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ABSTRACT Online social networks (OSNs) are interaction platforms that can promote knowledge spread-
ing, rumor propagation, and virus diffusion. Identifying influential users in OSNs is of great significance
for accelerating the information propagation especially when information is able to travel across multiple
channels. However, most previous studies are limited to a single network or select multiple influential users
based on the centrality ranking result of each user, not addressing the overlapping influence (OI) among users.
In practice, the collective influence of multiple users is not equal to the total sum of these users’ influences.
In this paper, we propose a novel OI-based method for identifying multiple influential users in multiplex
social networks. We first define the effective spreading shortest path (ESSP) by utilizing the concept of
spreading rate in order to denote the relative location of users. Then, the collective influence is quantified
by taking the topological factor and the location distribution of users into account. The identified users
based on our proposed method are central and relatively scattered with a low overlapping influence. With
the Susceptible-Infected-Recovered (SIR) model, we estimate our proposed method with other benchmark
algorithms. Experimental results in both synthetic and real-world networks verify that our proposed method
has a better performance in terms of the spreading efficiency.

INDEX TERMS Multiplex networks, influential users, overlapping influence, shortest path.

I. INTRODUCTION
The development of online social networks (OSNs) has
created a new major interaction medium and formed promis-
ing landscape for information dissemination. The engage-
ment of online users generates a huge volume of data for
investigating the human behavioral patterns [1]. More impor-
tantly, the fact that an opinion or decision of individuals is
influenced by their neighbors or friends has a considerable
impact on the popularity of new products or brands [2], [3].
Targeting influential users is vital for designing techniques
for either accelerating the information diffusion in market-
ing applications or suppressing the propagation of unwanted

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan Bu .

contents [4], [5]. The crucial problem is how to select mul-
tiple users, called central users, who can influence a mas-
sive number of users [6]. The measurement of influential
users is beneficial for advertisers to implement effective cam-
paigns. Central users are believed to play a key role in the
propagation process. In practice, if a virus attacks a central
user with a large degree, betweenness, PageRank or k-shell
[7], [8], it would quickly pervade the whole network [9]. If we
protect or immunize these users, the propagation scale would
be greatly alleviated [10].

Although the propagation dynamics have received more
and more attention, most of the studies still remain in a single
network [11]. However, in fact, a user often has more than
one social account such as Twitter, Facebook and Instagram.
More recently, scientists start to consider a particular class of
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networks in which it is coupled by several subnetworks and
vertices have multiple different types of links among layers,
called multiplex networks [12], [13]. Due to the multichannel
characteristics of information propagation, multiplex social
networks can more accurately describe the structure of com-
plex systems and their interactions while the single networks
usually neglect these links among the users.

The identification of influential users is generally based
on the ranking relative to the centrality measurement. In the
last few years, certain centrality measures for multiplex net-
works have aroused intense interest and discussion to solve
the problem of user influence ranking [14]–[19]. However,
classical methods for selecting influential users based on the
centrality only consider the structural characteristics of indi-
viduals, but do not address the overlapping influence among
the chosen nodes [20], [21]. The overlapping influence is
a common phenomenon in a propagation process, which
is invalid for maximizing the influence spreading [22]. For
example, as shown in Fig. 1, if two users (i.e., V1 and V2)
who share a lot of common friends (i.e., V3, V4 and V5) are
selected as the initial spreaders to spread a message in social
networks, their common friends would receive the redundant
information and the spread of the message is limited. The
phenomenon that spreaders affect a group of same users is
regarded as the overlapping influence [22].

FIGURE 1. An illustration of the overlapping influence. Two users
(V1 and V2) with the highest degree are selected as spreaders. Users in
the red and blue circles represent the neighbors of V1 and V2,
respectively. However, V1 and V2 share three common friends (i.e., V3, V4
and V5), suppressing the influence maximization. Specifically, when a
large amount of redundant information is transmitted to common friends
(i.e., V3, V4 and V5), it will cause serious waste of resources.

More specifically, the collective influence ofmultiple users
is not equal to the sum of influence of each user [23], [24].
Therefore, finding a set of users with the maximum influ-
ence is one of the most problems in the field of network
science. Distance among users has been confirmed to affect
the spreading efficiency especially when the number of users
is large [25]. Besides, spreading rates in different layers are
of great significance for the propagation scale [26]. Through
analyzing these features, we make some improvements to
current topology-based strategies by taking the overlapping
influence into consideration.

In this paper, we propose a novel approach that considers
both the structural properties of individuals and the relative

location of the selected users which can effectively reduce the
overlapping effect among multiple users in the propagation
process. Specifically, the structural property stands for the
centrality measure, and the location distribution depends on
the effective spreading shortest path (denoted as ESSP). ESSP
is defined to quantify the relative distance among users in
multiplex netowrks capitalizing on the idea of the spreading
rate in the spreading process. Compared with the existed
methods, we balance these two metrics and find a certain
fraction of influential users rather than measure the influ-
ence of a single user. Then the numerical simulation results
with Susceptible-Infected-Recovered (SIR) model verify that
our proposed method outperforms traditional methods in the
spreading efficiency in terms of the maximum spreading
influence. The main contribution of this paper can be sum-
marized as:

1) A novel method is proposed by tactfully combining the
structural properties and relative locations of multiple
users, which aims to minimize the overlapping influ-
ence and maximize the spreading influence.

2) The effective spreading shortest path (ESSP) is pro-
posed to measure the collective influence of multiple
users and a series of multiplex networks are adopted to
verify the effectiveness of the proposed method.

The rest of the paper is organized as follows: Sec. II
introduces the related definitions, approaches, and models.
Then a novel method for selecting multiple influential users
in multiplex networks is proposed in Sec. III. Sec. IV presents
the results of simulation experiments based on six networks.
Sec. V provides conclusions and future directions of the
research.

II. RELATED WORK
This section provides the theoretical foundation of our work.
Specifically, Sec. II-A states the formulation of multiplex
networks. Then, Sec. II-B introduces the centrality measures
for multiplex networks. Sec. II-C presents the detailed study
on the overlapping influence.

A. FORMULATION OF MULTIPLEX NETWORKS
A multiplex network can be naturally defined as a combina-
tion of graphs where the notion of a layer Lm = {1, ...,L} is
introduced as follows: {Gα}Lα=1 = {(Vα,Eα)}

L
α=1. Generally,

the user sets are the same across the different layers (i.e.,
Vα = Vβ = V ,∀α, β ∈ Lm). An edge set Eα ⊆ Vα ×Vα rep-
resents the interactions of a particular relation among users
such as friendship ties, family ties or co-worker ties [12],
[13], [27]. For instance, G1 and G2 represent social networks
of Twitter and Facebook, respectively. The user sets V1 and
V2 share the same users since a user often has more than
one social account. However, the edge sets E1 and E2 can
be obviously different within the networks due to the various
relationships.

The propagation process in a multiplex network can be
characterized by traditional propagation models. Here we
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FIGURE 2. An illustrative example of information propagation process in a multiplex network. At T = 1, the infected user successfully transmit the
information to its neighbor (i.e., from V 1

1 to V 1
2 ) while the coupled user (i.e., V 2

2 ) in the other layer is infected automatically. At T = 2, the information
propagates in both layers (i.e., from V 1

2 to V 1
3 and from V 2

2 to V 2
5 ). At T = 3, one of the infected users (i.e., V 2

3 ) is recovered and will not be infected
anymore.

adopt the Susceptible-Infected-Recovered (SIR) model as the
information propagation model [28]. N users in a network
can be divided into three states: susceptible, infected, and
recovered. The dynamics of the SIR model can be described
as Eq. (1): 

dS(t)
dt
= −µI (t)S(t)

dI (t)
dt
= µI (t)S(t)− δI (t)

dR(t)
dt
= δI (t)

(1)

whereµ denotes the probability that an infected user success-
fully transmits the information to the susceptible neighbors
at each step and δ is the probability of infected individuals
recovering and immunizing, which means the recoverd users
will not spread the information and be affected by it anymore.

In multiplex networks, the propagation is expected to dif-
fuse among different layers. The probability of infection and
recovery may be different in each layer. We experience the
infection probabilityµγ and recovery probability δγ in a layer
γ . As shown in Fig. 2, if a user (i.e., V 1

2 ) in one layer is
infected, at each step, it will spread the information to the
susceptible neighbors in all layers (i.e., V 1

2 to V 1
3 and from

V 2
2 to V 2

5 ). Besides, the user sets are the same across different
layers, which here means the coupled users in different layers
share the same state: S, I or R.
In the applications of maximization influence, such as viral

marketing, current methods usually select a group of nodes
for protection or infection according to the centrality ranking
result of each node [29], [30]. The centrality measures for
multiplex network are introduced in the following section.

B. CENTRALITY MEASURES FOR MULTIPLEX NETWORKS
Recently, centrality ranking measures for multiplex networks
have been investigated quite intensively, aiming at extend-
ing the classical centrality measures from the single-layer
networks. Current approaches for the centrality in multi-
plex networks can be classified into three main categories:
(1) Aggregate multiplex networks and then estimate the
centrality metrics on such aggregated network [31], [32].
(2) Treat the layers independently and evaluate the centrality
in multiple ways [18]. (3) The general centrality measure
for multiple networks is calculated directly considering the
interactions among layers [15]–[19], [33]–[35].

For examples, Sola et al. [19] introduced a new eigenvector
centrality for a multiplex network, assuming a node ranking
in a layer is affected by the counterparts in other layers. Arda
et al. [15] proposed a multiplex PageRank metric based on
the consideration of the mutual influence of the same nodes
between different layers. De Domenico et al. [18] built a
mathematical model with tensor and exploited PageRank,
betweenness and eigenvector centralities to multiplex net-
works for ranking the versatile nodes. Sole -Ribalta et al. [36]
firstly gave a version of multiplex betweenness centrality
which estimates the betweenness centrality in each layer
independently and aggregated it together. Based on that,
Chakraborty and Narayanam et al. [34] proposed a general
cross-layer betweenness centrality, capitalizing on the idea
of the inter-layer shortest path. However, these traditional
centrality measures for multiplex networks only focus on the
position characteristics of a single node, not addressing the
overlapping influence among multiple nodes.

C. OVERLAPPING INFLUENCE
There are already some studies on the effects of over-
lap in single networks. Hu et al. [25] investigated the
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relationship of spreading influence and distance between
spreaders, the theoretical and experimental results have
shown that for regular networks the larger the distance
between spreaders is, the more effective the spreading would
be. Guo et al. [37] introduced an approach which can obvi-
ously improve the influence spreading by adding a distance
parameter into the coloring method. Zhou et al. [23] pro-
posed a collective influence metric of multiple spreaders via
evaluating the overlapping influence according to the degree,
betweenness, and PageRank. Zhang et al. [38] presented
an iterative method named ‘VoteRank’ to identify a set of
decentralized spreaders where all nodes vote in a spreader
in each turn, and the voting ability of neighbors of selected
spreader will decrease in subsequent turn. However, most
of the current studies are still limited in a single network.
How to extend the study of overlapping influence tomultiplex
networks is what we concern in this paper.

III. OI-BASED METHOD
This section introduces the detailed principles of our pro-
posed method. The effective spreading shortest path is first
defined in Sec. III-A. Then, Sec. III-B derives the overlap-
ping influence based (OI-based) method to identify multiple
influential users.

A. EFFECTIVE SPREADING SHORTEST PATH
The shortest path between spreaders in multiplex networks
shows a great impact on the overlapping influence [21], [25].
The multiplex shortest path indicates a path having the min-
imum length from the source user in any layer to the desti-
nation user in any layer [36]. Specifically, we define a path
on a multiplex network consisting of L layers and N users:
pxα→yβ ∈ Pxα→yβ which starts from a user x in a layer α to a
user y in a layer β. Pxα→yβ denotes a set of all possible paths
and we can define a distance d(pxα→yβ ) as the length of such
path. Therefore, for ∀α, β ∈ L and ∀x, y ∈ N , the multiplex
shortest path can be defined in Eq. (2):

P∗xα→yβ = argmin
pxα→yβ∈Pxα→yβ

d(pxα→yβ ) (2)

In this paper, we propose an effective spreading shortest
path (denoted as ESSP) in multiplex networks based on
the spreading rate. For the purpose of finding a path that
starts from a user x and reaches a user y in a shortest time,
we usually choose the traditional shortest path in networks.
However, in the propagation process in multiplex social net-
works, a multiplex shortest path may not be the best choice
since the different spreading rate in each layer can increase
its time consumption.

In the propagation process, the spreading rate in a multi-
plex network is defined in Eq. (3):

λγ =
µγ

δγ
(3)

where γ ∈ {1, 2, ...,L}, and µγ and δγ denote the infection
and recovery probability in a layer γ , respectively.

Suppose that we construct a multiplex network G with
different spreading rates of each layer. Assume that there are
several paths pxα→yβ ∈ Pxα→yβ from a user x in a layer
α to a user y in a layer β. Each link (i, j)γ in a path may
occur in different layers. To define the effective spreading
path in multiplex networks, the spreading rates can be mul-
tiplicative or additive through the path. The maximization of
multiplicative spreading rate can be defined in Eq. (4):

max
∏

(i,j)γ ∈pxα→yβ

λγ (4)

which can be transformed into the minimization of the addi-
tive spreading rates in Eq. (5):

max
∏

(i,j)γ ∈pxα→yβ

log λγ = max
∑

(i,j)γ ∈pxα→yβ

log λγ (5)

= min(−
∑

(i,j)γ ∈pxα→yβ

log λγ )

= min(
∑

(i,j)γ ∈pxα→yβ

log
1
λγ

)

Therefore, the effective spreading path can be obtained
by minimizing the additive spreading rates which changes
the spreading rate of each link to log 1

λγ
. Based on that,

the effective spreading path length and the shortest path can
be defined in Eq. (6) and Eq. ( 7), respectively.

d s(pxα→yβ ) =
∑

(i,j)γ ∈pxα→yβ

log
1
λγ

(6)

psxα→yβ = argmin
pxα→yβ∈Pxα→yβ

d s(pxα→yβ ) (7)

In order to reflect the rationality of our method, we con-
struct a real situation as shown in Fig. 3. When a user V1
transmits a message to a user V4 through four potential paths,
the traditional shortest path in a network does not represent
the most effective propagation path due to the fact that the
spreading rate in G1 limits its probability of propagation
although V 1

1 is directly linked with V 1
4 . Instead, the P4 path in

G2 is the path which is most likely to tell V4 in a short period
of time based on Eq. (7). The specific calculation process is
shown in Alg. 1.

B. OVERLAPPING INFLUENCE-BASED METHOD
In practice, a user with a large centrality is believed to con-
tribute to the spreading efficiency while the long distance
among multiple users is of great significance to suppress the
overlapping influences. In order to identify a certain fraction
of influential users, we propose a collective influence metric
that combines the topology characteristic with the location
distribution defined in Eq. (8):

8(S) =
∑
x∈S

cx ·
1

1
2 |S|(|S| − 1)

∑
x,y∈S;x 6=y

d∗(pxα→yβ ) (8)
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FIGURE 3. An illustrative example of a multiplex network consisting of links of individuals in G1 and G2.
There are four paths from V1 to V4. The table shows the number of links traversed in each layer for the four
paths and the effective spreading path length computed by taking infection and recovery probabilities into
consideration based on Eq. (6). P4 is shown as the effective spreading shortest path.

FIGURE 4. An illustration of our proposed multiple users selection method. We assume that λ1 = 0.3 and λ2 = 0.5. (a) V1 and V2
are selected as spreaders according to the aggregation degree and they transmit the information to their neighbors. However, since
they share multiple common neighbors which means a high overlapping influence, the spreading scale is limited. (b) V3 and V4 are
selected as spreaders computed by our OI-based method. In the next time step, it shows a greater probability to expand the
spreading scale and reduce the overlapping influence.

Algorithm 1 Computation of ESSP Length
Input: Gm, the spreading rate λ, the spreader s
Output: The ESSP length d∗

1 Initialize the min-priority queue Q
2 while Q is not empty do
3 u = Q.extract_min()
4 for each layer i of L do
5 for each neighbor vi of ui do
6 length(vi, ui) is calculated based on Eq. (6)
7 alt = d∗[ui]+ length(vi, ui)
8 if alt < d∗[v] then
9 d∗[v] = alt

10 Q.decrease_priority(v, alt)

where S represents a set of users, cx denotes the centrality of
user x, and d∗(pxα→yβ ) is the value of the effective spreading
shortest path length. Based on that, we find the optimal set of

users in all possible sets S ′ which has a maximum collective
influence in Eq. (9):

S = argmax
S∈S ′

8(S) (9)

For the purpose of finding an optimal set of users, here
we adopt a greedy algorithm to maximize 8. We initially
select top-K users with the highest centralities and add them
into the spreader set. At each time step, we temporarily
replace a spreader with a new candidate user and compare
the collective influence. If the collective influence increases,
the spreader set changes, and the iteration continues until 8
stops increasing.

For identifying a certain fraction of users in multiplex
social networks, an example is shown in Fig. 4 to verify the
effectiveness of the overlapping influence-based (OI-based)
method. The calculation process is specified in Alg. 2 .

IV. EXPERIMENTS AND RESULTS
The details of our experiments are stated in this section.
Specifically, Secs. IV-A and IV-B describe the performance
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Algorithm 2 The Process of Selecting a Set of Influential
Users
Input: The centrality of users in G, the length of ESSP

d∗, the number of spreaders K
Output: The selected spreader set S

1 Initialize S to the set of top-K users with the maximum
centralities

2 Calculate the initial collective influence 8 based on
Eq. (8)

3 while 8 increases in the last iteration do
4 for n = 1:N do
5 Temporarily replace spreader with n
6 Compute the new collective influence 8
7 if 8 increases then
8 Update the user set S

metrics and datasets, respectively. The effectiveness of our
proposed method is estimated in Sec. IV-C. The parameter
analyses are implemented in Sec. IV-D

A. PERFORMANCE METRICS
In this study, we adopt two metrics to evaluate the perfor-
mance of the proposed method. For the purpose of comparing
the spreading speed for different methods, we define the
spreading influence F(t) at time t in Eq. (10):

F(t) =
nI (t)+ nR(t)

n
(10)

where n denotes the total number of nodes in a network,
and nI (t) and nR(t) are the number of infected and recovered
nodes at time t , respectively.
The second metric is the maximum spreading influence

which is defined in Eq. (11):

MI =
nR
n

(11)

where nR denotes the total number of the recovered indi-
viduals when the spreading process reaches a stable state.
A stable state is reachedwhen all the infected nodes are recov-
ered, and thereby there are only susceptible and recovered
nodes.

B. DATASETS
We adopt two synthetic networks and four real networks1

to verify the validity of our proposed method. Concretely,
G1 and G2 are random and scale-free networks generated by
a network generator [39], respectively. The probabilities of
a newly joined node connecting with an original node are
0.005 and 0.004 in two layers in G1, respectively. In G2,
a new node establishes 4 and 3 connected edges with the
original nodes in layers, respectively. G3 and G4 are part of
the public database that archives and disseminates genetic and

1https://comunelab.fbk.eu/data.php

TABLE 1. Description of multiplex networks in our experiments. N and E
denote the number of nodes and edges in networks, respectively. The
number of layers is represented as L.

protein interaction data from humans and model organisms
[40]–[42]. They concern HOMO and Drosophila, respec-
tively.G5 corresponds to the papers with the word ‘‘network’’
in the title or abstract of different arXiv categories up
to May 2014. G6 represents the different types of rela-
tionships data from twitter focused on People’s Climate
March in 2014 [43]. Without loss of generality, we only
consider the duplex (i.e., double-layer) networks in this study.
Specifically, G3 and G4 consist of two layers of the original
networks (i.e., Direct_interaction and Physical_association).
G5 includes two layers called Physics.data-an and Math-ph.
G6 is made up by layers of RT and MT. We extracted part of
the original real networks in a way that all nodes exist in both
layers and the basic attributes of the six networks are shown
in Table 1.

C. EXPERIMENTAL RESULTS
As mentioned above, centrality measures for multiplex net-
works have been widely studied. Here we adopt several
methods proposed so far as competitors to evaluate the per-
formance of OI-based method, i.e., the additive multiplex
PageRank (addPR) [15], versatile PageRank (verPR) [18],
cross-layer betweenness centrality (clyBC) [34], [36], and
aggregation degree (aggDeg) [44]. In our experiments,
the spreading rates in two layers are λ1 = 0.1 and λ2 = 0.05,
respectively. The experiments are repeated over 100 times and
are conducted in the same environment.

Figure 5 shows the proportion of infected and recovered
nodes at each time step on six networks with p = 0.2 where p
represents the ratio of the number of source spreaders. Under
the same condition, different methods perform diversely due
to the differences of network structures while our proposed
OI-based method is more efficacious. It can be seen that
from the spreaders with a suppressed overlapping influence,
information can spread faster and finally reach a larger scale.
In some special cases, a few centrality measures may per-
form better in the spreading speed than other OI-based cen-
trality method, like addDeg performs better than OI-clyBC.
OI-verPR and OI-addPR inG6. However, the OI-based meth-
ods combined with the corresponding centralities are still
enhanced.

Actually, the spreading speed and maximum spreading
influence are not only determined by the influence of
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FIGURE 5. The simulation results for spreading influence F (t) at each time step on six networks under different methods. 20% users
are selected as spreaders and the spreading rates in different layers are 0.1 and 0.05, respectively. The results are averaged over
100 independent runs. From these results, we can conclude that our OI-based method can spread information faster and reach a larger
spreading scale than the corresponding algorithm. Besides, the OI-based methods basically outperforms than other benchmark
algorithms.

spreaders, but also by their relative location. For this reason,
multiple users selected by our proposed method have high
centralities and are relatively scattered where the effective
spreading shorted path (ESSP) is introduced due to different
infection rates in layers. It leads to a small overlapping influ-
ence and users have a strong ability to spread the information
than others. Consequently, our proposed method outperforms
a series of competitors.

D. PARAMETER ANALYSIS
There are two important parameters in our proposed method
which are (1) the size of spreaders (p), and (2) spreading
rate (λ). This section mainly discusses the effect of these
parameters on the OI-based method. The size of spreaders
are set from 0.1 to 0.5 of the total users, with an interval
of 0.05. In order to study the effect of the spreading rate on
our OI-based method, we define the ratio of spreading rates
in two layers as r = λ1

λ2
. r is set from 1.0 to 3.5 interval

of 0.5 where λ1 and λ2 are initially set to 0.025 and 0.05,
respectively. When a parameter is chosen for the parameter
analyses, the remaining parameters are the same as Sec. IV-C
and remain unchanged.

Figure 6 shows themaximum spreading influencewhen the
spreading process get stable against p ranging from 0.1 to 0.5.
It is obvious that the maximum spreading influence of our

proposed methods is generally larger than the multiplex cen-
tralities. More specifically, if p is too small, information can-
not be effectively spread no matter how to choose spreaders
and the centrality measurements may even performs better
than OI-based methods. According to the hypothesis of over-
lapping influences, when p is small, the overlapping influence
is weak and different methods have similar performance.
However, when the size of spreaders is large, the overlapping
influence is obviously significant and the influential users
selected by our proposed method have a low overlapping
influence. Consequently, OI-basedmethodswill get widerMI
than the original methods.

Without loss of generality, we adopt four real-world
netoworks to study the effect of the spreading rate on OI-
basedmethod. Comparisons of themaximum spreading influ-
ence with a various r among different methods are shown
in Fig. 7. Results show that the OI-based methods can achieve
awider spreading influenceMI especially when r and spread-
ing rate are large. Notably, different methods show a sim-
ilar performance when the spreading rate is small and the
maximum spreading influence of OI-based methods increase
noticeably after r = 1. It is because that when r = 1,
the spreading rate is the same so that the influence of the
effective spreading shortest path (EESP) cannot be fully
reflected.
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FIGURE 6. The simulation results for the maximum spreading influence MI on six networks with different number of spreaders.
The spreading rates in different layers are 0.1 and 0.05, respectively. The results are averaged over independent 100 runs. Results
show that regardless of the size of spreaders, OI-based method performs better than other algorithms in terms of the maximum
spreading influence. The advantages of the OI-based method are more prominent, especially when the proportion of initial
spreaders is larger,.

FIGURE 7. The simulation results for the maximum spreading influence
MI on four real-world networks under different methods. 20% users are
selected as spreaders and the ratio r of spreading rates in two layers is
set from 1.0 to 3.5, respectively. The results are averaged over
100 independent runs. Results show that in different spreading rate of
each layer, OI-based method outperforms other algorithms in terms of
the maximum spreading influence.

Based on the above analyses, we can conclude that the
parameters can make a tremendous difference in the perfor-
mances of the OI-based methods. As the fraction of spreaders

and the spreading rates get larger, OI-based methods perform
better than other methods more significantly.

V. CONCLUSION
Identifying multiple influential users rather than only one
user can be widely applied to the influence maximization
and the strategy of advertising. Therefore, how to minimize
the overlapping influence among these selected users is a
tough task. In this paper, a novel method combines the
individual topology characteristics with the relative location
is proposed to select multiple influential users in multiplex
social networks. According to the proposed method, multiple
users are of great collective influence when individuals have
great centralities and the selected users are dispersed which
leads to a suppressed overlapping influence and the least
waste of resources. Therefore, we utilize the spreading rate to
define the effective spreading shortest path in multiplex net-
works. The experimental evaluation of the proposed method
is carried out against several competitors proposed so far
for multiplex networks. Simulation results of six networks
have shown that OI-based method outperforms other bench-
mark algorithms in the spreading influence. Future work
will focus on the study of overlapping links and nodes in
multiplex networks. The overlapping influence of the inter-
actions in different layers among the same nodes and a
series of applications based on the proposed effective spread-
ing shortest path (ESSP) are what we concern in the next
step.
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