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ABSTRACT In the task of using deep learning semantic segmentation model to extract water from
high-resolution remote sensing images, multiscale feature sensing and extraction have become critical
factors that affect the accuracy of image classification tasks. A single-scale training mode will cause
one-sided extraction results, which can lead to ‘‘reverse’’ errors and imprecise detail expression. Therefore,
fusing multiscale features for pixel-level classification is the key to achieving accurate image segmentation.
Based on this concept, this paper proposes a deep learning scheme to achieve fine extraction of image
water bodies. The process includes multiscale feature perception splitting of images, a restructured deep
learning network model, multiscale joint prediction, and postprocessing optimization performed by a fully
connected conditional randomfield (CRF). According to the scale space concept of remote sensing, we apply
hierarchical multiscale splitting processing to images. Then, we improve the structure of the image semantic
segmentation model DeepLabV3+, an advanced image semantic segmentation model, and adjust the feature
output layer of the model to multiscale features after weighted fusion. At the back end of the deep learning
model, the water boundary details are optimized with the fully connected CRF. The proposed multiscale
training method is well adapted to feature extraction for the different scale images in the model. In the
multiscale output fusion, assigning different weights to the output features of each scale controls the influence
of the various scale features on the water extraction results. We carried out a large number of water extraction
experiments on GF1 remote sensing images. The results show that the method significantly improves the
accuracy of water extraction and demonstrates the effectiveness of the method.

INDEX TERMS Remote sensing, deep learning, semantic segmentation, water information extraction, multi-
scales, DeepLabV3+.

I. INTRODUCTION
Accurate extraction of water information from remote-
sensing images has always been an important research topic
in the field of remote sensing image analysis because it
plays a vital role in national land/water resource monitoring
and environmental protection. The traditional remote sensing
image water body extraction methods are divided into two
main types. One is based on the spectral characteristics of
water bodies and involves setting different thresholds and
using a water body index to classify and extract water infor-
mation [1]–[3]. The other is based on mathematical morphol-
ogy [4] and segments water body edges [5], [6] to extract
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their features. Among the two types of methods, the index
method (NDWI), which is a spectrum-photometric method,
is widely used in the task of water extraction because of its
simplicity and universality. In actual appliances, especially in
the large-scale daily monitoring of water body nationwide,
it is inevitable to process massive remote sensing images.
The traditional methods with more manual intervention are
not able to guarantee the quality of data products. In par-
ticular, there is substantial random interference in images,
such as clouds, shadows, fog, etc. Even if some models
have good generality, there will also be an extraction loss
on the details of water. These will greatly affect our mon-
itoring and use efficiency. Therefore, it is of far-reaching
significance to study a water extraction model that can meet
the requirements of high precision and high generalization
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ability and effectively reduce the need for human inter-
vention. As deep learning in the field of computer vision
has developed and improved, intelligent pattern recogni-
tion based on image spatial features has increasingly been
applied to remote sensing image target detection and pixel
semantic segmentation tasks [7]–[9]. Compared with tradi-
tional methods, semantic segmentation methods based on
deep learning can map pixels to semantics [10] and mine
spectral features of deep remote sensing images that tradi-
tional methods cannot extract.Many researchers use semantic
segmentation models to achieve water body recognition and
extraction tasks [11], [12]. Under the continuous optimization
of complex neural network models, target feature mining
and learning occurs at deeper levels; thus, image classifi-
cation accuracy has improved continually. Moreover, in the
remote sensing field, with the continuous improvement of
image resolution, the textural details of surface features have
also been revealed, and the accuracy requirements for water
extraction have also continually improved. Nonetheless, the
complexity of water background information combined with
interference from complex homologous and heterogeneous
(the samewater body with different spectra) phenomenamust
also be considered. Consequently, adopting complex deep
learning networks is very important to learn and identify the
features of high-resolution images.

Compared with the commonly used images for semantic
segmentation [13], [14], high-resolution satellite images have
large differences in the number of spectral bands, the extent of
the image range, and the target scale. In particular, the target
range and shape of water bodies are uncertain: a large area
of water can cover the entire image segment, while a small
water body may be expressed by only one or two pixels in
the image. In [11], a large-scale block size of 512 × 512 is
used for the experiments because the author believes that
large-scale analysis has a good effect on the remote sensing
image segmentation model, allowing it to maximally per-
ceive the acceptance domain. However, in our study of water
extraction, we found that the model’s generalization ability
and extraction accuracy did not achieve the expected results
when using a single-scale sample for training. A large sample
scale may reduce the precision of the details extracted during
the water extraction process, while small-scale samples are
insufficient for identifying features clearly at the information
macro level. Thus, scale selection and processing has become
a primary problem that affects the deep learning water extrac-
tion process. Consequently, determining how to design a rea-
sonable model that can not only perceive the remote sensing
image water body background information and completely
extract macroscopic large-area water bodies but also maintain
the extraction accuracy of small water bodies has become a
difficult research problem.

Themain contributions of this paper are as follows: we pro-
vide a new technology flow for the use of semantic segmenta-
tion techniques to extract water features from high-resolution
remote sensing images. We execute the study according to
the three aspects of the image multiscale feature sampling

principle, the neural network model structure optimization
and multifeature fusion and form a set of standardized pro-
duction processes with application and promotion value. The
experimental results show that the accuracy index of this
method is markedly improved and has good generalizabil-
ity. This scheme focuses on multiscale features and uses
a hierarchical multiscale splitting method combined with a
stretching algorithm to enrich the detailed features of the
samples, thereby preserving the multiscale features of the
samples. We control both the scale of the sample data used
for model training and the input and output scales of the
image data during inference. Simultaneously, by changing
the DeepLabV3+ network structure, the model can better
perceive the global background context characteristics of the
image block. Finally, the extraction results are optimized
with a conditional random field (CRF) to meet the accuracy
requirements of microscopic and macroscopic features of
water bodies.

The remaining sections of this article are organized as
follows: The second section introduces the problems and
reviews related works from the literature. The third section
introduces the DeepLabV3+model application optimization
scheme, including the image scale division specification,
the application details of the optimized DeepLabV3+ model
network structure, and the fully connected CRF. In the fourth
section, we describe experiments and results comparison
using a GF1 image as the research object. The experimen-
tal results and revealed problems are described in the fifth
section, and we present conclusions in the sixth section.

II. RELATED WORKS
A. LIMITATIONS OF THE SPECTRUM-PHOTOMETRIC
METHOD
In this section, we discuss the limitations of traditional meth-
ods. The spectrum-photometric method combined with the
NDWI index is widely used as the main method for water
body extraction [15]. The principle is to compute a suitable
segmentation threshold based on a normalized ratio index,
which is calculated using the green band and the near-infrared
band. Many researchers have conducted extensive research
on the selection of thresholds [16]–[18]. Some researchers
have also used unsupervised classification methods (Isodata
or K-means) for water classification based on the NDWI
index [19]–[21].

Although this type of method performs well in local
areas and involves simple calculations, some subtypes of the
method cannot be applied to large regions or to entire images.
Segmentation based only on information from two bands will
result in a misclassification of similar nonwater pixels as
water, especially in areas rich in complex background envi-
ronments (buildings, etc.). Furthermore, due to the limitation
of the spectral reflectance physical mechanism and the lack
of correlation information between pixels in the analysis pro-
cess, the phenomenon of ‘‘the same water body with differ-
ent spectra’’ exists, which causes the spectrum-photometric
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method to be unable to achieve highly precise classification.
Figure 1 shows the incorrect classifications of the NDWI
index method for water segmentation.

FIGURE 1. Limitations of the NDWI index method for water segmentation
under different scenarios. Column (a) shows the errors in areas rich in
complex buildings; Column (b) shows the errors extracted when the
spectral differences of water bodies are large; Column (c) shows the
losses in small water bodies and near edges.

Therefore, deep learning is introduced to supplement the
user’s need for highly precise water body classification.

B. REVERSE ERRORS
Semantic segmentation is a hot topic in deep learning
areas and has been widely applied in computer vision and
remote sensing image classification. However, the compu-
tational mode of a convolutional neural network may lead
to insufficient extraction of background information [22].
Figure 2 shows the water extraction effect from a sin-
gle remote sensing image using different types of seman-
tic segmentation models and different image block sizes.
We compared the results of water extraction at different
scales using four different deep neural networks that are
favorable for scale sensing (a fully convolutional neural
(FCN) network [10], a feature pyramid network (FPN) [23],
InceptionV3 [24], and DeepLabV3+ [25]. Through exper-
iments and comparisons, we found more water porphyro-
clasts in the results of FCN network extraction and found
that FPN and DeepLabV3+ have better classification effects
than do FCN and InceptionV3, because their network struc-
tures consider scale induction. After training on the same
data set, the DeepLabV3+ network is more conducive for
extracting multiscale features due to its atrous convolu-
tion. DeepLabV3+ not only performs well for classification
results at different scales but also completely extracts water
body details.

FIGURE 2. The effects of different network structure models on water
extraction at different scales from the same image (DeepLabV3+,
InceptionV3, FPN-Net, and FCN-Net).

We describe the results of water extraction at different
scales. When small-scale image blocks are used to train a
neural network model and extract water bodies, the resulting
prediction accuracy for small rivers and discrete water bod-
ies is high. However, for large-area water body recognition,
the model is unable to perceive sufficient feature differences
from the small image blocks. This can cause a complete
misclassification of the larger water bodies. We call this type
of error ‘‘reverse’’ error. In contrast, if the model is trained for
water extraction with large-scale image blocks, the recogni-
tion accuracy for large-area water information improves but
causes a loss of the fine water details, resulting in incomplete
water extraction. To quote Chinese poetry: ‘‘The true face of
Lushan is lost to my sight, for it is right in this mountain that
I reside.’’ The goal is to achieve a method that can perceive
the background information about the water body in remote
sensing images, allowing it to extract macroscopic large-area
water bodies while also maintaining high extraction precision
for small water bodies.

C. OPTIMIZATION METHOD
Various methods have been proposed to improve semantic
segmentation model accuracy. Among these methods, opti-
mizing their own network structures and adding auxiliary
postprocessing modules are the two main approaches. The
first approach, optimizing the network structure essentially
simulates a more complex signal transmission path to achieve
more accurate fitting of feature characteristics [26]. Among
these, the use of multiscale features plays an important role
in the success of semantic segmentation. Therefore, most
researchers use the following two strategies [27] to opti-
mize neural network models by exploiting multiscale fea-
tures. The first strategy is to learn the multiscale features
through the changes that occur in the internal network struc-
ture under the same image input scale. The features in these
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FIGURE 3. The outline of our methodology: first, we propose the multiscale image-splitting method, which focuses on background information; then,
we design a DeepLabV3+ optimization model with multiscale feature fusion (the detailed network structure is shown in Figure 4). Finally, we apply a fully
connected CRF postprocessing module for edge feature refinement.

networks are multiscale in nature because they use different
receptive field and deconvolution sizes [28]–[30]. The repre-
sentative model for the first strategy is the DeepLab series
of neural network models [31]. The second strategy is the
multiscale input learning strategy, in which after the input
image has been resized at several scales, it is input to the
same deep network and the resulting multiscale features are
fused [32]–[34]. The FPN is the typical network structure
used in this approach.

Another approach for improving accuracy is to add a post-
processing module (e.g., an SVM [35], GPM [36], or atten-
tion model [26]) after the deep network model. Combining
a semantic segmentation model with a probabilistic graph-
ical model (PGM) has become an application trend and is
widely used in image classification tasks. Neural network
models generally lack the ability to classify pixels along the
edge contours of objects [22]. The postprocessing module
optimizes the prediction results by analyzing the distribution
probabilities of pixel characteristics based on the neural net-
work model’s prediction. Thus, the role of the postprocessing
module is mainly that of optimizing the details and improving
the discriminative ability of edge-contour pixels.

III. METHODS
In this study, we used a multiscale input specification for
the image data. Correspondingly, we improved the multiscale
fusion output method of the DeepLabV3+ neural network
architecture and further optimized the prediction results by

adding a CRF postprocessing module. Figure 2 shows the
details of our method.

A. A MULTISCALE IMAGE FEATURE COLLECTION METHOD
FOCUSING ON BACKGROUND INFORMATION
In this section, we discuss how to obtain multiscale feature
information from RS images in detail. In remote sensing
images, the distribution of objects is unbalanced and can-
not be described by regular features. For example, a river
water body may have a minimum width of 3–5 pixels in an
image, but lake and reservoir water bodies will have widths of
hundreds of pixels. This imbalanced object distribution must
be considered during the neural network training process.
To overcome the feature distribution imbalance, we mainly
use two strategies, including obtaining context information
of different scales from the original image and collecting the
multiscale features of an image block.

1) THE HIERARCHICAL EXPANSION SPLITTING METHOD
With the first strategy, in deep learning, the context percep-
tion is often an important factor affecting convolution kernel
sampling and is also a key link inmultiscale feature extraction
from remote sensing images. We define the maximum range
for which a convolution kernel can carry out convolution
calculation of an image as the context perception domain,
that is, the size of the image block. The schematic is shown
in Figure 4(a). When the context perception domain is too
small, the context information of image blocks is more easily
lost, which can lead to ‘‘reverse’’ errors, and will result in
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FIGURE 4. Schematic of the multiscale image feature collection method. (a) The hierarchical expansion image-splitting steps;
(b) the ‘‘Scale space’’ of a remote sensing image with local enlargements to display the details; (c) a scheme that considers the
richness of the context perception domain and enhances multiscale detailed features.
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a convolutional sampling number that is too low to extract
sufficient detailed features. By contrast, a context perception
domain that is too large may provide abundant global ref-
erence features but will also increase the computation load.
Since the richness of the scene contextual information is
related to the size of image splitting, we propose a hierar-
chical expansion splitting method to cut the image multiple
times.

Let the minimum context perception domain (splitting
size) of the primary splitting operation S0(x, y) be set to
n× n pixels. Each expanded multiple is set to k , and the num-
ber of expansion operations is set to m. When performing the
m-th expansion image-splitting step, the context perception
domain will be expanded k2m times; that is, the expanded split
image blocks provide k2m−1 times the neighborhood scene
contextual information of the minimum-size image block.
The relationship between the size S of the context perception
domain after expansion splitting and the values of m and k is
expressed as equation (1). Then, we can obtain a set of image
blocks with different scene contextual information richness
levels. The image-splitting steps are shown in Figure 4(a).

S (x, y) = k2m · S0 (x, y) k ∈ (0,+∞) (1)

2) SCALE SPACE OF A REMOTE SENSING IMAGE
In the remote sensing field, scale conversion is the main
method used to extract different scale features of a sin-
gle image block and transfer information from one scale
to another [37], including upscaling (spatial resolution
reduction) and downscaling (spatial resolution improve-
ment) [38], [39]. We introduce the concept of ‘‘scale space’’
from the field of image processing to remote sensing image
classification and incorporate the invariable single-scale
image information processing technology into the variable
dynamic analysis framework [40]. A ‘‘scale space’’ set can
be constructed for each remote sensing image block, and
the transferred image L(x, y, k, σ ) can be expressed as equa-
tion (2), where f (k,±σ ) denotes the interpolation operators,
σ is a spatial scale factor indicating the number of scaling
operations,k is a scaling multiple, and n is the pixel number of
the rows and columns of the original image. I (x, y) represents
the original image block; that is, based on the spatial resolu-
tion of the current original image block, a multiscale image
pyramid is constructed by the image interpolation algorithm.
The details are shown in Figure 4(b).

L(x, y, k, σ )

=

{
f (k, σ ) I (x, y) σ ∈ (0,+∞) upscaling
f (k,−σ) I (x, y) σ ∈

(
0,
⌈
logk n

⌉]
downscaling

(2)

In the process of upscaling calculation, the spatial reso-
lution of the image block is reduced by pixel-based fusion.
This process will lead to the appearance of mixed pixels
in the edge between the different categories but will reduce
the spectral heterogeneity in the same ground object [41],
which is advantageous for the extraction of large-area water
bodies but harmful to the accuracy of small water body and

water boundary distinction. The phenomenon of imagemixed
pixels becomes more serious with the composition σ , and
when σ =

⌈
logk n

⌉
, the image is merged into a single pixel.

In contrast, downscaling is an operation that decomposes
information at one scale into its constituents at smaller
scales, which improves image resolution. After interpola-
tion and enlargement, the number of pixels of local objects
becomes larger, more pixels are classified into the same
object, the number of mixed pixels at the edges of different
categories is reduced, and the boundary of ground objects is
smoother. During the m-th magnification k-multiples oper-
ation, one pixel is theoretically interpolated to k2σ pixels,
which accommodates the sampling of a large receptive field
convolution kernel and increases the extraction probability
of detailed features. However, with an increase in σ , the
spectral heterogeneity in the same category becomes larger,
resulting in lower inter-class separability, which wastes com-
puting resources and causes internal classification errors for
the same object. The local enlargement details are shown
in Figure 4(b).

3) THE INTEGRATED METHOD
To obtain a scheme that considers the richness of the context
perception domain and enhances multiscale detailed features,
we perform the hierarchical expansion splitting operation on
an original image to obtain image block sets with different
scene contextual information richness levels. An optimal
scale in this set is used as the benchmark scale, and the
image blocks of other scales are upscaled or downscaled to
the benchmark scale according to the method of the spatial
scale of remote sensing images. As shown in Figure 4(c),
the image blocks smaller than the benchmark size are sub-
jected to upsampling interpolation to downscale to the bench-
mark scale, while the image blocks larger than the benchmark
size are subjected to downsampling interpolation to upscale
to the benchmark scale. Accordingly, a uniform scale image
block set can be obtained.

In fact, we maintain the scale diversity not only during
model training but also during inference: the target image of
the input model is also split at multiple scales. In this way,
our model extracts multiscale features of the same image
area multiple times. By combining the features extracted at
each scale, the accuracy of the final model prediction results
is guaranteed. After stretching and enlarging the small-scale
images, the feature details will be clearly expressed. The
large-scale image blocks contain rich background informa-
tion of ground objectsčwhich overcomes the ‘‘reverse’’ error
caused by the lack of local background features that is prob-
lematic in small-scale image classifications. However, over-
stretching the small features (such as rivers with two-pixel
widths) in small-scale image blocks causes feature distor-
tion, which in turn can cause cognitive errors in the model.
To prevent such distortion, the medium-scale image block
can be regarded as a transitional scale for the model. Fusing
these three scale features makes it possible to achieve both
comprehensive and fine extraction of water body information.
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FIGURE 5. The pixel frequency distribution histogram of different interpolation algorithms. The Lanczos method achieves the most consistent pixel
distribution.

To prevent abnormal features caused by the interpola-
tion algorithms, we also evaluated the interpolation algo-
rithms commonly used in the amplification process, which
mainly include nearest neighbor interpolation [42], Lanczos
interpolation [43], bilinear interpolation [44], bicubic inter-
polation [45], and cubic interpolation [45], [46]. The pixel
distributions of remote sensing images should be continuous.
However, if this continuity is destroyed during the process
of image interpolation and enlargement, some image features
may be lost, which leads to cognitive bias in the model.
Figure 5 shows gray histograms of the studied remote sens-
ing image amplified using different interpolation algorithms.
Obviously, the gray histogram image resulting from the Lanc-
zos interpolation is smoother. Thus, Lanczos interpolation
better maintains the continuity of the image pixel values.

B. MULTISCALE FUSION PREDICTION MODEL BASED
ON DEEPLABV3+

The DeepLabV3+ model is a variant of the typical FCN
network [10, 47] that has achieved good performance
in semantic segmentation using contextual information.
DeepLabV3+ is the latest improved version of the DeepLab
series of networks. The model inherits the atrous spatial
pyramid pooling (ASPP) [48] module based on spatial pyra-
mid pooling (SPP) [49] from DeepLabV3. On one hand, the
model performs convolution operations by employing paral-
lel atrous convolutions at various rates to capture contextual
features at multiple scales [25]. On the other hand, the model
uses an encoder-decoder structure [50]. Through its effec-
tive decoder module, the model can recover detailed object

boundaries. Furthermore, it reduces the boundary loss prob-
lem found with traditional CNNs. Thus, the DeepLabV3+
model can perform a deeper analysis of the contextual fea-
tures in a single image. After splitting the input images
at multiple scales. we developed a modified version of the
DeepLabV3+ architecture that can achieve feature fusion
from multiscale feature maps and obtain primary water
prediction results.

Figure 6 shows the model structure used for the
experiments in this paper. The model still consists of two
parts: an encoder and a decoder. The encoder module
uses ResNet-50 [51] as the fundamental network. The net-
work used in this paper consists of 5 convolutional layers
(Con1–Con5), each of which contains a different number
of bottleneck building blocks (for details of the structure,
see [51].) A lower-level convolution result corresponds to a
richer and larger context with higher resolution. As the con-
volutional layer deepens, the output features of convolutional
computation reduce the spatial resolution of the image due
to downsampling and pooling operations, resulting in loss of
the initial global details. Therefore, to preserve a sufficient
amount of initial global information, we selected the feature
map from the first convolutional layer after pooling opera-
tions as low-level feature 1 and the feature map from the third
bottleneck building block in the 2nd convolutional layer as
low-level feature 2, which is then stretched via interpolation
to the same size of low-level feature 1. Then, these two low-
level feature maps are concatenated into one feature map
that subsequently passes through a 1∗1 convolution with
64 channels. Thus, the number of output channels of the
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FIGURE 6. The deep learning network model structure, including the encoder (the fundamental Resnet network and the ASPP module) and the decoder (
the upsampling steps and the weighted feature fusion) structure.

final low-level feature map is 64, which does not exceed
the output channel of the ASPP module. After performing
downsampling in the five convolutional layers, the ASPP
module is connected. The output feature map from the fifth
convolutional layer is regarded as the input feature map to
the ASPP module. For more details of the ASPP module,
see [48]. The five parallel computed feature maps in ASPP
are concatenated into one feature map with 256 channels
which then passes through a 1× 1 convolutional layer before
upsampling to the same size of the corresponding low-level
feature map.

In the decoder module, to recover the water body segmen-
tation details accurately, the output feature map of the ASPP
module is concatenated with the corresponding low-level fea-
ture map and passed through a 1× 1 convolution. A convolu-
tion calculation is performed on the connected features three
times to obtain a new feature map with two channels. Then,
the obtained features are upsampled to the different sizes of
the corresponding input image blocks. This step is performed
to adjust the segmentation logic size of feature map, mak-
ing it possible to recover detailed image features. Through
the decoder module calculation, we obtain the feature maps
with 2 channels from all 3 input image blocks scales and
mosaically splice the upsampled feature maps of the same
size.We thus obtain three feature maps for the remote sensing
images of the same size.

To obtain a more accurate classification result, the mosaic
features of different scales must be fused to form a new
feature map. In existing studies [32], [33], [52], extracted
features from different scales are always merged and input
to one classifier for classification [22], [35]. This approach
leads to equal treatment of the features of each scale but
does not highlight the advantages of the feature expression

at each scale. Thus, according to the different impacts of dif-
ferent scale features on the final prediction result, we use the
weighted fusion method to set different weights for different
scale feature maps to perform feature fusion. This method can
adjust the influence factors of the different scale feature maps
to control the degree of refinement of water body extraction.
The calculation is as follows:

Fk (X , k) =
s∑

s=1

(ωs × D (Xs)) (3)

where Fk (X , k) denotes the resulting feature map, X is the
prediction feature map of different scales, k is the number of
classifications (this model is the binary classification model,
thus, k = 2), s is the number of multiple scales in this
model, and s = 3, ωs represents the weights assigned to
the prediction feature map for each scale, and

∑s
s=1 ωs = 1;

D(Xs) represents the feature map matrix of the s-th scale
prediction, which is a two-dimensional matrix. We test and
discuss setting the weights ωs, in Section 4 Part C. Finally,
a softmax normalization (inormalized exponential function)
is performed on the output feature map after the weighted
fusion operation, which guarantee that the output is a proba-
bility distribution and obtains the pseudoprobabilities of the
class labels. Finally, we use a classification rule to determine
the final label for each pixel—that is, pixels with the greatest
probability of being a water class are labeled as water.

C. POSTPROCESSING OPTIMIZATION METHOD BASED
ON A FULLY CONNECTED CRF
In this section, the coarse classification map obtained after
the prediction of the multiscale convolutional neural net-
work model is used as the prior probability to calculate the
maximum posteriori probability of the remote sensing image
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FIGURE 7. An illustration of the fully connected CRF. First, we construct a CRF graph model based on the classification results after the deep
learning network and then apply a unary potential network to each pair of nodes and a pairwise potential network to each edge between node
pairs to finally obtain the potential function outputs.

classification of each pixel using the fully connected CRF
method [53]. Because the atrous convolution and pooling
operations will lose some features in the calculation process
and the feature map calculated by the neural network model
is stretched due to upsampling, the water body details are
not finely expressed. Moreover, no spatial regularization is
used in the conventional segmentation method based on pixel
classification, which leads to a lack of spatial consistency
in the semantic segmentation results [54], [55]. The fully
connected CRF can synthetically utilize the spatial informa-
tion of remote sensing images to obtain spatially consistent
results [56] and refine the upsampled coarse prediction results
to sharpen the water body boundaries and details. Through
this postprocessing module, we established a unary potential
function and a pairwise potential function for all pairs of pix-
els in the image to achieve the maximum fine segmentation.
The process is illustrated in Figure 7.

We define X as the original input image to the model, xi ∈
X ; and Y is the prediction label mask based on the result of
the deep learning network model, where yi∈Y . Here, yi and xi
have a one-to-one correspondence, forming each node in the
CRF graph model. Thus, the joint conditional probability for
one image is expressed as follows:

P (Y ,X) =
1
Z
exp {−E(Y ,X )} (4)

where Z is the partition function, and E(Y ,X ) is the energy
function of the fully connected CRF. In this formula, the
energy function under the fully connected nodes condition
is defined as the sum of a unary term and a pairwise
term.

Similar to most inference methods used in fully connected
CRF, we apply the mean field approximation algorithm [52]
to perform inference. During fully connected CRF training,
we apply piecewise training [57] in the postprocessing mod-
ule to iteratively train each parameters, until the value of the
likelihood function is maximized. Eventually, the pixels that
have the greatest probability of belonging to water classes are
marked as water. Thus, we are able to obtain precise water
extraction results from remote sensing images.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL FRAMEWORK DESIGN
To verify the generalizability and effectiveness of the pro-
posed method, we designed two types of experiments to
show the method’s performance in the water extraction task.
First, the study area is classified into three types, including
a large-area water body region, a small-area water body
region, and a mixed complex water body region, to test the
effect of this scheme on water body extraction at various
scales. Second, to ensure the accuracy of the comparison
experiments, a parallel experiment and a self-step optimiza-
tion experiment are adopted. The design of the experimental
process is shown in Figure 8.

FIGURE 8. The experimental process design.

Here, in the parallel experiment, water bodies from three
regions of China are arranged for method versatility verifi-
cation. In the self-step optimization comparison experiment,
we set experimental breakpoints, including comparison of the
models trained by themultiscale and single-scale sample sets,
the contrast experiment of feature weighted fusion and the
postprocessingmodule effectiveness comparison experiment.
Through this process, the effectiveness of the optimization
strategy proposed in this paper is shown.

1) STUDY REGIONS (ROIS) AND EXPERIMENTAL DATA
A large-area region denotes a region where the water surface
area is regular and large, andwater features are predominantly
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extracted from large lakes and reservoirs. We select Kunming
City in southwestern China as the study area, which includes
three large lakes: the Dian Lake, Fuxian Lake and Yangzong-
hai Lake.

A small-area region usually denotes a region with small
rivers, which is covered by only a few pixels in an image.
In this paper, part of the Lancang River and the Heihui River
basin is selected as the study area for extracting small water
bodies.

A mixed complex region is an area with complex water
systems, rich backgrounds and diverse types of water bodies.
To test the comprehensive extraction ability of the model,
we select the Poyang Lake in southeastern China as the study
area.

The data sources are high-resolution remote sensing
images with 16-m resolution acquired by the GF1 satellite
WFV sensor, which includes 4 bands, including blue, green,
red and near-infrared, and covers 3 study areas. Based on the
polygon vector data of rivers and lakes in the First National
Census for Water, this study used an automatic extraction
method combined with manual verification to complete the
water sample labeling. The image label maps after manual
visual interpretation were sufficiently accurate; therefore,
we regarded the water labeling results as the mapping labels
(ground truth) for the sample image and as the baseline for
the test image.

In this paper, 512 pixels are taken as the benchmark scale
according to the resolution of the GF1 images and the various
factors mentioned in [58]. This scale image block is rich
in sufficient background scene information and is the most
suitable scale for recognition of differences by the human
eye. Therefore, the complete sample and test remote sensing
images are split into 3 levels according to Section 3 Part A,
where m = 3, k = 2, the minimum image block pixel is
128×128, and three scale image blocks (128×128, 256×256,
and 512 × 512) were obtained. Thus, we obtained the initial
sample set and test set. Then, for the sample set, we filter the
initial sample set by first skipping the ‘‘empty’’ image blocks
in which more than 95% of the pixels are labeled as nonwater.
Next, to enhance thewater body expression details and extract
the complex features from the raw pixels more efficiently, we
adjusted the proportions of the sample patches at the different
scales such that the quantitative ratio between the three scales
of the sample patches (128 × 128, 256 × 256, and 512 ×
512) was approximately 5:3:2. In the sample set, a special
case of a ‘‘wholly water’’ image block in which each pixel
is labeled as water will be included. We define such patches
as ‘‘whole water’’ samples. We retained the ‘‘whole water’’
samples in the sample set to increase the sample richness.
Then, we performed an upsampling interpolation calculation
(downscaling operation) twice on the small-scale patches
(128 × 128) and once on the mesoscale patches (256× 256)
to obtain the benchmark scale (512 × 512). Therefore, the
sample set and test set, which are rich in multi-level scale
features, are ready.

In addition, we designed a contrast test to compare the
effects of a multiscale sample set training model and a
single-scale sample training model. We used small-scale
image blocks (128 × 128 pixels) to construct a single-scale
sample set. For convenience, the 128 × 128 pixel patches in
the multiscale sample set are used as a single-scale sample
set, which also contains the same number of ‘‘wholly water’’
patches and is upsampled to the benchmark scale. The com-
position of the experimental data set is shown in Table 1.

TABLE 1. Sample set composition.

2) ACCURACY EVALUATION INDEXES
Background nonwater on images covers a large proportion
of all pixels. The number of pixels predicted to be water
is much smaller than the number of pixels predicted to be
nonwater, reflecting an imbalanced classification model [59].
Therefore, we select three precision indexes to evaluate the
performance of the method: Pixel Accuracy (PA), Recall, and
Intersection Over Union (IOU), with IOU as the main index
used to measure accuracy.

PA is used to calculate the ratio of correctly classi-
fied pixels of water to the total number of water pixels
in the baseline image; we always refer to this metric as
precision.

Recall is a metric that calculates the ratio of correctly
classified pixels of water to the total number of water pixels
in the predicted image.

IOU is a standard measure in the semantic segmentation
field that calculates the ratio between the intersection and the
union of two sets in each class.

PA =
TW

TW + FW

Recall =
TW

TW + FN

IOU =
TW

TW + FN + FW
(5)

where TW (true water) denotes the number of pixels cor-
rectly classified as water; TN (true nonwater) denotes the
number of pixels correctly classified as nonwater; FW (false
water) denotes the number of pixels of the nonwater classes
labeled as water; FN (false nonwater) denotes the number
of pixels of water classes classified incorrectly as nonwater
pixels.
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FIGURE 9. Three ROIs: A large-area region, a small-area region, and a mixed complex region.

B. PARALLEL EXPERIMENTAL RESULTS
We entered the test images of the three ROIs into the model
trained in this paper and compared the results with the
predictions of the traditional spectral-photometric method
(NDWI), the classical neural network model FCN, and the
unimproved DeepLabV3+ model. Additionally, we evaluate
accuracy according to amanually verified baseline. The accu-
racy scores are shown in Table 2. Figure 10 shows the details
of the different methods for water extraction.

The experimental results show that our proposed scheme
outperforms the other models in multiple aspects, and
improves the accuracy of the results. Compared with the
unoptimized deep learning classification method, our method
is more intelligent, and it improves the classification accuracy
of the details of water bodies. Compared with the traditional
method, the classification accuracy has also been greatly
improved, especially in areas with rich complex background
information and large-area water body regions. Moreover, the
method is shown to have good generalizability through its
application to different study areas.

C. SELF-STEP OPTIMIZATION EXPERIMENTAL RESULTS
1) COMPARISON OF THE MODELS TRAINED BY THE
MULTISCALE AND SINGLE-SCALE SAMPLE SETS
To verify the effectiveness of the multiscale sample hybrid
training strategy, we use two prepared sample sets and trained

TABLE 2. The accuracy scores of four methods for PA, Recall, and IOU.

the same network configuration to obtain two models, a mul-
tiscale model and a single-scale model. During inference,
the prepared multiscale test set is fed into the two models
for prediction, and the prediction process stops before the
feature weighted fusion. Here, we execute the normalized
exponential function (softmax) on the three feature maps
of different scales. Then, we mosaic the water prediction
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FIGURE 10. Some typical examples showing the details of the different
methods for water extraction: (a) the water in background areas with
buildings (from the large-area study region); (b) reservoir extraction (from
the small-area region); (c) extraction under clouds (from the mixed
complex region); (d) small water bodies (from the mixed complex region).

results of the same-scale image blocks and obtain three water
prediction images of the same size. We stack the three-scaled
predicted results into a pseudo color image by assigning
different colors to each of the scale-classified images. In this
image, the water pixels in the 128-scale prediction images
are colored blue, the 256-scale prediction images are colored
green, and the 512-scale prediction images are colored red.
Using this approach, when combined, pixels that are all pre-
dicted to be water in the 128-scale and 256-scale prediction
images are cyan, and the pixels that are all predicted to
be water in the 128-scale and 512-scale prediction images
are magenta, the pixels that are all predicted to be water in
the 256-scale and 512-scale prediction images are yellow,
and the pixels that are predicted to be water in all three
scale-prediction images are white. The resulting pseudo color
images are shown in Figure 11. Through band composition,
we can clearly see the differences between the prediction
results of the two models for different scale image blocks.
To quantitatively describe the performance of the multiscale
model and the single-scale model, we calculated the accuracy
of the predicted results against the baseline, and the result is
shown in Table 3.

Figure 11 presents a comparison of the water extraction
details between the two models. We conducted a qualita-
tive analysis based on these results. First, from Table 3,

FIGURE 11. Details of the extraction results for different models on the
Poyang Lake image: (a) the original image in false color; (b) multiscale
model prediction results in pseudo color; (c) single-scale model
prediction results in pseudo color.

TABLE 3. Water extraction accuracy scores of two models (a multiscale
model and a single-scale model) for PA, Recall, and IOU.

the accuracy of the multiscale models is higher than that
of the single-scale models under any scale-prediction size.
Second, from Figure 11, we find that the single-scale models
performed poorly for feature extraction of large-scale image
blocks. The extraction of water details relies primarily on the
128-scale prediction image, while the results of the other two
scale images are coarse: many water body details and bound-
ary extractions are incomplete; thus, they do not perform
as well as supplementary classification images. In contrast,
using the multiscale model, the prediction images at the three
different scales are relatively consistent, and the fitting degree
is high. The model trained by a multiscale sample set is
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able to extract water bodies satisfactorily at various scales,
and the extracted water bodies are complete and continuous.
From another viewpoint, comparing the prediction results at
different scales, we find that a few ‘‘reverse’’ errors still occur
in the 128-scale prediction results. but this problem is greatly
reduced in the 256-scale and 512-scale prediction results.

2) EXPERIMENTAL RESULTS OF WEIGHTED FUSION
The previous section explored the influences of different sam-
ple sets on the prediction results of different scale test images.
Multiscale model prediction results provide different feature
angles for water extraction. In Section 3 Part B, we proposed
a weighted fusion algorithm that assigns different weights to
the feature maps of the three scales, fuses them into a new
feature map, and then classifies them on this final feature
map basis. In this section, we test the impact of different
weight combinations on classification accuracy to obtain the
weight combination most suitable for precise water body
segmentation.

In this process, we used a weight stride of 0.1. We assess
the accuracy of the classification results obtained by feature
fusion against the baseline labeled image for each weight
combination. The calculated accuracy scores are shown
in Table 4, and the distribution of each indicator is shown
in Figure 12.

The experimental results show the influence of different
weight assignments on the classification results and show
that the weights of small-scale features are not ‘‘the higher,
the better’’ when considering the effect of water extraction.
When the weights of the 128-scale feature maps increase,
the models extract large amounts of water porphyroclasts,
which reduces the accuracy of image classification. The high-
est precision (PA) is achieved at the weight combination
where 512/256/128 = 0.4/0.3/0.3, and the IOU value is also
the highest. The classification result using the weight combi-
nation of 512/256/128= 0.4/0.3/0.3 is closest to the baseline,
and the effect is optimal. Therefore, the method proposed in
this paper uses this weight combination as the final weight
setting.

3) EXPERIMENTAL RESULTS OF POSTPROCESSING
OPTIMIZATION WITH A FULLY CONNECTED CRF
The prior experiments verified that the classification map
accuracy after feature fusion is already sufficiently high, but
the prediction results for very small water details (such as
paddy fields, canals, etc.) still need to be refined. In particular,
the models do not perform well for boundary segmentation of
small water bodies under complex background environments.
As described in Section 3 Part C, we treated the feature maps
after multiscale feature weighted fusion as the prior probabil-
ity and input them into a fully connected CRFmodel to obtain
the final optimized classification results. The calculated accu-
racy. before and after including the fully connected CRF is
shown in Table 5. The experimental result shows that the PA
value and the IOU value are improved by this approach, but
the Recall value decreases. We discuss this problem further

TABLE 4. Comparison of different weight combinations.

TABLE 5. Accuracy comparison before and after adding the fully
connected CRF.

in Section 5 Part C. Figure 13 clearly shows the detailed
classification results of water bodies under a context with six
types of objects: (1) water-body edges, (2) the water under
building environments, (3) paddy fields, (4) shallow water
beaches, (5) water under cloud shadows, (6) large-area water
bodies and (7) small rivers.
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FIGURE 12. Classification results after feature fusion using different weight combinations.

As the comparison shows, the effect of the fully connected
CRF for optimizing the details and for boundary refinement
is quite obvious. The extracted water bodies are both com-
plete and continuous. As shown in Figure 13 (1/3/5/7), our
proposed method performs well for water body extraction at
the edges of water bodies, under cloud shadows and in paddy
fields. The segmentation effect exceeds even the visual inter-
pretation of the manually checked baseline. Figure 13 (2/4)
shows that water body extraction for shallow water beaches
and under complex building environments also achieves a
good performance. Using the CRF module, a large number
of water body porphyroclasts are removed from the water
extraction results, making them more complete. In particu-
lar, as shown in Figure 13 (6), the extraction result for the
large-area water body is complete, and no ‘‘reverse’’ errors
exist.

V. DISCUSSION
A. EFFECTIVENESS OF A MULTISCALE SCHEME FROM
TRAINING TO PREDICTION
By comparing the expressions of the two models obtained
by training the two types of sample sets, we find that the
multiscale image input training method effectively improves
model learning and expression ability for different scale
image features, and the feature expression of the multiscale
sample set training is more generalizable. The experimental
results show that the prediction accuracy when using large-
scale blocks and multiscale-trained models is higher than that
from single-scale-trained models and that the fitting degree
(overlap) of the three scales is high, which is beneficial
in cross-assisted classification. By adding the scaled input
prediction learning mode and using the ASPP module in the
network architecture, this method can fully exploit the feature
details of each sample at the different scales to obtain feature
mappings of different scales. Then, the effects of the different
scales can be adjusted through weighted fusion.

Regarding the influence of different weight settings on
classification accuracy, we can conclude that the weight
setting process is more reasonable and the precision of the

classification results is greater. The fusion prediction result
can effectively solve the ‘‘reverse’’ error problem and meet
the requirements for greater precision. This experiment fully
demonstrates the advantages of training themultiscale model,
that is, it results in small-scale enhancement of detail seg-
mentation, a large-scale perception of water body background
information, and an improvement in large-area water body
extraction results.

B. EFFECTIVENESS OF POSTPROCESSING WITH FULLY
CONNECTED CRF
From the precision of experimental results, the PA value of
water extraction accuracy predicted by neural network mod-
els has reached 94%. However, when assessing the details,
the results of water body edge extraction in complex terrains
is still insufficiently accurate because the boundaries become
blurred due to upsampling operations. By adding the fully
connected CRF optimization, the experimental results show
that the method can well distinguish small water bodies—
even those that are only one pixel wide—and the prediction
results also eliminate a large number of misclassified nonwa-
ter body porphyroclasts. This is crucial for water extraction;
nevertheless, the elimination of some patches inevitably leads
to the losses when extracting small rivers. This problem is
related to the potential energy function calculation of the
CRF. The CRF model used in this study integrates only the
pixel position and band information relationship of the image.
Subsequent research should includemore feature information
and additional relationships in the CRF process to assist in the
optimization of water edge classification

C. DISCUSSION ON CLASSIFICATION ACCURACY
The experimental area used in this study is complex and
surrounded by paddy fields, urban areas and fishponds. There
are many water-containing areas and complex forms that are
very troublesome for water extraction algorithms. Through
the comparison experiments described above, we found that
even manually and accurately checked data labels include
some classification errors; some number of incorrect labels
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FIGURE 13. The before-and-after results of adding the fully connected CRF: (a) the original
image in false color; (b) the manually checked baseline; (c) the classification results after
weighted feature fusion; and (d) details of the postprocessing results after adding the fully
connected CRF.

VOLUME 7, 2019 155801



Z. Li et al.: Multiscale Features Supported DeepLabV3+ Optimization Scheme for Accurate Water Semantic Segmentation

is inevitable. As shown in Figure 13 (2), some nonwater
patches in the complex urban area are marked as water.
In Figure 13 (5) the water body under the thin cloud in the
baseline is not extracted. In Figure 13 (7), the smallest water
body in the baseline is not marked, and the small river is
disconnected. However, the method proposed in this paper
accurately extracts the water bodies in these areas and elimi-
nates some nonwater patches; these resulted in a reduction in
the precision value of the quantitative algorithm evaluation
when performing precision calculations against the baseline.
Evaluations of remote sensing image water extraction results
should not only be compared using a precision index but qual-
itative evaluations should also be performed that are based on
the actual classification effect.

D. CONTRIBUTION TO ACTUAL PRODUCTION
APPLICATIONS
We applied the DeepLabV3+ neural network architecture
to the practical application of water extraction from remote
sensing images and put the neural network model trained
using this method into an actual production environment
involving daily water monitoring. The water body was
extracted from 188 GF1/GF2 images in 2017–2018. The
extraction effect was stable, and the influences of clouds and
mountain shadows were well controlled. After the optimiza-
tion of the CRF postprocessing module, the water extraction
details were accurate. The results of water extraction can be
applied to the production of water samples again to expand
the sample set of water bodies, thus forming a good sam-
ple expansion-model optimization production cycle that can
reduce the labor and time costs of sample production.

VI. CONCLUSION
In this study, the research goal is the accurate extraction of
complex water bodies from high-resolution remote sensing
images. Considering the problems of inaccuracy exhibited by
traditional neural network models due to the large changes
in water body scale and the richly detailed features, we pro-
posed an improved subscale model training method based
on DeepLabV3+. This method combines the advantages of
DeepLabV3+ multiscale feature extraction and fuses multi-
scale feature maps with appropriate weights. Finally, CRF is
used for precise boundary segmentation of the pre-extraction
results. We show the experimental results with different
effects. The experimental method achieves PA, Recall and
IOU accuracy scores of 95%, 97% and 94% respectively.
Moreover, the model’s detailed feature expression is even
better than the manually labeled baseline water body segmen-
tation result.

The multiscale model training method is highly adaptable
to feature extraction from input images of different scales.
Regarding the subscale feature mapping results, in a sense,
this approach realizes multiple predictions of the same image.
We adopt a controllable weighted fusion method to adjust the
influence weights of different scale features for the overall
prediction. The experiments show that this method not only

correctly extracts large-area water bodies but also achieves
accurate identification of water body details and improves
the overall generalizability of the model. Adopting multiscale
prediction to extract the deep features instead of the tradi-
tional single-scale training prediction produced satisfactory
results in the identification of water features at different
scales. The introduction of the fully connected CRF optimizes
the water extraction boundary and reduces noise spots. The
CNN+CRF training mode is highly suitable for semantic
segmentation in the remote sensing field.

This study provides an idea for semantic segmentation of
remote sensing images and achieved highly precise classi-
fication of water bodies. In the next step, we will focus on
testing the adaptability of this scheme to the classification of
other object features and improve the intelligence of the water
extraction model. In addition, a learning transfer mechanism
could be introduced to allow the model to independently
learn to adapt to refined image water body segmentation of
different resolutions and different phases.
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