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ABSTRACT Knowledge Graph (KG) embedding aims to represent both entities and relations into a
continuous low-dimensional vector space. Most previous attempts perform the embedding task using
only knowledge triples to indicate relations between entities. Entity descriptions, although containing rich
background information, have not been well utilized in these methods. In this paper, we propose Entity
Descriptions-Guided Embedding (EDGE), a novel method for learning the knowledge graph representations
with semantic guidance from entity descriptions. EDGE enables an embeddingmodel to learn simultaneously
from 1) knowledge triples that have been directly observed in a given KG, and 2) entity descriptions
which have rich semantic information about these entities. In the learning process, EDGE encodes the
semantics of entity descriptions to enhance the learning of knowledge graph embedding, and integrates
such learned KG embedding to constraint their corresponding word embeddings in entity descriptions.
Through this interactive procedure, semantics of entity descriptions may be better transferred into the
learned KG embedding. We evaluate EDGE in link prediction and entity classification on Freebase and
WordNet. Experimental results show that: 1) with entity descriptions injected, EDGE achieves significant
and consistent improvements over state-of-the-art baselines; and 2) compared to those one-time injection
schemes studied before, the interactive guidance strategy maximizes the utility of entity descriptions for KG
embedding, and indeed achieves substantially better performance.

INDEX TERMS Knowledge graph embedding, entity descriptions, interactive guidance.

I. INTRODUCTION
Knowledge graphs (KGs) such as Freebase [1], DBpe-
dia [2] and YAGO [3] provide a structured representation
of world knowledge and are extremely useful and crucial
resources for several artificial intelligent related applications
including question answering [4]–[7] and recommendation
systems [8]–[11]. A typical KG is represented as a multi-
relational graph with entities as nodes and relations as dif-
ferent types of edges, and expresses knowledge as triple facts
in the form of (head entity, relation, tail entity) or (h, r, t),
indicates the specific relation between two entities.

The symbolic representation of KGs with triples is effec-
tive in representing structured data, however, with the
increased size of KGs, computation inefficiency and data
sparsity become serious in various applications related with
KGs that people designed in a graph-based method. Recently,
a new approach named knowledge graph embedding has been
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proposed to embed knowledge triples which include entities
and relations into a continuous low-dimensional vector space.
The embedding from such representation methods contain
rich semantic information and can significantly promote a
broad range of downstream tasks such as knowledge acquisi-
tion and inference [12]–[14].

Most previous representation methods solely learn from
fact triples observed in a KG [15]–[24]. In fact, the vast
majority of KGs store knowledge acquired in a text-based
form, and the construction of KGs often stems from text-
based knowledge extraction. So it can be said that the entity
descriptions contain rich and important knowledge informa-
tion, and it is also one of the multi-source information that
can interact with the knowledge base. For example, Figure 1
shows descriptions of two entities extracted from the Free-
base, in which the content contains more useful and rich
semantic knowledge related with the entities.

Considering the power of entity descriptions in knowl-
edge acquisition and inference, combining knowledge graph
embedding models with the entity description became a
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FIGURE 1. An example of entity descriptions in Freebase.

growing interest area recently. Socher et al. proposed NTN
[25], a method which used the average representation of
each word contained in the entity name to represent the
entity and share the same word embedding with different
and similar entities. Zhang et al. [26] followed a similar
approach, representing entity as the average of word embed-
ding in its corresponding text descriptions. Xie et al. [27]
encoded the descriptions with the Bag-of-Words encoder and
Convolutional Neural Network (CNN) encoder to obtain the
semantics related with entities. Xiao et al. [28] proposed the
semantic space projection (SSP) model which jointly learns
from the symbolic triples and textual descriptions. Although
these models are able to learn better representations after
encoding and integrating descriptions, they still have their
drawbacks and restrictions.

First of all, these models cannot take into account the con-
text and word order well when they encoding and extracting
the semantic information from descriptions. However, for the
natural language, especially for the sentence and document,
it is quite important to fully consider the context of each
word for text representation and semantic extraction. Pre-
vious methods fail to efficiently obtain the semantic infor-
mation from entity descriptions when presenting the models
to improve KG embedding. Furthermore, these models only
made a one-time injection of entity descriptions into the
learning of KG embedding. We argue that there are also
strong relationships between the entities of KG and their
corresponding words of descriptions. Through the iterative
guidance from the KG embedding and word embedding of
descriptions, the semantic information of entity embedding
can be improved. Yet, despite thismerit, the iterative guidance
between the KG embedding and description representations
have not been well studied in previous methods.

This paper proposes Entity Descriptions-Guided Embed-
ding (EDGE), a novel method for learning KG embedding
with semantic guidance from entity descriptions. EDGE
enables an embedding model to learn simultaneously from
1) knowledge triples that have been directly observed in a
givenKG, and 2) entity descriptionswhich have rich semantic
information about these entities. Specifically, we propose a
hierarchical Bi-directional Long Short-Term Memory (BiL-
STM) max pooling encoder to encode entity descriptions
and enhance the learning of knowledge graph embedding.
Then we integrate such learned entity representation to con-
straint each word embedding of entity descriptions in an
iterative guidance model. Through this iterative procedure,

semantics of entity descriptions may be better transferred
into the learned embedding. We evaluate the effectiveness of
EDGE in link prediction and entity classification on Freebase
and YAGO. Experimental results reveal that: 1) with entity
descriptions injected, EDGE achieves significant improve-
ments over state-of-the-art baselines; and 2) compared to
those one-time injection schemes studied before, the iterative
guidance strategy maximizes the utility of entity descriptions
for KG embedding, and indeed achieves substantially better
performance.

II. RELATED WORK
The representational basis for a broad range of downstream
related with KG is knowledge graph embedding, which
embed knowledge triples include entities and relations into
a continuous low-dimensional vector space. In recent years
there are a variety of methods that learn such representations
from fact triples observed in a KG directly. Bordes et al. [31]
proposed TransE, a translation-based model which indi-
cates that relation embedding is a translation from head
entity embedding to tail entity embedding. Wang et al. [15]
proposed a TransE-based model TransH, which makes the
same entity have different representations in the hyperplane
specified by different relationships and alleviates the multi-
mapping attribute relationship problems. Lin et al. [16] pro-
posed TransR, which establishes representations of entities
and relationships in separate physical and relational spaces.
The entities are mapped to the relational space through
the corresponding mapping matrix. Ji et al. [41] introduced
TransD that considering the interaction between entities and
relationships in a more granular way. Ji et al. [42] proposed
TranSparse, replacing the general transfer matrix with an
adaptive sparse transfer matrix.

Considering the power of entity descriptions in knowledge
acquisition and inference, there are also several methods
using the textual information from the internet and database
to enhance the performance of knowledge graph embedding.
Socher et al. proposed NTN [25], a method which used the
average representation of each word contained in the entity
name to represent the entity and share the same word embed-
ding with different and similar entities. Zhang et al. [26] fol-
lowed a similar approach, representing entity as the average
of word embedding in its corresponding text descriptions. Xie
et al. [27] encoded the descriptions with the Bag-of-Words
encoder and Convolutional Neural Network (CNN) encoder
to obtain the semantics related with entities. Xiao et al. [28]
proposed the semantic space projection (SSP) model which
jointly learns from the symbolic triples and textual descrip-
tions. Ringsquandl et al. [29] proposed an embedding model
that using event logs, the entity sequence that may occur in the
KG, to improve the performance of knowledge graph embed-
ding. Jiang et al. [30] presented recursive neural knowledge
network (RNKN), which combines semantic information of
knowledge graph with recursive neural network for multi-
disease diagnosis. Guan et al. [44] proposed a model named
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FIGURE 2. The overall architecture of our model (EDGE) and the structure of entity description encoder.

KEC, which jointly embeds entities and their concepts into a
semantic space.

III. METHODS
This section introduces Entity Descriptions-Guided Embed-
ding (EDGE), a novel paradigm for learning the knowl-
edge graph embedding with semantic guidance from entity
descriptions. To utilize both fact triples and rich textural
information contained in entity descriptions, we first propose
a Hierarchical Bi-directional Long Short-Term (BiLSTM)
Max Pooling Memory Encoder to better represent and obtain
the semantic information of entity descriptions, and then
integrates such learned KG representations to constraint each
word embedding of entity descriptions. The overall frame-
work of our model EDGE is shown in Figure 2, the encoded
embedding edh and edt are obtained through the descriptions
encoder, and then integrate the structural embedding esh and
est respectively through the gate gh and gt to represent the head
entity embedding eh and tail entity embedding et . In what fol-
lows, we first introduce our basic embedding model, and then
prescribe the hierarchical BiLSTM max pooling encoder,
the knowledge constraint method, and the optimization pro-
cess.

A. THE BASIC EMBEDDING MODEL
To model triples, we follow TransE [31], a simple and effi-
cient translation model which can achieve state-of-the-art
predictive performance on many KG related tasks [4]–[11].
Specifically, given a set of triples O =

{(
ei, rk , ej

)}
in a

knowledge graph, each triple contains two entities ei, ej ∈ E
and the relation rk∈R. While E is the set of entities and R is
the set of relations in a given KG. Then we assume each head
entity eh, tail entity et and relation r have a corresponding
embedding, i.e., head entity embedding eh, tail entity embed-
ding et , and relation embedding r. The energy function is then

defined as

E (eh, r, et) = ‖eh + r− et‖ (1)

Which indicates that relation embedding r is a translation
from eh to et , the tail representation et should be the nearest
neighbour of eh + r. TransE is a state-of-the-art KG embed-
ding method which performs well in most KG related tasks
such knowledge graph completions and entity classification.

B. HIERARCHICAL BILSTM MAX POOLING ENCODER
In fact, the vast majority of KGs store knowledge acquired in
a text-based form, and the construction of KGs often stems
from text-based knowledge extraction. So it can be said that
the entity descriptions contain rich and important knowledge
information, and it is also one of the multi-source information
that can interact with the knowledge base. To encode the rich
semantic representation of a given entity description, we need
to translate the sentence into a fixed-length embedding in the
vector space. There are many methods used in text or sen-
tence representations. These methods generally first translate
words into word embeddings through a projection layer and
then combine such embeddings with different architectures
such as Recurrent Neural Network (RNN) [32]–[34], Con-
volutional Neural Network (CNN) [35], [36]. In this paper,
to better encode the semantics of entity description, we focus
on the sentence embedding approach. Consider the powerful
performance of BiLSTM architecture, we use Hierarchical
BiLSTMwith Max Pooling to encode the entity descriptions.

Given a sentence of entity description, we first embed the
individual words with pre-trained word embedding through
Word2vec [37], a toolkit developed by Google for learning
word embeddings that can quickly and effectively express
a word into a vector-based on a given corpus. Then the
sequence of these word embeddings are inputted into our
hierarchical BiLSTM max pooling encoder.
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Given a sentence of words (w1, . . . ,wT ) , the output of the
bi-directional LSTM is a set of vectors (h1, . . . , hT ), where
each ht of (h1, . . . , hT ) is the concatenation

ht =
[
−→
ht ,
←−
ht
]

(2)

of a forward
−→
ht and a backward

←−
ht

−→
ht =

−−−−→
LSTM t (w1, . . .wT ) (3)

←−
ht =

←−−−−
LSTM t (w1, . . .wT ) (4)

Then the max pooling layer is used to produce the
maximum value for each dimension over the hidden units
(h1, . . . , hT ) , while it also have the same dimensionality as
ht . Following the strong results of the BiLSTM max pooling
network by Conneau et al. [38], we take the hierarchical
BiLSTM max pooling as our encoder to improve the neural
network’s ability to encode and memory each words. Specifi-
cally, we assume each layer of neural network can re-read the
input description.

We take three layers of BiLSTM max pooling networks as
our hierarchical structure. we initialize the initial hidden state
and the cell state of the second and the third BiLSTM layer
with the final hidden and cell state of previous layer. Also,
through the max pooling after each BiLSTM layer, we take
the max values over each dimension of the hidden units. The
final output embedding ed is the average of all three max
pooling vector u1,u2,u3.

C. KNOWLEDGE CONSTRAINT
We argue that entity descriptions can better enhance KG
embedding, however, in an interactive manner. Given the
learned entity embedding, its corresponding word embedding
and entity description, the learned entity embedding can be
used to refine its corresponding word embedding and descrip-
tion representation. Then, the newly rectified representations
of words and sentence, in turn, will help to learn better
KG embeddings. To achieve such interactive guidance from
entity descriptions, we take the constraint model and use
the Euclidean distance to define the distance between a pair
of vectors. As shown in Figure 3, we want the embedding
of word Romeo and Juliet (grey) in entity description to be
closed with the embedding of entity Romeo and Juliet (blue)
and its neighbours in the given knowledge graph. Specifically,
we want the word embedding wi related with the entity in
the description to be closed to the learned entity embedding
ei and its neighbor ej,∀j in the given KG while the relation
(ei, ej) ∈ R, the following optimization problem becomes

min
∑|V |

i=1

[
αi ‖wi − ei‖2 +

∑
(ei,ej)∈R

βij
∥∥wi − ej∥∥2] (5)

where V is the vocabulary of words, α and β are adjustable
values used to control the relative strengths. This optimization
problem is convex, and its solution can be found by solving
a system of linear equations. To retrofit the word embedding
wi, the updating procedures are

(αi +
∑

(ei,ej)∈R
βij)wi − αiei −

∑
(ei,ej)∈R

βijej = 0 (6)

FIGURE 3. An example shows the entity and its neighbors in a given KG
(blue), and its corresponding word in entity description (grey).

Then the updated word embedding wi is

wi =

∑
(ei,ej)∈R βijej + αiei∑

(ei,ej)∈R βij+αi
(7)

This retrofitting approach described above is modular
which means that it can be applied to word embeddings
obtained from any model.

D. TRAINING
Since both structure and entity descriptions can provide use-
ful and rich semantic information onKG embedding learning,
we integrate both of them into a joint representation. For an
entity e, we propose two kinds of embedding to represent it
include es, the structural embedding of e, and ed , the encoded
representation from entity description. To combine such two
kind of information, we apply a gatingmechanismwhen com-
bining the structural representation of entity and entity repre-
sentation from descriptions. The final joint entity embedding
e is obtained through the combination between the es and ed .

e = ge � es + (1− ge)� ed (8)

where ge is an element-wise multiplication, � is an element-
wise multiplication, each parameters of ge are in [0, 1] to
balance these two kinds of entity representations. Specifi-
cally, when the gate is close to 1, the embedding of entity
description will be ignored. Consider the difference between
information contained in each dimensions, we also set ge as
a vector. To constrain the value of each element of ge is in [0,
1], we compute the gate through the logistic sigmoid function
to

ge = σ (g̃e) (9)

where g̃e ∈ Rd is a real-value vector and once g̃e is learned,
it keeps unchanged. The objective function we used for train-
ing is to minimize the following score function

L =
∑

(eh,r,et )∈O

∑
(e
′

h,r
′
,e
′

t )∈O
′ max(γ + d(eh + r, et)

−d(e
′
h + r

′
, e

′
t ), 0) (10)

where γ > 0 is a margin hyper-parameter, d (eh + r, et)
is defined as a distance function to measure the distance
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TABLE 1. Statistics of datasets used in experiments.

between eh + r and et . In this paper we use L1-norm as
our distance function. O′ is the negative sampling set of O,
we have

O
′

=

{(
e
′

h, r, et
)
|e
′

h ∈ E
}
∪

{(
eh, r, e′t

)
|e
′

t ∈ E
}

∪

{(
eh, r

′

, et
)
|r ′ ∈ R

}
(11)

E. OPTIMIZATION
The parameters of hierarchical BiLSTMmax pooling are ran-
domly initialized, each word embeddings of entity descrip-
tions is pre-trained by a state-of-the-art word embedding
model, Word2Vec [37], and the structural embeddings of
KG triples could either be pre-trained with existing basic
KG embedding models or initialized randomly. Then we
use stochastic gradient descent (SGD) as the standard back
propagation in optimization. The optimization procedure is
applied top-down through our EDGE model until the basic
layer to rectify parameters of each layer.

IV. EXPERIMENTS AND ANALSIS
A. DATASETS
In this paper, we adopt two datasets: FB15K [31] and WN18
[39] to evaluate EDGE on link prediction entity classification.
The former dataset is a subgraph of a typical large-scale
knowledge graph Freebase [1] containing 1,345 relations,
14,951 entities and 592,213 triples in total. The entity descrip-
tions we use is extracted from the Wiki, and to confirm that
each entities have the corresponding description embedding,
we remove 47 entities from the dataset which have no descrip-
tions, and we also remove all the triples contained these
entities. The final dataset we used contains 1,341 relations
and 472,860 triples, and test set has 57,803 triples. The
latter dataset is a subset extracted from the WordNet [40]
containing 18 relations and 40,837 entities and the test set
has 5000 triples. As shown in Table 1, we list the statistical
data of WN18 and FB15k.

B. EXPERIMENT SETTINGS
The KG entity/relation dimension n we trained is among
{50,100,200}, the two learning rates λs, λd among {0.001,
0.002, 001}, the regularization η among {0, 1E−5, 1E−6},
and the margin γ among {1.0, 1.5, 2.0} to learn the parame-
ters of structure and entity description encoding. The distance
function can be set both L1-norm or L2-norm. The embed-
dings of each word contains in entity description are learned
through Word2Vec [1]. The final optimal configurations we

used after training and testing are:γ = 2, n = 100, η =
1E − 5, λs = 0.001, λd = 0.002, and L1 distance.

We compare EDGE with several state-of-the-art basic
embedding models, including TransE [31], TransH [15],
TransD [41], TransR [16], TranSparse [42], STransE [43].
These basic models rely only on triples observed in a KG
and use no entity descriptions. We further take DKRL [27],
SSP [28], KEC [44] as additional baselines which learn
KG embedding integrated with external information such as
entity descriptions. And to better evaluate the performance of
EDGE, we choose the best-selected parameters presented in
their original papers. In contrast, EDGE integrates the entity
description information through the hierarchical BiLSTM
max pooling encoder, and combine such knowledge into KG
embedding in an interactive manner.

C. LINK PREDICTION
Link prediction is a kind of KG related task which aims
to complete the triples given in a KG, i.e., to predict tail
entity when given head entity and relation, or to predict
head entity when given tail entity and relation. To evaluate
the performance in link prediction, we follow the standard
protocol used in [31], using the following two evaluation
metrics: 1) the Mean Rank, the average rank of results which
are predicted correctly, 2) HITS@N, the proportion of valid
entities or relations ranked in top N predictions. We also fol-
low the two evaluation settings, the original (possibly flawed)
result is termed raw, and the newer one (which removed the
false predicted triples included in the train, validation and test
datasets before evaluation) as filter [31].

The experimental results of link prediction task on both
WN18 and FB15k are shown in Table 2. From the Table 2,
we can observe that proposed model significantly outper-
forms even all the baseline metrics on both datasets, which
indicates that KG representations can be improved better
through the external information such as entity descriptions,
particularly in the interactive guidance manner. Compared
to the best performing baseline KEC, EDGE achieves an
improvement from 143 to 105 (filter) in Mean Rank and
94.3 to 95.5 (filter) in HITS@10 on WN18, and an improve-
ment from 71 to 70 (filter) in Mean Rank and 78.5 to 82.1 in
HITS@10 on FB15k (filter).

Besides, our model performs compatible with other state-
of-the-art methods, while our raw result of HITS@10 per-
forms a little bit worse than the method KEC (0.2 point
below) on WN18 and a bit worse than the results of SSP and
STransE on FB15k. The reason we consider is that our model
is based on the basic translation model, TransE, although
we add entity descriptions to enhance the knowledge graph
embedding, the basic score function still has certain defects
when comparing with the other three functions. We believe
that the effectiveness and performance of our model could
be improved effectively by introducing the other state-of-
the-art score function, such as SSP and other concept space
projection methods for KG embedding.
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TABLE 2. Results on link prediction task.

D. ENTITY CLASSIFICATION
Entity classification is a crucial task relatedwithmany natural
language processing (NLP) applications, which aims to pre-
dict and confirm the entities types in a triple (h, r, t). Since
each entity in a triple has its corresponding types, e.g., the
entity William Shakespeare has the types of person/author/
English author and person/English person. It is noticed that
the entity classification is a multi-label task. Following Nee-
lakantan and Chang [45], we use the mean average precision
(MAP) as our evaluation metric in the entity classification
task.

TABLE 3. Results on entity classification task.

The experimental results on entity classification task on
both WN18 and FB15k are shown in Table 3. From Table 3,
we can observe that EDGE outperforms the results of all base-
lines in entity classification task, which illustrates the impor-
tance of external knowledge information on KG embedding.
On FB15k, our model achieves 95.7% while 93.2% on
WN18 dataset, performs better than that of state-of-the-art
methods. Overall, the experiment results on entity classifica-
tion indicate that our interactive guidance manner is effective
in improving the performance of KG embedding.

V. CONCLUSIONS
This paper proposes a novel method that learns knowledge
graph embeddings with interactive guidance from entity
descriptions, referred to as EDGE. It enables an embed-
ding model to learn simultaneously from knowledge triples

that have been directly observed in a given KG, and entity
descriptions which have rich semantic information about
these entities. EDGE encodes semantics of entity descriptions
to enhance the learning of knowledge graph embedding, and
integrates such learned representation to constraint each word
embedding of entity descriptions. Through this interactive
procedure, semantics of entity descriptions may be better
transferred into the learned embedding. Link prediction and
entity classification results on Freebase and WordNet show
that EDGE achieves significant performance over some state-
of-the-art baselines. Moreover, EDGE demonstrates the use-
fulness of interactive guidance between the KG embeddings
and entity descriptions.

In the future, we would like to explore the follow-
ing research directions to improve the performance of KG
embedding: (1) EDGEmodel only considers text information
related with entity descriptions into KG embedding, while
there is also other information could be integrated to our
model such as path information existed in KG. We will
explore the integration of such kind of information with
knowledge graph representation. (2) More description infor-
mation such as database information could be explored to
express rich semantic information, while the description
encoder could be designed more complicated for improving
KG embedding.
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