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ABSTRACT Mild cognitive impairment (MCI) represents the intermediate stage between normal cerebral
aging and dementia associated with Alzheimer’s disease (AD). Early diagnosis of MCI and AD through
artificial intelligence has captured considerable scholarly interest; researchers hope to develop therapies
capable of slowing or halting these processes. We developed a state-of-the-art deep learning algorithm based
on an optimized convolutional neural network (CNN) topology called MCADNNet that simultaneously
recognizes MCI, AD, and normally aging brains in adults over the age of 75 years, using structural
and functional magnetic resonance imaging (fMRI) data. Following highly detailed preprocessing, four-
dimensional (4D) fMRI and 3DMRI were decomposed to create 2D images using a lossless transformation,
which enables maximum preservation of data details. The samples were shuffled and subject-level training
and testing datasets were completely independent. The optimized MCADNNet was trained and extracted
invariant and hierarchical features through convolutional layers followed by multi-classification in the last
layer using a softmax layer. A decision-making algorithm was also designed to stabilize the outcome of the
trained models. To measure the performance of classification, the accuracy rates for various pipelines were
calculated before and after applying the decision-making algorithm. Accuracy rates of 99.77% ± 0.36%
and 97.5% ± 1.16% were achieved for MRI and fMRI pipelines, respectively, after applying the decision-
making algorithm. In conclusion, a cutting-edge and optimized topology called MCADNNet was designed
and preceded a preprocessing pipeline; this was followed by a decision-making step that yielded the highest
performance achieved for simultaneous classification of the three cohorts examined.

INDEX TERMS Deep learning, classification, structural and functional magnetic resonance imaging, brain,
Alzheimer’s disease, MCI.

I. INTRODUCTION
A. COGNITIVE IMPAIRMENT
Cognitive impairment is a general term referring to impair-
ments in cognition among the domains of memory, learning,
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concentration and decision-making. Cognitive impairment
ranges frommild to severe and the symptoms canworsen over
time and ultimately prevent a patient from performing daily
tasks. Mild Cognitive impairment (MCI) was first utilized by
Reisberg et al. [1] and is currently defined as a decline in
cognitive ability that is detectable however lacking in terms
of the severity to alter one’s functioning of daily living.
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The National Institute on Aging Alzheimer’s Association
(NIA-AA) has provided criteria to diagnose dementia and
MCI when there occurs a significant cognitive deteriora-
tion from an individual’s previous level [2], [3]. Addition-
ally, research demonstrates that elderly adults with a diag-
nosis of MCI have a higher risk of developing demen-
tia and age-related cognitive decline [4]. Petersen et al.’s
research demonstrates that although there is still a scoring
threshold in determining MCI, the memory decline of indi-
viduals with MCI is approximately1.5 standard deviations
below normative data of same age and educationally matched
peers [5], [6]. Gallagher et al. indicate depression and anxiety
have been reported in almost 50% of individuals with MCI,
and a link between depression and anxiety with cognitive
decline has been found [7]–[9]. Despite research demon-
strating the elevated risk of dementia among those with
a MCI diagnosis, it is unclear which factors and profiles
of MCI are at greatest risk of progression and therefore
most likely to benefit from early intervention. Researchers
have investigated the effectiveness of MCI treatment with
medication [10]. Morris et al. identified the major challenge
in MCI research is distinguishing which memory deficits
inevitably progress to Alzheimer’s. An additional barrier to
research within this population is that the diagnosis of MCI
is established through various assessments such as Clinical
Dementia Rating (CDR), Short Blessed Test (SBT) andMini-
Mental State Examination (MMSE) that are insensitive to
early-stage AD. For example, researchers have shown that
the MMSE scores are not good at predicting risk of future
dementia [11], [12]. Grundman et al. explained the details
of recruiting normal subjects in MCI studies. The normal
subjects must be in the same age range and maintain a CDR
of 0 and an MMSE score above 26. The subjects should also
have a similar level of education [13]. Structural Magnetic
Resonance Imaging (MRI) that captures the structure of the
brain is the most popular imaging modality to recognize
MCI [6], [14]–[17].

B. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
The human visual system consists of cells and synapses
that capture visual information from the environment and
transfer it to the human brain through a visual portal called
the lateral geniculate nucleus (LGN) located in the thalamus.
Interestingly, a set of pathways operate largely in parallel
to transceiver visual information. Convolutional neural net-
works are inspired by the human visual system and perform
hierarchical learning based on complicated algorithms that
model low-high level features and extract abstractions from
data. This architecture has been specifically designed based
on the explicit assumption that raw datum are comprised of
two-dimensional images that enable certain properties to be
encoded while also reducing the amount of hyper parameters.
One of the most important features of CNNs is that their
complex architecture provides a level of invariance to shift,
scale and rotation, as the local receptive field allows the
neurons or processing units’ access to elementary features,

such as oriented edges or corners. This network is primarily
comprised of neurons having learnable weights and biases,
forming the convolutional layer. The network also includes
other network structures, such as a pooling layer, a normaliza-
tion layer and a fully connected layer. As briefly mentioned
above, the convolutional layer, or conv layer, computes the
output of neurons connected to local regions in the input,
each computing a dot product between its weight and the
region it is connected to in the input volume. The pooling
layer, also known as the pool layer, performs a downsampling
operation along the spatial dimensions. The normalization
layer, also known as the rectified linear units (ReLU) layer,
applies an elementwise activation function, such as max
(0, x) thresholding at zero [18]–[20]. The fully connected
(FC) layer computes the class scores, resulting in the vol-
ume of the number of classes. As with ordinary neural
networks, and as the name implies, each neuron in this
layer is connected to all of the numbers in the previous
volume [19], [21]–[23]. Equation 1 demonstrates how the
gradient component for a given weight is calculated in the
backpropagation step, where E is the error function, y is the
neuron Ni,j, x is the input, l represents layer numbers, w is
filter weight with a and b indices, N is the number of neurons
in a given layer, and m is the filter size.
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Equation 2 describes the backpropagation error for the
previous layer using the chain rule. This equation is similar to
the convolution definition, where X(i+a)(j+b) is replaced by
X(i−a)(j−b). It demonstrates that backpropagation results in
convolution while the weights are rotated. The rotation of the
weights derives from a delta error in the convolutional neural
network.
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Several successfully developed deep CNN architectures
have already been introduced for various computer vision
tasks such as object recognition and classification, object
classification and localization, object detection and image
segmentation. LeNet-5 [18] is considered a fundamental
architecture designed for handwritten and machine-printed
character recognition. AlexNet [24] is also one of first CNN
architectures designed for image classification. VGGNet [25]
was developed at the University of Oxford for large-scale
image recognition. GoogleNet [23] was introduced by the
research team at Google by which the inception module
was added to the network architecture. ResNet [26], one
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of the monster architectures that defines a deep learning
network and the residual module, was utilized for the first
time. Next, ResNext [27] was designed and consisted of the
concepts of inception and residual modules. This architecture
has a vast application in image recognition. You Only Look
Once or YOLO architecture [28] was designed to solve com-
plicated image detection problems. The high computation
costs in the CNN-based architectures encouraged researchers
to develop optimized architectures to be functional on mobile
devices and SqueezeNet [29] was introduced for low band-
width scenarios. Image segmentation is one of the crucial
tasks in computer vision and has been of interest to scientists
in the field. SegNet [30] applied the deep learning concepts
to solve image segmentation problems that included a set
of encoders and decoders where the high frequency details
are retained. Additionally, Generative Adversarial Networks
(GANs) [31] were introduced to generate entirely new images
not used in training datasets.

C. RELATED WORKS
A deep learning architecture including stacked auto-encoders
and a softmax layer was designed by Siqi Liu to classify
AD and MCI through a unique setting. The advantage of
the design was to use less samples to train the model [32].
Suk et al. developed a deep learning-based extraction and
classification method to classify AD/MCI where PET and
MRI data were utilized. The accuracy rates of 95.9% and 85%
were reported for AD and MCI, respectively [33]. Another
work fromSuk et al. was to classify AD,NC andMCI through
a multimodal fusion system in which CNN models were
utilized. The maximum accuracy rates of 93.52%, 85.19%
for AD vs NC and MCI vs NC were obtained [34]. Changes
in brain structure and function caused by Alzheimer’s dis-
ease have proved of great interest to numerous scientists and
research groups. In diagnostic imaging in particular, classifi-
cation and predictive modeling of the stages of Alzheimer’s
have been broadly investigated. Suk et al. [33], [35], [36]
developed a deep learning-based method to classify ADmag-
netic current imaging (MCI) and MCI-converter structural
MRI and PET data. In their approach, Suk et al. developed
an auto-encoder network to extract low- to mid-level fea-
tures from images. Next, classification was performed using
multi-task and multi-kernel Support Vector Machine (SVM)
learning methods. This pipeline was improved by using more
complicated SVM kernels and multimodal MRI/PET data.
However, the best accuracy rate for Suk et al. remained
unchanged [34]. Randomized denoising auto-encoder marker
(rDAm) was used to design a multimodal imaging system
against PET and structural MRI data to classify MCI and
AD [37]. An automatic classification system was developed
to recognize AD and MCI data who converted to AD using
deep neural networks. The best accuracy rates achieved in
this work were up to 86% for all AD and MCI samples
vs healthy control, and MCI converters vs MCI stable with
accuracy up to 75% [38]. Senanayake et al. implemented
an approach for classification of MCI subtypes using deep

learning and stacked auto-encoder architectures. They classi-
fied 5 subtypes of MCI and the accuracy rates between 84%
up to 97% were obtained [39]. Payan and Montana [40] of
Imperial College London designed a predictive algorithm to
distinguish AD MCI from normal healthy control subjects’
imaging. In this study, an auto-encoder with 3D convolutional
neural network architecture was utilized. Payan et al. obtained
an accuracy rate of 95.39% in distinguishing AD from
NC subjects. The research group also tested a 2D CNN
architecture with a reported accuracy rate nearly identical
in terms of value. Additionally, a multimodal neuroimaging
feature extraction pipeline for multiclass AD diagnosis was
developed by Liu et al. [41]. This deep-learning framework
was developed using a zero-masking strategy to preserve all
possible information encoded in imaging data. High-level
features were extracted using stacked auto-encoder (SAE)
networks, and classification was performed using SVM
against multimodal and multiclass MR/PET data. The high-
est accuracy rate achieved in that study was 86.86%.
Aversen et al. [42], Liu and Shen [43], Liu et al. [44],
Brosch et al. [45], Rampasek and Goldenberg [46],
De Brebisson and Montana [47] and Ijjina and mohan [48].
Also, Qui et al. investigated the improvement in the accu-
racy of diagnosing MCI using MMSE scores and logical
memory (LM) by adding MRI data and their fusion model
could achieve up to 90% [49]. Another study showed a deep
learning approach based on convolutional neural networks
to accurately predict MCI-to-AD using structural MRI data
with an accuracy of 79.9% and an area under the receiver
operating characteristic curve (AUC) of 86.1% in leave-one-
out cross validations [50]. Mazrina et al. [51], Wen et al. [52]
and Srinivasan et al. [53] developed similar methodologies
to predict MCI and AD brains. Nicola et al. developed a
new method for early prediction of Alzheimer’s’ disease that
involves extracting random forest features from the data of an
international challenge and classifying them via deep neural
networks. In the classification, the authors considered four
stages of the disease, including two stages of MCI. Their
methodology produced higher accuracy rates, they found,
than other machine learning strategies in that challenge [59].
Shi et al. employed a new strategy for classifying Alzheimer’s
data through the use of MRI and PET data. They introduced
an algorithm called multimodal stacked DPN (MM-SDPN),
which involves two steps: 1) fusing and 2) learning features
from the brain imaging data. In their binary classification
task, they showed the capability of using such a design to
improve the performance of classification through multi-
modal feature learning [60]. A deep learning-based architec-
ture derived from GooglNet’s ‘‘InceptionV3’’ was employed
to classify the F-FDG PET brain images of 40 patients.
The CNN-based algorithm produced high specificity and
sensitivity rates with a confidence level of 95%. However,
the population employed in this study seemed insufficient for
significant claims [61]. An automatic classification method
using deep neural networks was designed to categorize AD
and MCI big data. Basaia et al. demonstrated the capability
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TABLE 1. The demographic information of data utilized in this study is shown in this table. The same age range of MCI, AD and NC subjects was
considered to develop and validate the deep learning models in order to ignore aging effects.

of DNN by recruiting a huge dataset for training and testing
the developed models. The highest accuracy rate of 98% was
achieved in this work for AD and HC classification [62].
Jabason et al. developed a novel semi-supervised learning
approach based on an auto encoder to classify ADNI data.
They claimed that their algorithm improved the performance
of classification for different evaluation metrics [63]. Using
longitudinal multi-domain data from ADNI, Lee et al. devel-
oped a framework for predicting the conversion MCI stages
to Alzheimer’s disease. For the performance evaluation, they
concentrated on the area under the AUC curve. Their algo-
rithm uses a recurrent neural network that integrates lon-
gitudinal information and demographic information to train
the model [64]. Spasov et al. employed structural MRI data
and developed a deep learning-based framework that consid-
ered optimization of the number for the network parameters.
They found that their framework produced very competi-
tive results when they reduced the number of parameters
in the training phase. Reducing the number of parameters
results in faster training and the need for fewer images
to develop the machine learning models [65]. Recently,
various techniques including 3D CNN and parameter-
efficient deep learning models were utilized for MRI data
classification [65]–[67].

II. METHODS
A. PARTICIPANTS
Alzheimer’s disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/) was considered in this
work by which two categories of subjects for MRI and
fMRI modalities were selected to develop the deep learning
models. The first category included 275 subjects who were
scanned for resting-state functional fMRI (rs-fMRI) studies.
This dataset included 52 Alzheimer’s patients, 92 healthy
control subjects and 131 MCI patients (age group > 75).
In the second category, 1076 subjects were selected to
participate in MRI data acquisition. This group included
211 Alzheimer’s patients, 91 healthy control subjects and
774 MCI patients. In both categories, certain subjects were
scanned at substantially different points in time, and their
imaging data were separately considered in this work. Table 1
presents the demographic information for both categories,
which also include mini mental state examination (MMSE)
scores.

B. IMAGE ACQUISITION
MRI data acquisition was performed according to the ADNI
acquisition protocol [23]. Scanning was performed on three
different Tesla scanners, General Electric (GE) Healthcare,
Philips Medical Systems, and Siemens Medical Solutions,
and was based on the same scanning parameters. Anatom-
ical scans were acquired with a 3D MPRAGE sequence
(TR=2s, TE=2.63 ms, FOV=25.6 cm, 256×256 matrix,
160 slices of 1mm thickness). Functional scans were acquired
using an EPI sequence (150 volumes, TR=2 s, TE=30 ms,
flip angle=70, FOV=20 cm, 64×64 matrix, 30 axial slices
of 5mm thickness without gap).

C. RS-FMRI DATA PREPROCESSING
The raw data in DICOM format for both the Alzheimer’s
(AD) group and the normal control (NC) group were con-
verted to NII format (Neuroimaging Informatics Technology
Initiative - NIfTI) using the dcm2nii software package devel-
oped by Chris Rorden et al. http://www.sph.sc.edu/comd/
rorden/mricron/dcm2nii.html. Next, non-brain regions,
including skull and neck voxels, were removed from the
structural T1-weighted image corresponding to each fMRI
time course using FSL-BET [54]. Resting-state fMRI data,
including 140 time series per subject, were corrected for
motion artefact using FSL-MCFLIRT [55], as low frequency
drifts and motion could adversely affect decomposition. The
next necessary step was the regular slice timing correction,
applied to each voxel’s time series because of the assump-
tion that later processing assumes all slices were acquired
exactly half-way through the relevant volume’s acquisition
time (TR). In fact, each slice was taken at slightly different
times. Slice timing correction works by using Hanning-
windowed Sinc interpolation to shift each time series by an
appropriate fraction of a TR relative to the middle of the
TR period. Spatial smoothing of each functional time course
was then performed using a Gaussian kernel of 5 mm full
width at half maximum. Additionally, low-level noise was
removed from the data by a temporal high-pass filter with
a cut-off frequency of 0.01 HZ (sigma = 90 seconds) in
order to control the longest allowed temporal period. The
functional images were registered to the individual’s high-
resolution (structural T1) scan using affine linear transforma-
tion with seven degrees of freedom (7 DOF). Subsequently,
the registered images were aligned to the MNI152 standard
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space (average T1 brain image constructed from 152 normal
subjects at the Montreal Neurological Institute) using affine
linear registration with 12 DOF followed by 4 mm resam-
pling, which resulted in 45×54×45 images per time course.

D. STRUCTURAL MRI DATA PREPROCESSING
The raw data of structural MRI scans for both the
AD and the NC groups were provided in NII for-
mat in the ADNI database. First, all non-brain tissues
were removed from images using Brain Extraction Tool
FSL-BET [54] by optimizing the fractional intensity thresh-
old and reducing image bias and residual neck voxels.
A study-specific grey matter template was then created
using the FSL-VBM library and relevant protocol, found
at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM [45]. In this
step, all brain-extracted images were segmented to grey
matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). GM images were selected and registered to the
GM ICBM-152 standard template using linear affine trans-
formation. The registered images were concatenated, aver-
aged and flipped along the x-axis, the two mirror images
then re-averaged to obtain a first-pass, study-specific affine
GM template. Second, the GM images were re-registered to
this affine GM template using non-linear registration, con-
catenated into a 4D image, averaged and flipped along the
x-axis. Both mirror images were then averaged to create the
final symmetric, study-specific ‘‘non-linear’’ GM template at
2×2×2 mm3 resolution in standard space. Following this, all
concatenated and averaged 3D GM images (one 3D image
per subject) were concatenated into a stack (4D image =
3D images across subjects). Additionally, the FSL-VBM
protocol introduced a compensation or modulation for the
contraction/enlargement due to the non-linear component of
the transformation, by which the voxel of each registered grey
matter image was multiplied by the Jacobian of the warp
field. The modulated 4D image was then smoothed by a range
of Gaussian kernels, sigma = 2, 3, 4 mm (standard sigma
values in the field of MRI data analysis), which resulted in
full width at half maximum (FWHM) of 4.6, 7 and 9.3 mm.
The various spatial smoothing kernels enabled us to explore
whether classification accuracy would improve by varying
the spatial smoothing kernels. The MRI preprocessing mod-
ule was applied to AD and NC data and produced two sets of
four 4D images called Structural MRI 0 – fully preprocessed
without smoothing – as well as three fully preprocessed and
smoothed datasets called Structural MRI 2, 3, 4, which were
used in subsequent classification steps. The copyright holder
for this preprint is the author/funder. It is made available
under a CC-BY-NC 4.0 International license.

E. DATA CONVERSION
Various data conversion and augmentation methods are
available in the literature. However, it seems the algorithm
developed by Sarraf et al. [56], [57] produces the highest
classification performance in which MRI and fMRI data are
decomposed along Z direction and converted from 3D and 4D
data into 2D imaging samples. The content of imaging data

must be preserved during data conversion, therefore lossless
data conversion was utilized. In a lossless data conversion,
all original data are recovered and every single bit of data
remains after conversion and the information is fully restored.
In this work, Portable Network Graphics (PNG) lossless
data conversion was used. The preprocessed rs-fMRI time
series data were first loaded into memory using neuroimag-
ing package Nibabel (http://nipy.org/nibabel/) and were then
decomposed into 2D (x,y) matrices along z and time (t) axes.
Next, the 2D matrices were converted to lossless PNG format
using the Python OpenCV (opencv.org). The last 10 slices
of each time course were removed since they included no
functional information. Also, the sum of pixel intensities of
each slicewas calculated and any slices with zero sum of pixel
intensities equal to zero were ignored to augment the data.
Equation 3 describes the conversion of a given slice to a PNG
sample which applies to every subject’s time course.

for ∀z = 1 to Z − 10

for ∀t = 1 to T

if Iz,t (Sz,t (x, y)) =
X∑
x=1

Y∑
y=1

S(X ,Y ) 6= 0 :

Sz,t (x, y) −→ PNG(Sz,t (x, y))

otherwise :

Ignore Sz,t (x, y) (3)

where x, y and z are spatial dimensions (from 1 to X ,Y ,Z ,
respectively), t is a time point of a given fMRI time course
with T points, Sz,t (x, y) is a given slice with a dimension
of (x, y) for the position of (z, t) and I z, t represent the
intensity function of Sz,t (x, y). PNG represents the lossless
PNG transformation function. The preprocessed MRI data
were also loaded into memory using a similar approach to
the fMRI pipeline and were converted from Nifti to lossless
PNG format using Nibabel and OpenCV, which created three
groups (MCI, AD and NC) of four preprocessed datasets
(MRI samples with sigma = 0,2,3,4). Additionally, to aug-
ment the data, the slices with zero mean pixels were removed
from the datasets. The conversion criteria are similar to
Equation 4 but without removing any slice from the end of
3D image and represents the subject number in the stack of
structural MRI data.

F. MCADNNET TOPOLOGY
To recognize MCI, Alzheimer’s disease and Normal control
brains through a unique network, an efficient CNN-based
topology called MCADNNet was designed and trained from
scratch. As discussed previously, various CNN-based archi-
tectures including LeNet-5 [18] , DeepAD [57] with two
and four layers [56]–[58], GoogleNet [23] and ResNet [26]
were utilized to classify the dementia data. Although deep
learning pipeline design requires massive testing, grid search
as well as applying various techniques for hyper parameters
optimization, a simultaneous understanding of the machine
learning models and data usually leads to an efficient
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FIGURE 1. MCADNNet is a unique and optimized topology that
simultaneously recognizes MCI, AD, NC participants in MRI and fMRI
data. The architecture includes three layers of convolution (Grey-Blue
layers) including 10, 20 and 50 filters of 5×5, as well as three Max
Pooling layers (Black-Blue layers). MCADNNet ends with two fully
connected layers of 500 and two hidden neurons (Black layers) followed
by a softmax function (Blue layer). In both cases of MRI and fMRI,
the first layer receives 56×56 images, the closest dimension to
preprocessed images enabling the architecture to extract more details
from the images. Also, compared to the DeepAD model, the 3-layer
MCADNNet extracts more hierarchical features that result in high
performance of multi-class recognition.

topology. The experiments demonstrated that more com-
plicated networks including several convolutional layers
do not necessarily produce higher accuracy rates and that
trade-off between network complexity and performance of
classification must be achieved through a valid hypothe-
sis, for example, the input dimensions. Three layers of
convolution with three pooling layers followed by two
fully-connected layers were utilized in MCADNNet topol-
ogy (https://github.com/samansarraf/MCADNNet). Finally,
a softmax layer to classify three classes was added to
the end of the network. Three convolutional layers were
designed to extract deep but hierarchical features from data.
Figure 1 images the MCADNNet architecture. In this topol-
ogy design, functional and structural MRI samples were
upsampled to 56×56 pixels, the closest dimension to the orig-
inal image size after data conversion. The upsampled images
were fed into the first convolution layer that contains 10 filters
of 5×5. In the second layer, the first max pooling layer
downsampled the data by a factor of two. Next, in the third
layer that is the second convolution layer, the features were
passed through 20 filters of 5×5. As we will see later, the first
Conv. layer extracted high-level features. After, the second
max pooling layer downsampled the outcome of the second
conv. layer which were mid-level features by a factor of
two. The final convolution layer (the 5th layer) generated
the low-level features to feed the last pooling layer. Two
consecutive fully-connected layers were learned from the
hierarchical features and transferred the output to the softmax
layer for multiclass classification. Increasing the number of
convolutional layers as well as the number of filters gener-
ated a higher number of network parameters. To avoid any
potential overfitting or extraction of various features from
the data, the pooling layers were utilized, which also acceler-
ated the training process.As described earlier, DeepAD and
MCADNNet were trained from scratch using ADNI data,
so we considered no fine-tuning of network parameters. Fine-
tuning of parameters occurs when a pre-trained network is
employed; however, both of our architectures were freshly
trained.

III. RESULTS
A. RESTING-STATE FMRI PIPELINE
The 4D preprocessed fMRI time series were randomly shuf-
fled in subject-level and five training datasets including 75%
of subjects for three classes (MCI, AD and NC) and five
validation datasets including 25% of subjects were generated.
Based on subject-level data selection, a given training and
validation dataset has no samples from the same subject
in common. This approach enables aggressive testing and
validation of the trained CNN models by examining the
robustness of the models against unseen data. Next, the 4D
times series were passed through the data conversion module,
producing a total of 1433880 2D PNG samples, including
640640 MCI, 270900 AD and 522340 NC images. DeepAD
and MCADNNet were trained and validated for various
classifications as shown in Table 3. The DeepAD archi-
tecture input layer received the resized samples to 28×28,
while MCADNNet was fed by the 56×56 images. The PNG
samples were then converted to the Lightning Memory-
Mapped Database (LMDB) for high throughput for the Caffe
Deep Learning platform [19] used for this classification
experiment. Both CNNs modes were adjusted for 30 epochs
and initialized for Stochastic Gradient Descent with
gamma= 0.1, momentum= 0.9, learning rate= 0.01, weight
decay = 0.005, and the step learning rate policy dropped the
learning rate in steps by a factor of gamma every stepsize
iteration. The mean of images was calculated and subtracted
from each image. Training and validation of Caffe models
were performed and repeated five times on the Amazon
AWS Linux G2.8xlarge, including four high-performance
NVIDIA GPUs, each with 1,536 CUDA cores and 4GB of
video memory and 32 High Frequency Intel Xeon E5-2670
(Sandy Bridge) vCPUs with 60 GB memory overall. During
the training and testing processes, the loss of training, testing
and accuracy of testing data were monitored. To confirm the
reproducibility of the results, the entire process described
above was repeated five times on the same server using
NVIDIA DIGITS Caffe (the Deep Learning GPU Training
System) and the identical results were replicated. The accu-
racy rates, loss values of testing datasets and loss values for
training datasets were monitored during the training process.
Figure 2 demonstrates the performance of training and testing
during 30 epochs in DeepAD and MCADNNet architectures
using fMRI data for coincident classification ofMCI/AD/NC.
In the first epoch, the loss values were slightly above the
unit value (one) derived from a random initialization. The
convergence rapidly occurred in the first epochs. Although
DeepAD model against fMRI data converged in the first
iterations, the accuracy rate for testing dataset was lower than
the 3-layer MCADNNet model.

B. STRUCTURAL MRI PIPELINE
Using a similar methodology described above, the 3D MRI
subjects were five randomly-shuffled training and validation
datasets by which we divided the data into 75% and 25%.
The data conversion module produced a total of 110002
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FIGURE 2. Top: Training process in one of the fMRI experiments for
DeepAD (left) and MCADNNet (right) architectures indicate the models
that produce a very high performance of classification. The random
initiation at the zeroth epoch was above one, which dropped dramatically
after the first iterations (can occur due to Caffe DIGITS implementation).
The model converged in the first iterations due to utilizing high-volume,
aggressively-preprocessed fMRI data. The final accuracy rate achieved
from this MCADNNet model (utilized in this visualization) was 92.35% in
the subject-level experience before decision making, while the accuracy
rate was 90.76% from the DeepAD model trained and tested by the same
dataset.Bottom: Training processes for MCADNNet against structural MRI
data (right) and DeepAD (left) architecture were figured. The random
initialization of loss values began above one and dramatically dropped
after the first epoch. Additionally, the slight fluctuation in the loss of
training datasets explains the impact of SGD as a randomly-selected
block of data was injected into the network in order to train the model.
The highest accuracy rate achieved was 95.44% from MCADNNet and
94.80% from DeepAD against a given MRI testing dataset.

2D samples including 58067 MCI, 43743 AD and
8192 images. In DeepAD, the effect of imbalanced data
proved no impact on the performance of classification
in this case. To train and validate, both DeepAD and
MCADNNet 82419 and 27583 samples were utilized, respec-
tively. As mentioned in the MRI preprocessing section,
to explore the effect of spatial smoothing on the model
development, four sets of samples per datasets were generated
and a total of 20 training and validation datasets were utilized.
Additionally, the slices with zero mean pixels were removed
from the data, which was then converted to the LMDB format
and resized to 28×28 pixels for DeepAD and 56×56 pixels
for MCADNNet. The DeepAD model was set for 30 epochs
and initiated for Stochastic Gradient Descent with gamma =
0.1, momentum = 0.9, base learning rate = 0.01, weight-
decay = 0.0005, and a step learning rate policy dropping the
learning rate in steps by a factor of gamma every stepsize
iteration. The training and testing processes were repeated
five times on Amazon AWS Linux G2.8xlarge to ensure
the robustness of the network and achieved accuracy. The
results are shown in Table 3 (‘Before Decision Making’
section) for various models and spatially smoothed samples.
The training behaviors of two models against structural
MRI data were shown in Figure 2. The impact of utilizing

FIGURE 3. ROC Curves show the performance of classification for the
trained models. In this study, the ROC and AUC indicate classification was
accurately performed and each curve representing an experiment was
very far from the random guess in the binary classification tasks where
the structural and functional MRI data were used for training both
DeepAD and MCADNNet architectures.The figure top-left shows the
performance of MCADNNet for binary classification including fMRI
testing data (AD/NC, AD/MCI, NC/MCI). As mentioned in the discussion of
the structural MRI preprocessing pipeline, four Gaussian kernels
including σ=0, 2, 3, and 4 mm were utilized. The performance of binary
classification for MRI testing data is shown in Figure 3 (top-right,
bottom-left, and bottom-right) for AD/NC, AD/MCI and NC/MCI (and
different Gaussian kernels used for smoothing). The ROC curves show
that all the binary classifications provide high performance as they are
extremely close to the upper left corner of the plot.

stochastic gradient descent (SGC) in the training process was
remarkable in loss graph of the training and testing datasets.
As MCADNNet included a higher number of parameters
representing a more complex architecture converged in the
later iterations compared toDeepAD.Higher volume of fMRI
and higher pattern complexity in structural MRI data result in
a better performance of classification for fMRI data.

C. PERFORMANCE OF CLASSIFICATION
The performance of MCADNNet trained models was quali-
tatively evaluated by calculating the area under curve (AUC)
for receiver operating characteristic (ROC) curves and the
accuracy rate per class to generate confusion matrices (CM).
For the sake of performance analysis, two approaches were
considered. First, the ROC curves shown in Figure 3 were
extracted for binary classification tasks such as AD vs
MCI or NC vs MCI where sensitivity and specificity of
each experience were calculated by obtaining the number of
true and false positive and negative results. In the second
approach, the confusion matrices were calculated for the
3-classMCADNNet models of both functional and Structural
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FIGURE 4. Confusion matrices for simultaneously classifying MCI, AD and
NC classes through MCADNNet architecture were extracted indicating the
quality of prediction for the three classes. As seen, in most cases
including both fMRI and MRI, the performance of classification
(prediction) was very high for classes specifying that the trained models
were unbiased to any of three classes. However, in the fMRI experiment,
the highest score belonged to MCI class and the lowest prediction scores
were obtained from the normal brains, confirming that MCI is the early
stage of the dementia. In structural MRI, the highest accuracy rate
belonged to the MCI group and interestingly the highest error rate also
occurred in recognizing AD from MCI, revealing the fact of structural
similarity between certain brain regions in AD and MCI groups. However,
in the MRI classification experiment, the number of samples utilized in
training and validation was significantly smaller than fMRI methods (3D
vs 4D data) that also played an important role in the model convergence
in the early epochs as well as in the performance of classification. This
figure shows the normalized confusion matrices for fMRI and MRI
experiments for AD vs NC vs MCI multi-class classification. The top-left
figure shows the performance of classification for fMRI testing data. All
accuracy rates for three classes are located in the diagonal of the
confusion matrix; the rates are 97%, 88%, and 90%, respectively, for AD,
NC, and MCI.

MRI data displayed in Figure 4 where the items on the
diagonal were cases that the models’ prediction were correct.
As shown in the figures, the performance of binary classifi-
cation was close to a perfect ROC curve in the most trained
CNN models. The curves validated that the classification
was not impacted by the number of samples in each class
and training process was successfully completed. Addition-
ally, the confusion matrices demonstrated that the multi-class
MCADNNet trained models could recognize the AD samples
slightly better than two other classes, although the AD class
had a smaller contribution in training process in terms of
number of samples. MCI and NC samples showed higher
similarity, therefore the prediction rates closely competed
with each other, proving this clinical fact that MCI is an
early stage of the disease and the brain has a similar function
and structure of a normal aging brain. In the structural MRI
pipeline, the spatial smoothing affected the output where
the data sigma=0 mm (without smoothing) provided the
lower accuracy rates while the samples smoothed by sigma=
2 or 3 mm demonstrated a higher performance of classifica-
tion.The accuracy rate before decision making was measured

by dividing the amount of correctly predicted ‘‘slices’’ by the
number of all slices in a given experiment according to the
standard definition of accuracy. This was called ‘‘slice-level’’
prediction, as described in the DeepAD paper [57]. One of
the particular strengths of CNN architectures is its extraction
of hierarchical features through several layers containing fil-
ters. Research showed paradoxical results by visualizing the
weights of filters that sometimes represent a pattern or ran-
dom shapes. Therefore, the interpretation of kernel weights
is still challenging. However, the researchers showed that
the visualization of the features extracted by a given filter is
often meaningful and helps to better understand what features
levels are represented by a given CNN layer and its kernels.
Also, some research works have recently shown the potential
benefit of using the hierarchical features among or instead of
preprocessed data in the brain studies. Figure 6 demonstrates
the hierarchical features extracted from three different CNN
layers in MCADNNet for randomly selected one structural
MRI subject per three groups.

D. FURTHER PERFORMANCE EVALUATION
To further evaluate the performance of classification for the
MCADNNet model, we employed three other metrics (pre-
cision, recall, and F1-score) through three methods of cal-
culation called micro, macro, and weighted average. There-
fore, we measured nine metrics for each experiment using
structural and functional MRI. A macro-metric will compute
the metric independently for each class and then take the
average, thereby treating all classes equally. A micro-metric
will aggregate the contributions of all classes to compute
the average metric, a weighted-metric for each class, and
find their average weighted by support of the number of true
instances for each class. This approach alters the macro to
account for class imbalance. In a multi-class classification
setup, the micro-average is preferable if you suspect a class
imbalance. As known, precision represents the total true pos-
itive over summation of the true positive and false positive,
whereas recall is calculated by the total true positive over
summation of the true positive and false negative. Addition-
ally, the F1-score is a function of precision and recall and is
calculated as in Equation 4:

F1 = 2×
Precision× Recall
Precision+ Recall

(4)

The F1-score produces balance precision and recalls where a
false positive and negative might have significant cost, which
is not considered in an accuracy rate. Using those nine addi-
tional metrics allowed us to fully evaluate the performance
of classification independently from the accuracy rates.
Tables 5 and 6 demonstrate the results from MCADNNet
and DeepAD using functional MRI data, respectively. Also,
Tables 7 and 8 show the results of the two architectures using
structural MRI data for various sigma values and classifica-
tions. The analysis using the nine metrics showed a very high
correlation with the accuracy metrics and therefore validates
our finding and discussion in the previous section.
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FIGURE 5. Structural MRI AD, MCI, and NC Features are visualized through MCADNNent Conv. layer 1, 2 and 3. The hierarchical features extracted by
convolutional layers have opened new avenues to investigate the brain structure and function. We aimed to classify three classes of brains, so called NC,
which is the blue framed group at left. The MCI is green framed group in the middle and Alzheimer’s brains are the red framed group at right. When the
performance of classification in CNN-based experiment is fairly high, the features extracted by various CNN layers can be utilized for other analyses. One
randomly selected sample from each of three classes was used and passed through the prediction module of the final trained version of MCADNNet. The
features extracted from each CNN layer were visualized and shown above.

E. DECISION MAKING: VOTE FOR MAJORITY
A decision-maker algorithm is a means for discovering the
best choice among a list of alternatives based on the preferred
single criterion ormulti-criteria and values. In amajority rule-
based system, a multi-class decision is made by voting for the
class or group that has the highest number of candidates. The
deep learning-based pipeline implemented in this study uses
2D images from subjects in all three classes that are separated
in the subject-level for training and testing. The performance
of classification is measured by counting the number of slices
correctly recognized. In order to recognize a given scan that
includes the slices of a given subject whether it belongs to
MCI, AD or NC group, the decision making algorithm is
required. In the given scan, the number of slices for each
class was calculated, then the number of slices for each class
within a subject was compared, and the class with most slices
was presented as the candidate. Furthermore, the decision-
maker system stabilized both fMRI and MRI pipeline by
significantly improving the accuracy rates. The algorithm
description is as follows:

The decision-maker algorithm as a post-classification
method was applied to all DeepAD and MCADNNet models
for both structural MRI and rs-fMRI. The final results shown
in Table 2 and Table 3 indicate a significant improvement in
the accuracy rate of subject-level recognition. After applying
the rapid with low complexity decision making algorithm to

the output of classification, most of the subject-level accura-
cies reached a rate of 100%, demonstrating a superior confi-
dence level of the pipeline. MCADNNet topology is a CNN-
based mode which offers an optimal solution to recognize
three major stages of Alzheimer’s disease. The performance
of this optimal topology has been obtained because of mas-
sive and precise preprocessing steps, and an optimal CNN-
based model followed a decision-making algorithm which
improved and stabilized the outcome of the network. Unlike
other works that emphasize the classification part of the entire
pipeline, MCADNNet aggressively preprocess the data and
decomposes the data into 2D samples to develop a three-layer
CNNmodel. The advantages of usingMCADNNet over other
architectures are aggressive preprocessing, an optimal deep
learning model, and decision making in which a trade-off
between network complexity and performance of classifica-
tion exists.

IV. CONCLUSION
The number samples extracted from fMRI data through the
converting algorithm sufficed to train both MCADNNet and
DeepAD in the early stages of the training process. In addi-
tion, aggressively preprocessing the fMRI data removed
noise, allowing the samples to be distinguished more read-
ily, which enabled the models to converge in the very first
epochs. The slight improvement in the accuracy rate using
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TABLE 2. The decision-making algorithm as a post-classification step was applied to the results from both DeepAD and MCADNNet in order to stabilize
the classification outputs and provide the new accuracy rates for all individuals. In this experiment, four classifications tasks through four sigma values
were completed. As shown below, the decision-making algorithm improved the performance of classification, which resulted in an accurate recognition in
most experiments. Conditionally formatted tables indicate how the accuracy rates were improved (from blue range to white range). For instance,
the accuracy rate of 96.6% before decision making was improved to 100%, which shows all of the subjects in the classification were correctly recognized.

TABLE 3. Functional MRI data used to train and validate both DeepAD and MCADNNet architectures. Improvement in the performance of classification is
discovered by applying the decision-making algorithm in the post classification step. This improvement has been displayed from blue range (lower
values) to white range (higher values). As mentioned above, the voting method enabled the pipeline to produce highly robust and reproducible outcomes.

MCADNNet compared to DeepAD revealed that high-level
features were extracted from the highly correlated fMRI
samples. However, the number of structural MRI samples

used for training the models was significantly less than fMRI
experiments due to 3D vs 4D data decomposition into
2D images, which explains the early convergence of the
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TABLE 4. The comparison below shows the accuracy rates of testing datasets obtained from various machine learning algorithms to distinguish between
three major categories of adult brains.

TABLE 5. The performance of MCADNNet for fMRI data is analyzed using three major metrics: Precision, Recall, and F1-Score. We calculated those
metrics using three approaches called micro, macro, and weighted average, explained earlier in the manuscript. The main idea behind employing those
techniques is to ensure that the machine learning models developed work properly in the case of imbalanced data and the accuracy rates obtained are
valid for further analyses. As shown in this table, all the scores from the nine measurements demonstrate high performance of classification for
MCADNNet and are highly correlated to the accuracy rates in Table 3.

TABLE 6. The same concept in the previous analysis -Table 5- is applied to DeepAD architecture using fMRI data. The qualitative analysis reveals that
DeepAD performance is very high; however, the new MCADNNet architecture produces better performance.

models in fMRI data and the convergence of the MRI models
in later epochs. Decomposing data to 2D images and thus
adding an extra step to the pipeline provided more samples

during the training processes. Furthermore, MCADNNet
showed an improvement in the accuracy rates in recognizing
three classes compared to DeepAD because a sufficiently
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FIGURE 6. fMRI and MRI Pipelines. In this work, we designed a new CNN-based topology to predict NC, MCI and AD using
functional and structural MRI data. The new topology contains three layers of CNNs in which the efficient parameters were utilized.
Furthermore, a decision-making algorithm was developed to stabilize the results from the deep learning engine.

deeper set of features was extracted. The decision-making
algorithm provided subject-level accuracy rates for stabiliz-
ing the output of the classification. For future work, a simul-
taneous classification of MCI subcategories and a potential
pipeline with lower sensitivity to preprocessing steps should
be considered. Also, a less dependent framework of pre-
processing steps for classifying Alzheimer’s stages could be
designed as a future project in which the pipeline would ide-
ally receive raw data from users and perform classification.
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TABLE 7. More parameters were explored to develop machine learning models using structural MRI data. Sigma representing the Gaussian kernels was
considered, including four values. The idea behind employing nine metrics to evaluate the performance of classification of the models, as explained
above, is applied to MCADNNet models using structural MRI data. The qualitative analyses show that the measures are highly correlated with accuracy
rates obtained from the previous analysis. As mentioned in the fMRI analysis, the findings allowed us to use the accuracy rates for model comparisons.
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TABLE 8. DeepAD performance is measured using the same concept utilized in Table 7, and although the results demonstrate very high performance, they
also show that MCADNNet performs better for multi-class classification.
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Step1 : Calculate the number of AD or NC slices in a
given class where i is slice number.
for i=1 to N do

if slice(i) ∈ AD then
Counter AD +=1

else if slice(i) ∈ NC then
Counter NC +=1

end
Step2 : Calculate the probability of each class by
dividing the number of slices in a class by the total
number of slices.
Probability(AD) = Counter of AD / Total number of
slices in the subject
Probability(NC) = Counter of NC / Total number of
slices in the subject
Step3 : Compare the two probabilities for the AD and
NC classes.
if Probability(AD) = Probability(NC) then

Flag = Decision is to be made based on clinical
measures.

if Probability(AD) > Probability(NC) then
Flag = AD

else
Flag = NC

end
Step4 : Vote for the majority and assign the label of
‘‘majority group’’ to the given subject. Assign Flag to
the given subject.
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APPENDIX
See Tables 2–8 and Figure 6.
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