGURE 8. Example results: (a) ground truth, (b) corrupted images,
(c) results based on [41], (d) results based on [36], (e) results based on
our method. Red square areas are enlarged and shown in Fig. 9.

128×128 pixels is missing randomly and the size of missing
area is 16× 16 pixel.

B. QUALITATIVE EVALUATION
To evaluate the effectiveness of our model, the comparison
of results with [41] and [36] are presented in Fig. 8. The
occlusive area of the input map contains a wealth of seman-
tic information, which is very different from simple texture
repair work.

The results demonstrated that our approach performs best
in terms of overall consistency and detail repair. In terms
of detail repair, we can easily find that the repaired area of
the left eye using [41] and [36] methods are blurred, while
our method achieved much natural and clear details. In terms
of overall consistency, the left eye and the right eye of the
results using the compared methods are not consistent, while

FIGURE 9. Enlarged results of the inpainting area. (a) [41], (b) [36], (c) our
method.

our results show that the left eye and the right eye remained
coherently. The enlarged results of the inpainting area are
shown in Fig. 9. The area reconstructed by the method in [41]
has a clear border, and the hue of the complementary area is
different from that of other parts of the face. Likewise the hue
of area reconstructed by the method of [36] is different. Our
method does not have this drawback, and overall consistent
tone of face skin is obtained.

C. QUANTITATIVE EVALUATION
In order to estimate our model quantitatively, we tested it
on the whole CelebA-Mask dataset. The mean square error
(MSE), peak signal-to-noise ratio (PSNR), structural sim-
ilarity index (SSIM) and FACENET distance [42] of the
repaired image are calculated and compared with the other
two methods. The results of our method (end-to-end and with
manual processing) are compared with Pathak et al. [41] and
Yu et al. [36], and the evaluation results are shown in Fig. 10.
The manual processing means replacing the non-mask region
of the output with the original pixels with corresponding posi-
tion manually. The corresponding results are shown in Fig. 10
as ‘‘Our’’.

As shown in the figure, our method performs well onMSE,
PSNR, SSIM, and FACENET, especially for the end-to-end
results with post-processing. It deduces that our model can
leverage the repaired detail, surrounding consistency, and
structural reduction with less artifacts. The method directly
coping raw image patches has lower MSE and FACENET,
and higher PSNR and SSIM, which indicates that the repaired
area of the output by our method has a high consistency with
ground truth and has better facial similarity in the task of
facial semantic repair. The improvement of the quality of our
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FIGURE 10. Comparison of inpainting results with Pathak [41], Yu [36].
(a) MSE, (b) PSNR, (c) SSIM, (d) FACENET. Statistics are based on
CelebA-Mask dataset with size 128 × 128 pixel. In each figure, from left to
right: input image with mask, Pathak [41], Yu [36], our method
(end-to-end) and the result with manual processing of our method.

FIGURE 11. Comparison `1(%) and `2(%) on CelebA-Mask with [36], [41]
and our method.

method compared with manual processing also demonstrates
that the end-to-end model still introduces little noise to output
images to maintaining the overall consistency and preserving
the surrounding information of input image.

In addition, to compare the deductive repair capability of
the network, we report our evaluation in terms of mean `1
error and mean `2 error for the results of the repaired region.
The statistics distributions of [36], [41] and our method with
ground truth are evaluated and compared in Fig. 11. The
lower values of `1 and `2 in our method indicate that the
repaired area by the proposed method is more similar to
the ground truth in statistics. In addition, it is also verified
that in subjective experiments, our method achieves detail-
rich textures and better performance in the repaired areas.

D. LIMITATION
Although our model is able to generate semantically plausi-
ble and visually pleasing content, there is some limitations.
We implement various data to test and verify the effectiveness

FIGURE 12. Example results: (a) ground truth, (b) input images,
(c) illustrate of our method.

and robustness of our method. In the experiments in Fig. 12,
our model fails to reconstruct the image for profile images.
Due to the limitation of the training data, this method only
works with rectangular patches (16× 16 in this work). In the
future work, we plan to merge expression detection and face
position detection to our framework to address this issue.

V. CONCLUSION
In this paper, we present a novel deep generative model-based
approach that improves the quality of reproducing filled
regions while exhibits fine details. Our network employs a
novel nesting structure to find the location ofmissing area and
to reducemode collapse as a prior constraint. A residual struc-
ture is adopted to deliver richer original image information to
the deeper layers. Both qualitative and quantitative experi-
ments show that our method performs well in fine details and
global uniformity and can achieve end-to-end repair of defect
images without additional semantic information.
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