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ABSTRACT In this paper, a state constraint controller with disturbance compensation is proposed for
uncertain nonlinear systems to improve the control performance without violating the full state constraints.
A series of extended state observers are designed to estimate disturbances that include the unmodeled
dynamics and the modeling errors. To guarantee non-violation of state constraints while compensating
the disturbances, based on the backstepping technique, the state constraint controller with extended state
observer is proposed by using the barrier Lyapunov function. Then, the stability of the closed-loop system
is proved theoretically. Moreover, exponentially asymptotic tracking is achieved when the disturbances are
not time-variant. Finally, the effectiveness of the proposed approach is verified by two examples.

INDEX TERMS Uncertain nonlinear systems, state constraint, extended state observer, disturbance
compensation.

I. INTRODUCTION
Disturbances (include the unmodeled dynamics, the model-
ing errors) always exist in all practical control systems, which
may lead to tracking accuracy degradation and even the insta-
bility of system. The controller design for nonlinear system
has received a great deal of attention due to the requirements
in practical applications and theoretical challenges [1]–[3].
In order to weaken the influence of disturbances, as a main
choice, nonlinear robust control has been widely used to
attenuate disturbances, such as adaptive robust control [2],
sliding mode control [4], super-twisting control [5], contin-
uous nonsingular terminal sliding mode control [6], adaptive
control with RISE feedback [7]. Simulations and experiments
show that these robust controllers guarantee prescribed output
tracking performance. However, large feedback gain might
be used to guarantee the high control precision in the above-
mentioned robust controllers, which may lead to high gain
feedback and even system instability.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ding Zhai.

In order to reduce the conservatism of the controller and
improve the control performancewithout high-gain feedback,
disturbance compensation in nonlinear systems has been
wildly studied [8]–[16]. Various disturbance observers, such
as uncertainty and disturbance estimator [10], [15], nonlinear
disturbance observer [11], extended state observer [9], [16],
and finite-time disturbance observer [13], are designed to
estimate the generalized disturbances/uncertainties. These
studies show that these disturbance observers have good
performance and the system can achieve high performance
control through disturbance compensation without high gain
feedback. Especially in [9] and [16], the active distur-
bance rejection control (ADRC) is proposed for large dis-
turbances, an extended state observer is used in the design
of ADRC to estimate disturbances and compensate them
in real time. As the excellent performance and very little
information about the plant dynamics are required, ADRC is
used widely [17]–[21]. However, the abovementioned results
do not take into account the effect of state constraints.

In fact, many practical systems are subject to con-
straint, such as physical stoppages and the temperature

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 155251

https://orcid.org/0000-0003-2206-1392


Z. Xu et al.: State Constraint Control for Uncertain Nonlinear Systems

of chemical reactor. Recently, Barrier Lyapunov
Functions (BLFs) [22]–[25] are widely used to deal with
the control problem of nonlinear systems with full state con-
straints [26]–[28]. To solve the control problem of nonlinear
systems with a special class of dynamic uncertainties and
full state constraints, an adaptive neural dynamic surface
controller is designed for strict-feedback nonlinear systems
in [29]. Then, adaptive neural dynamic surface control is
developed using radial basis function neural networks for a
class of pure-feedback nonlinear systems [30]. An improved
adaptive neural dynamic surface controller is designed for
pure-feedback systems with full state constraints and distur-
bance in [31]. For non-strict feedback systems with full-state
constraints and unmodeled dynamics, adaptive neural-based
control is proposed in [32]. These controllers can guarantee
good tracking performance. However, neural network is used
in all the above controllers, the estimations are obtained based
on the neural weight vector and the number of adjustable
parameters will be enormous if the neural network nodes
increase. Then, the online learning time becomes very large.
Besides, disturbances have not been effectively dealt with.
In some cases, disturbances may be the main obstacles to
systems and will greatly reduce the performance and con-
strainability of states of the system.

As the problem of state constraint control with distur-
bance compensation for uncertain nonlinear systems with
full state constraints and disturbances has not been effec-
tively discussed. The problem is still open and unsolved.
Based on the above works, in this paper, for a general class
of nonlinear systems with full state constrains and distur-
bances, based the ADRC technique for disturbances, state
constraint control with disturbance compensation is pro-
posed. The main contributions of the proposed approach are
that:

1) This paper frames a generalization of the results for a
general class of nonlinear pure-feedback systemswith the full
state constraints and general disturbances; For the first time,
ADRC is introduced into the field of full-state constrained
control. The radically different operation principle of the full
state constraint control and ADRC are synthesized to avoid
the violation of full state constraints and handle disturbances,
and the theoretical results of the two design methods are
retained.

2) State constraint control with disturbance compensa- tion
via BLF combined with ESO is designed. ESO is employed
to estimate disturbances of all channels and avoiding
high-gain feedback. The BLF guarantees that the full state
constraints are not violated and all the closed-loop signals
remain bounded. Moreover, the control perfor-mance can
be guaranteed theoretically by the proposed controller while
exponentially asymptotic tracking is achieved when the dis-
turbances are not time-variant.

The paper is organized as follows: Section II presents prob-
lem formulation and preliminaries. In Section III, the ESO
and state constraint control scheme are given. The effec-
tiveness is demonstrated by application of the proposed

approach in two examples in Section IV, and Section V gives
conclusion.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a class of uncertain nonlinear systems with
disturbances:
ẋi = µi (x̄i) xi+1 + Gi (x̄i)+1i (x̄i, t) , 1 ≤ i ≤ n− 1
ẋn = µn (x) u+ Gn (x)+1n (x, t)
y = x1

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn and x̄i = [x1, x2, . . . ,
xi]T ∈ Ri are system states, all the states are constrained
in the compact sets as �xi =

{
xi : |xi| ≤ kci , i = 1, . . . , n

}
with kci being positive constants;u ∈ R is control input;
y ∈ R is system output;µi (·) are known and bounded non-
linear functions, which are smooth enough, i.e., there exist
the constants µ̄i ≥ µ

i
> 0 such that µ

i
≤ |µi (·)| ≤ µ̄i;

Gi (x̄i) ∈ R and Gn (xn) ∈ R are known smooth system state
functions;1i (x̄i, t) ∈ R, i = 1, . . . , n, are unknown smooth
nonlinear disturbances. The following assumptions are made
for ESO.
Remark 1: For the considered system (1), in order to design

the controller expediently, we let the nonlinear functions µi
be smooth and bounded. A very common case satisfied this
limitation is that µ1 (x̄1) = µ2 (x̄2) = · · · = µn (x) = 1.
Assumption 1: 1i and the time derivative 1̇i are bounded,

i.e., there exist the constants 1̄i > 0, 1̄id > 0 satisfying

|1i| ≤ 1̄i,
∣∣1̇i

∣∣ ≤ 1̄id , i = 1, ..., n. (2)

Remark 2: For ESO-based design, Assumption 1 is a
fundamental precondition and has been widely used in [6],
[17], [18], [33], and [34], and these studies have proved that
this assumption is appropriate to physical applications.
Assumption 2 [35]: It is assumed that desired trajectory

x1d (t) and its ith order derivatives x
(i)
1d (t), i= 1, . . . , n satisfy

x1d (t) ≤ ρ0 ≤ kc1 −L1 and
∣∣∣x(i)1d (t)∣∣∣ ≤ ρi where ρ0, ρ1, . . .,

ρn are positive constants, L1 is positive parameter used later.
For the desired trajectory x1 d (t), our objective is to design

control input u such that the output x1 tracks x1 d (t) as closely
as possible in spite of disturbances while ensuring that the
system constraints are not violated. To prevent the system
states from violating the constraints, the BLF is employed.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
A. EXTENDED STATE OBSERVER DESIGN
For system (1), ESOs are employed to estimate matched dis-
turbance and unmatched disturbances simultaneously. Firstly,
we extend xei (x̄i, t) = 1i, i = 1, . . . , n, let hi (x̄i, t) be the
time derivatives of xei (x̄i, t). Then, rewrite (1), we have{

ẋi = µi (x̄i) xi+1 + Gi (x̄i)+ xei (x̄i, t)
ẋei = hi (x̄i, t) , i = 1, . . . , n− 1{
ẋn = µn (x) u+ Gn (x)+ xen (x, t)
ẋen = hn (x, t)

(3)
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For (3), the structures of ESOs are designed to be{
˙̂xi = µi (x̄i) xi+1+Gi (x̄i)+x̂ei (x̄i, t)+l1ωi

(
xi − x̂i

)
˙̂xei = l2ω2

i
(
xi − x̂i

)
, i = 1, . . . , n− 1{

˙̂xn = µn (x) u+Gn (x)+x̂en (x, t)+l1ωn
(
xn − x̂n

)
˙̂xen = l2ω2

n
(
xn − x̂n

) (4)

where x̂i denote the estimation of xi, x̂ei denote the estimation
of xei. ωi >0, i= 1, . . . , n are parameters of ESO to be given
later, l1 and l2 are coefficients of the Hurwitz polynomial
s2 + l1s+ l2.
Remark 3: Different from [36] and [37], it is interesting

that the states of the system are estimated simultaneously
when the system disturbances are estimated. This is deter-
mined by the structure of the extended state observer, because
the estimation of system disturbances is driven by the state
estimation error, which requires both the known system state
and the estimated state.

Noting (3) and (4), the dynamic of estimation errors can be
given as follow{

˙̃xi = x̃ei − l1ωix̃i
˙̃xei = hi (x̄i, t)− l2ω2

i x̃i,
i = 1, . . . , n (5)

where •̃ = • − •̂.
Define εi = [εi1, εi2]T =

[
x̃i, x̃ei/ωi

]T
, i = 1, ..., n,

we have

ε̇i = ωiAεi + B
hi (x̄i, t)
ωi

(6)

where A =
[
−l1 1
−l2 0

]
, B = [0, 1]T .

As the matrix A is Hurwitz, we can select a positive
definite matrix P satisfying

ATP+ PA = −2I (7)

where the matrix I is an identity matrix.

B. CONTROLLER DESIGN
Define z1 = x1-x1d, zi = xi-αi−1, i = 2, . . . , n, αi−1 is virtual
controller. In order to keep the constraints of z1, z2, . . . , zn
and achieve the constraints of x1, x2, . . . , xn, the full state
constraint controller design process is presented as follow.
Step 1: Define a positive definite BLF

V1 =
1
2
b1 log

L21
L21 − z

2
1

(8)

where b1 and L1 = kc1 − ρ0 are positive parameters, log(χ )
is the natural logarithm of χ .

Noting (1), the time derivative of V1 is

V̇1 =
b1z1 (µ1 (x̄1) x2 + G1 (x̄1)+11 (x̄1, t)− ẋ1d )

L21 − z
2
1

=
b1z1 (µ1 (x̄1) (z2 + α1)+ G1 (x̄1)+11 (x̄1, t)− ẋ1d )

L21 − z
2
1

(9)

Based on the disturbance estimation by ESOs in (4),
the virtual α1 is designed to be

α1 =

(
−G1 (x̄1)−x̂e1+ẋ1d−k1z1−

b1ω2
1z1

2
(
L21−z

2
1

)) /µ1 (x̄1)

(10)

where k1 >0 is controller parameter to be determined later.
Then, noting (9) and making use of the Young’s inequality,

the dynamic V̇1 becomes

V̇1 =
−k1b1z21
L21−z

2
1

+
b1µ1 (x̄1) z1z2

L21−z
2
1

+
b1z1ω1ε12

L21−z
2
1

−
b21ω

2
1z

2
1

2
(
L21−z

2
1

)2
≤
−k1b1z21
L21−z

2
1

+
b1µ1 (x̄1) z1z2

L21−z
2
1

+
ε212

2
(11)

Step i (2≤ i ≤ n-1): Define positive definite BLF

Vi =
1
2
bi log

L2i
L2i − z

2
i

+ Vi−1, i = 2, . . . , n− 1 (12)

where bi and Li are positive parameters.
Noting (1), the time derivative of Vi is

V̇i =
biziżi
L2i − z

2
i

+ V̇i−1

=
bizi (µi (x̄i) (zi+1+αi)+Gi (x̄i)+1i (x̄i, t)−α̇i−1)

L2i −z
2
i

+V̇i−1

(13)

Similar to (10), the virtual αi is designed to be

αi =


−Gi (x̄i)− x̂ei+α̇(i−1)c − kizi −

biω2
i zi

2
(
L2i −z

2
i

)
−
µi−1bi−1zi−1

(
L2i −z

2
i

)
bi
(
L2i−1−z

2
i−1

) −

bi
i−1∑
k=1

(
ωk

∂αi−1
∂xk

)2
zi

2
(
L2i −z

2
i

)

 /µi (x̄i)
(14)

where ki >0 is controller parameter to be determined later.
α̇i−1 = α̇(i−1)c + α̇(i−1)u, α̇(i−1)c is the calculable part,
α̇(i−1)u is the incalculable part.

α̇(i−1)c

=
∂αi−1

∂t

+

i−1∑
k=1

∂αi−1

∂xk

(
µk (x̄k) xk+1 + Gk (x̄k)+ x̂ek (x̄k , t)

)
+

i−2∑
h=1

∂αi−1

∂ x̂h

(
µh (x̄h) xh+1

+Gh (x̄h)+ x̂eh (x̄h, t)+ l1ωh
(
xh − x̂h

))
+

i−1∑
k=1

∂αi−1

∂ x̂ek

(
l2ω2

k
(
xk − x̂k

))
,

α̇(i−1)u

=

i−1∑
k=1

∂αi−1

∂xk
(x̃ek (x̄k , t)) (15)
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Then, we have

V̇i = V̇i−1 −
bikiz2i
L2i − z

2
i

+
biµi (x̄i) zizi+1

L2i − z
2
i

+

bizi

(
ωiεi2 −

i−1∑
k=1

∂αi−1
∂xk

(x̃ek (x̄k , t))

)
L2i − z

2
i

−
µi−1bi−1zizi−1
L2i−1 − z

2
i−1

−
b2i ω

2
i z

2
i

2
(
L2i − z

2
i

)2
−

b2i z
2
i

i−1∑
k=1

(
ωk

∂αi−1
∂xk

)2
2
(
L2i − z

2
i

)2 (16)

Applying the Young’s inequality, we obtain

biziωiεi2
L2i − z

2
i

≤
b2i ω

2
i z

2
i

2
(
L2i − z

2
i

)2+ ε2i22 ,
bizi

i−1∑
k=1

∂αi−1
∂xk

(x̃ek (x̄k , t))

L2i − z
2
i

≤

i−1∑
k=1

ε2k2

2
+

b2i z
2
i

i−1∑
k=1

(
ωk

∂αi−1
∂xk

)2
2
(
L2i − z

2
i

)2 .

The above inequalities are employed, (16) becomes

V̇i ≤ V̇i−1 −
bikiz2i
L2i − z

2
i

+
biµi (x̄i) zizi+1

L2i − z
2
i

+

i∑
k=1

ε2k2

2
−
µi−1bi−1zizi−1
L2i−1 − z

2
i−1

(17)

Then, we have

V̇i ≤
biµi (x̄i) zi+1zi

L2i − z
2
i

−

i∑
k=1

kkbkz2k
L2k − z

2
k

+

i∑
j=1

j∑
k=1

ε2k2

2
(18)

Step n: Define a positive definite BLF

Vn =
1
2
bn log

L2n
L2n − z2n

+ Vn−1 (19)

where bn >0 and Ln >0 are parameters.
Noting (1), the time derivative of Vn is

V̇n =
bnzn (ẋn − α̇n−1)

L2n − z2n
+ V̇n−1

=
bnzn (µn (x) u+ Gn (x)+1n (x, t)−α̇n−1)

L2n−z2n
+V̇n−1

(20)

The input u is designed as follow

u =
1

µn (x)


−Gn (x)− x̂en + α̇(n−1)c − knzn −

bnω2
nzn

2(L2n−z2n)

−
µn−1bn−1zn−1

(
L2n−z

2
n
)

bn
(
L2n−1−z

2
n−1

) −

bn
n−1∑
k=1

(
ωk

∂αn−1
∂xk

)2
zn

2(L2n−z2n)


(21)

where kn >0 is controller parameter to be designed later and
α̇n−1 = α̇(n−1)c + α̇(n−1)u, α̇(n−1)c is the calculable part,
α̇(n−1)u is the incalculable part.

α̇(n−1)c

=
∂αn−1

∂t

+

n−1∑
k=1

∂αn−1

∂xk

(
µk (x̄k) xk+1 + Gk (x̄k)+ x̂ek (x̄k , t)

)
+

n−2∑
h=1

∂αn−1

∂ x̂h

(
µh (x̄h) xh+1+Gh (x̄h)

+ x̂eh (x̄h, t)+l1ωh
(
xh−x̂h

))
+

n−1∑
k=1

∂αn−1

∂ x̂ek

(
l2ω2

k
(
xk−x̂k

))
,

α̇(n−1)u

=

n−1∑
k=1

∂αn−1

∂xk
(x̃ek (x̄k , t)) (22)

Put (21) into (20), we have

V̇n = V̇n−1+
bnzn

(
1n (x, t)−x̂en−α̇(n−1)u−knzn

)
L2n−z2n

−
µn−1bn−1zn−1zn
L2n−1−z

2
n−1

−
b2nω

2
nz

2
n

2
(
L2n − z2n

)2
×

b2n
n−1∑
k=1

(
ωn−1

∂αn−1
∂xk

)2
z2n

2
(
L2n − z2n

)2
≤ −

n∑
j=1

kjbjz2j
L2j − z

2
j

+

n∑
j=1

j∑
k=1

ε2k2

2
(23)

Then, we have the following theorem.
Theorem 1: For the systems (1) with Assumptions 1,

the virtual controller αi, i = 1, . . . , n−1 in (10), (14) and the
actual controller u in (21), if the following conditions hold:
(1) choose appropriate design parameters ki, bi, ωi and Li

to satisfy

kci+1 ≥ |αi|max + Li+1

(2) the initial conditions zi (0) belong to the set

�zi = {|zi| ≤ Li, i = 1, . . . , n}

The proposed state constraint controller ensures that: the
zi(t) remain in the compact set �zi , all signals are bounded
in the closed-loop system, and the full state constraints are
not violated. Moreover, when the disturbances are not time-
variant, i.e., hi (x̄i, t) = 0, exponentially asymptotic tracking
is achieved.
Proof: Defining a positive definite Lyapunov function

Va = Vn+
n∑
i=1

1
2
εTi Pεi (24)
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Noting (5), the time derivative of Va is

V̇a = V̇n+
n∑
i=1

(
1
2
ε̇Ti Pεi+

1
2
εTi Pε̇i

)

= V̇n+
n∑
i=1

(
1
2
ωiε

T
i A

TPεi+
1
2
ωiε

T
i PAεi+ε

T
i PB

hi (x̄i, t)
wi

)
(25)

As ATP+PA = −2I and log
L2j

L2j −z
2
j
≤

z2j
L2j −z

2
j
in the interval

zj < Lj [38]. We have

V̇a ≤ V̇n −
n∑
i=1

ωi ‖εi‖
2
+

n∑
i=1

εTi PB
hi (x̄i, t)
ωi

≤ −

n∑
j=1

kjbjz2j
L2j − z

2
j

−

n∑
i=1

ωi ‖εi‖
2
+

n∑
j=1

j∑
k=1

ε2k2

2

+
1
2

n∑
i=1

‖εi‖
2
+

n∑
i=1

‖εi‖
2

2
+

n∑
i=1

‖PB‖2 |hi (x̄i, t)|2max

2ω2
i

≤ −

n∑
j=1

kjbj log
L2j

L2j − z
2
j

−

n∑
i=1

2ωi − n− 2
2λmax (P)

εTi Pεi + σ

≤ −λVa + σ (26)

where

λ =

{
2k1, . . . , 2kn,

2ω1 − n− 2
2λmax (P)

, . . . ,
2ωn − n− 2
2λmax (P)

}
min
,

σ =

n∑
i=1

‖PB‖2 |hi (x̄i, t)|2max

2ω2
i

.

From (26), we can obtain

Va (t) ≤ exp (−λt)Va (0)+
σ

λ

[
1− exp (−λt)

]
(27)

From (27), we have 1
2bi log

L2i
L2i −z

2
i
≤ exp (−λt)Va (0) +

σ
λ

[
1− exp (−λt)

]
, i = 1, . . . , n, we can obtain |zi| ≤

Li

√
1− e−

2
bi
[Va(0)+ σλ ]. From x1 = z1 + x1d(t), we have

|x1| ≤ L1 + |x1d (t)|max ≤ kc1 , x1 is bounded. It is obvious
that α1 in (10) is a function of x1, z1, ẋ1d and xe1. Since the
boundedness of x1, z1, ẋ1d and xe1, α1 is bounded. As |z2| ≤
L2, |x2| ≤ |α1|max + |z2| ≤ kc2 , then x2 is bounded.
Similarly, we have |xi+1| ≤ kci+1 , i = 2, . . . , n-1. From the
definitions of u and αi, i = 1, . . . , n-1, it is obvious that
the controller u and αi are bounded. From the above analysis,
all the signals are bounded, and the full state constraints are
not violated. Moreover, when the disturbances are not time-
variant, i.e., hi (x̄i, t) = 0, from (26), we have V̇a ≤ −λVa,
and exponentially asymptotic tracking is achieved.

IV. SIMULATION RESULTS
In order to testify the effectiveness of the proposed approach,
two simulation examples are given.

Example 1:Similar to [39], the second-order nonlinear sys-
tem is given as follow:

ẋ1 = 0.1x21 + x2 + d1 (x, t)

ẋ2 =
(
1+ x21

)
u+ 0.1x1x2 − 0.2x1 + d2 (x, t) (28)

where the states are constrained in |x1| ≤ 1, |x2| ≤ 40,
the desired trajectory x1d(t) = 0.5sin(t), d1(x, t) =
30sin(π t), d2(x, t) = 50sin(π t). Let xei(x, t) = di(x, t),
i = 1, 2. Two ESOs are designed as follow{
˙̂x1 = 0.1x21 + x2 + x̂e1 + 2ω1

(
x1 − x̂1

)
˙̂xe1 = ω2

2
(
x1 − x̂1

){
˙̂x2 =

(
1+x21

)
u+0.1x1x2 − 0.2x2+x̂e2+2ω2

(
x2 − x̂2

)
˙̂xe2 = ω2

2
(
x2 − x̂2

)
(29)

Define z1 = x1-x1d, z2 = x2-α1, the final control input u
and virtual control law are designed as

u =
1

1+ x21

−0.1x1x2 + 0.2x2 − x̂e2 + α̇1c −
b1
b2

L22−z
2
2

L21−z
2
1
z1

−k2z2 −
b2ω2

2z2
2
(
L22−z

2
2

) − b2
(
∂α1
∂x1

)2
ω2
1z2

2
(
L22−z

2
2

)


α̇1c =

∂α1

∂t
+
∂α1

∂x1

(
0.1x21 + x2 + x̂e1

)
+
∂α2

∂ x̂e1
˙̂xe1

α1 = −0.1x21 − x̂e1 + ẋ1d − k1z1 −
b1ω2

1z1
2
(
L21 − z

2
1

) (30)

In the simulation, the initial states are x1(0) = 0.4,
x2(0) = 20. The following four controllers are applied to test
the validity of the proposed controller:

SCCDC: The state constraint controller with disturbance
compensation proposed in (30). The control parameters are
selected as k1 = 40, k2 = 50, b1 = 3, b2 = 0.1, L1 = 1,
L2 = 50, ω1 = 200, ω2 = 300.
FNRCDC: The feedback nonlinear robust controller

with disturbance compensation, the controller is given as
u = 1

1+x21

[
−0.1x1x2 + 0.2x2 − x̂e2 + α̇1c − k2z2

]
, where

α̇1c =
∂α1
∂t +

∂α1
∂x1
ˆ̇x1+

∂α2
∂ x̂e1
˙̂xe1, α1 = −0.1x21− x̂e1+ ẋ1d−k1z1.

The controller gains are given as k1 = 200, k2 = 300,
ω1 = 200, ω2 = 300.
FLC: The feedback linearization controller without dis-

turbance compensation. The controller gains are given
as k1 = 200, k2 = 300.
RFC: The robust feedback controller only with the lin-

ear robust feedback term and without disturbance compen-
sation and model compensation term. The feedback gains
are selected same as corresponding feedback gains of the
FNRCDC controller.
Remark 4: We can verify the validity of model

compensation term by compare RFC with FLC. The valid-
ity of disturbance compensation term can be verified by
the comparison between FLC and FNRCDC. The compar-
ison between FNRCDC and SCCDC can verify the valid-
ity of state constraint term. Hence, by comparison of the
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FIGURE 1. The desired trajectory x1d and tracking error of controllers.

FIGURE 2. x1, estimation of x1 and estimation error.

four controllers, the validity of the proposed controller can
be tested.

From Fig.1, it is clearly that SCCDC (the tracking error
is about 2.5×10−3) and FNRCDC (the tracking error is
about 4.5×10−3) achieve better tracking performance
because of the accurate disturbance compensation. This veri-
fies the effectiveness of disturbance compensation in SCCDC
and FNRCDC. Tracking errors of RFC and FLC are much
larger due to only some robustness of them against the
modeling uncertainties. Due to the large disturbances of the
system, the model compensation in FLC is almost useless,
and the tracking errors of RFC and FLC are almost the same.
The SCCDC has better tracking accuracy than FNRCDC,
FLC and RFC, which demonstrates the advantage of the state
constraint design and disturbance compensation procedure.
In a word, the proposed SCCDC achieved best tracking
performance with the help of the state constraint design and
disturbance compensation. Fig.2 and Fig.3 present the state
estimations and estimation errors of x1 and x2 in SCCDC
and FNRCDC, respectively. As seen, the system steady-state

FIGURE 3. x2, estimation of x2 and estimation error.

FIGURE 4. d1, d̂1 and estimation error.

FIGURE 5. d2, d̂2 and estimation error.

estimations are accurate even with big transient estimation
errors caused by the unmatched system initial states. The
disturbance estimation performance of the ESOs in SCCDC
and FNRCDC is shown in Fig.4 and Fig.5, which verified
the good performance of ESOs. The z1, z2 are illustrated
in Fig.6. From this figure, it is obvious that the bounds for z1,
z2 are not overstepped. The x1, x2 of SCCDC and FNRCDC
are illustrated in Fig.7, the state constraints in SCCDC are
not overstepped, while the state constraints in FNRCDC are
overstepped, which illustrate the effectiveness of the state-
constrained control strategy.
Example 2: simulation results of a dc motor-driven robot

manipulator are obtained. The robot manipulator is consid-
ered to be a simple one-link manipulator. Similar to [6],
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FIGURE 6. The graph of z1 and z2 of SCCDC Controller.

FIGURE 7. x1 and x2 of SCCDC Controller and FNRCDC Controller.

the dynamic equation of the inertial load is

mθ̈ = Kii− bθ̇ − fd (x, t) (31)

where m and θ represent the inertia load and the angular
displacement, respectively; Ki denotes the torque constant
relative to the unit of current; i and b denote the system current
and the viscous friction coefficient, respectively; fd (x, t) is the
unmodeled dynamic.

The current dynamic is modeled as follow

L
di
dt
= Kuu− Ri− KRθ̇ (32)

where L and Ku denote the armature inductance of the motor
and the electrical gain, respectively; u is the control input,
R and KR represent the armature resistance of the motor and
the electromotive force coefficient, respectively.
Remark 5: Potential risks are always accompanied by the

motion systems (like robot manipulator) driven by dc motor
due to its fast response, especially in a large number of testing
applications that involve reciprocity between unit under test
(UUT) and environment. If the state constraints are ignored,
the process safety may be in danger during testing process,
the UUTmay be damaged by excessive velocity and/or accel-
eration. In fact, when the initial state of the system does not

match, it is possible to generate overlarge velocity and/or
acceleration.

Define x = [x1, x2, x3]T = [θ , θ̇ , i]T, rewrite the dynamic
system model in a state-space form as follow

ẋ1 = x2

ẋ2 =
Ki
m
x3 −

b
m
x2 + d1 (x, t)

ẋ3 =
Ku
L
u−

R
L
x3 −

KR
L
x2 + d2 (x, t) (33)

where d1(x, t)= -fd (x, t)/m and d2(x, t)= 0. The constraints
of x1, x2, and x3 are preset as |x1| ≤ 1, |x2| ≤ 10, |x3| ≤ 10.

On the basis of the design process in Sect. 3.1, two ESOs
are constructed to estimate the unmatched disturbance and
matched disturbance, respectively. In order to weaken the
noise effect, velocity signal is replaced by displacement sig-
nal to construct the first ESO, which is based on the former
two equations. Let xei(x, t) = di(x, t), i= 1, 2. Two ESOs are
designed as follow

˙̂x1 = x̂2 + 3ω1
(
x1 − x̂1

)
˙̂x2 =

Ki
m
x3 −

b
m
x2 + x̂e1 + 3ω2

1
(
x1 − x̂1

)
˙̂xe1 = ω3

1
(
x1 − x̂1

) ˙̂x3 =
Ku
L
u−

R
L
x3 −

KR
L
x2 + x̂e2 + 2ω2

(
x3 − x̂3

)
˙̂xe2 = ω2

2
(
x3 − x̂3

) (34)

Then, we have the dynamic function of the observer esti-
mation errors

ξ̇ = ω1A1ξ + B1
h2 (x, t)
ω1

, µ̇ = ω2A2µ+ B2
h3 (x, t)
ω2

(35)

where ξ =
[
x̃1, x̃2, x̃e1/ω1

]T
, µ =

[
x̃3, x̃e2/ω2

]T , B1 =
[0,0,1]T, B2 = [0,0,1]T. Since A1 and A2 are Hurwitz,
we can choose two positive definitematrixesP1,P2 satisfying
AT1 P1 + P1A1 = −I , A

T
2 P2 + P2A2 = −I , respecti-vely.

Define z1 = x1-x1d, z2 = x2-α1, z3 = x3-α2, the final
control input controller and virtual control law are designed
as

u =
L
Ku


R
L
x3 +

KR
L
x2 − x̂e2 + α̇2c −

b2KR
b3m

L23 − z
2
3

L22 − z
2
2

z2

−k3z3 −
b3ω2

2z3
2
(
L23 − z

2
3

) − b3

(
∂α2

∂x2

)2

ω4
2z3

2
(
L23 − z

2
3

)


α̇2c =

∂α2

∂t
+
∂α2

∂x1
x2 +

∂α2

∂x2
ˆ̇x2 +

∂α2

∂ x̂e1
˙̂xe1

α2 =
m
Ki

(
b
m
x2 + α̇1 − x̂e1 − k2z2

−
b1
b2
z1
L22 − z

2
2

L21 − z
2
1

−
b2ω4

1z2
2
(
L22 − z

2
2

))
α1 = ẋ1d − k1z1 (36)

The system parameters of manipulator are: m =

0.01 kg ·m 2, L = 0.05H, R = 2.5�, Ki = 1. 75N·m/A,
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FIGURE 8. The desired trajectory x1d and tracking error.

Ku = 2, KR = 1V·s/rad, b = 0.1N·m·s/rad. The dis-
turbance fd(t) = 0.15 sin(t)N·m. The desired trajectory
x1d = 0.5sin(π t), and x1 (0)= 0.4, x2 (0)= 0. The following
five controllers are applied to test the validity of the proposed
controller:
Remark 6: When the initial state of the system is not

matched, the control system produces a large initial accel-
eration and initial velocity. It can be seen whether the con-
troller can restrain all the states of the system and verify the
effectiveness of the control strategy, so the initial values of the
state x1 (0) is set to be 0.4.
SCCDC: The state constraint controller with disturbance

compensation proposed in Section III of this paper. The con-
trol parameters are selected as k1 = 20, k2 = 30, k3 = 30,
b1 = 0.05, b2 = 0.6, b3 = 10, L1 = 1, L2 = 20, L3 = 25. The
observer gains are ω1 = 150, ω2 = 100.
FNRCDC: The feedback nonlinear robust controller with

disturbance compensation, the controller is given as u =
1

1+x21

[
−0.1x1x2 + 0.2x2 − x̂e2 + α̇1c − k2z2

]
, where α̇1c =

∂α1
∂t +

∂α1
∂x1
ˆ̇x1 +

∂α2
∂ x̂e1
˙̂xe1, α1 = −0.1x21 − x̂e1 + ẋ1d − k1z1.

The controller gains are given as k1 = 20, k2 = 30, k3 = 30,
ω1 = 150, ω2 = 100.

FLC: The feedback linearization controller without dis-
turbance compensation. The controller gains are given as
k1 = 20, k2 = 30, k3 = 30.
RFC: The robust feedback controller only with the linear

robust feedback term and without disturbance compensation
and model compensation term, the controller is given as
u = −k1ż1 − k2z2, the feedback gains are selected same as
corresponding feedback gains of the FNRCDC controller.

PI: This is the proportional-integral-derivative controller;
it is also widely utilized in industries The P-gain, I-gain are
tuned to be kp = 9.526, ki = 41.65 by PID tuner.
Fig.8 shows the system tracking performance of five

controllers and the best tracking performance is achieved

FIGURE 9. x1, estimation of x1 and estimation error.

FIGURE 10. x2, estimation of x2 and estimation error.

FIGURE 11. x3, estimation of x3 and estimation error.

by SCCDC (the tracking error is about 2.4×10−3, the track-
ing errors of FNRCDC, FLC, RFC and PI are about
4.45×10−3 , 2.35×10−2, 0.105 and 0.05, respectively) . The
state estimations and estimation errors of x1, x2 and x3 in
SCCDC and FNRCDC are given in Fig.9, Fig.10 and Fig.11,
respectively. As seen, even with big estimation errors caused
by the unmatched system initial state, the system steady-state
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FIGURE 12. d1, xe2 and estimation error.

FIGURE 13. The graph of xe3.

FIGURE 14. The graph of z1, z2 and z3.

estimations are accurate. Fig.12 presents d1, xe2 and estima-
tion errors of SCCDC and FNRCDC; Fig.13 presents d2, xe3
and estimation errors of SCCDC and FNRCDC. From the two
figures, it is obvious that the actual disturbance estimation is
obtained by ESO. The z1, z2 and z3 are illustrated in Fig.14.
From this figure, it can be obvious that the bounds for z1,
z2 and z3 are not overstepped. Fig.15 shows the x1, x2 and
x3 of SCCDC and FNRCDC, we can see that the full state

FIGURE 15. x1, x2 and x3 of SCCDC Controller and FNRCDC Controller.

constraints are not overstepped in SCCDC and the state con-
straints are overstepped in FNRCDC. The effectiveness of the
proposed control strategy is further illustrated.

V. CONCLUSION
In this study, a state constraint controller for a class of non-
linear systems with disturbances and full state constraints is
proposed. Based on BLFs, a backstepping design with ESO
is constructed, and then it is proved that all the signals are
bounded in the closed-loop system with no violation of the
full state constraints. Finally, two simulation examples are
given to illustrate the performance of the proposed approach.
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