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ABSTRACT Person re-identification (Re-ID), which is for matching pedestrians across disjoint camera
views in surveillance, has made great progress in supervised learning. However, requirement of a large
number of labelled identities leads to high cost for large-scale Re-ID systems. Consequently, it is significant
to study learning Re-ID with unlabelled data and limited labelled data, that is, semi-supervised person
re-identification. When labelled data is limited, the learned model tends to overfit the data and cannot
generalize well. Moreover, the scene variations between cameras lead to domain shift in the feature space,
which makes mining auxiliary supervision information from unlabelled data more difficult. To address
these problems, we propose a Distilled Camera-Aware Self Training framework for semi-supervised person
re-identification. To alleviate the overfitting problem for learning from limited labelled data, we pro-
pose a Multi-Teacher Selective Similarity Distillation Loss to selectively aggregate the knowledge of
multiple weak teacher models trained with different subsets and distill a stronger student model. Then,
we exploit the unlabelled data by learning pseudo labels by clustering based on the student model for
self training. To alleviate the effect of scene variations between cameras, we propose a Camera-Aware
Hierarchical Clustering (CAHC) algorithm to perform intra-camera clustering and cross-camera clustering
hierarchically. Experiments show that our method outperformed the state-of-the-art semi-supervised person
re-identification methods.

INDEX TERMS Person re-identification, semi-supervised learning, knowledge distillation, clustering.

I. INTRODUCTION
Person re-identification (Re-ID) has received much attention
in recent years due to its significance in video surveillance
applications. When abundant labelled data is given, many
works [1]–[7] have made great progress in supervised learn-
ing. However, labelling cost should be considered in large-
scale Re-ID system that consists of many cameras. To reduce
labelling cost, studying semi-supervised learning to exploit
unlabelled data and limited labelled data is a practical solu-
tion. Unsupervised person re-identification [8]–[15] has been
studied to learn representation from unlabelled data, but how
to effectively learn from limited labelled data is not con-
sidered in these methods. So far, semi-supervised person
re-identification [16]–[20] is still under-explored.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hugo Proenca .

For semi-supervised Re-ID, exploiting unlabelled data and
limited labelled data brings about some challenges. First,
insufficient training data leads to overfitting for model learn-
ing and thus degrades generalization performance. Second,
scene variations between cameras, such as illumination, back-
ground and viewpoint, cause domain shift in the feature
space and create difficulty for mining auxiliary supervision
information in unlabelled data to assist model training. The
effect of scene variations is discussed in Section III-B later.

To address the challenges for semi-supervised Re-ID,
we propose a Distilled Camera-Aware Self Training frame-
work, as shown in Figure 1.

On the one hand, when trainingmodel with limited labelled
data, motivated by ensemble learning and knowledge distil-
lation, we aggregate the knowledge of multiple weak teacher
models trainedwith different subsets and distill a stronger stu-
dent model, in order to improve generalization performance
without increasing model size. We propose a Multi-Teacher
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FIGURE 1. Overview of the Distilled Camera-Aware Self Training
framework. First, it learns a stronger student model with limited labelled
data by knowledge distillation from multiple weak teacher models. Then,
it alleviates the effect of the scene variations between cameras by
camera-aware self training to exploit the unlabelled data for training the
distilled student model. Self-trained model is the output model for
evaluation.

Selective Similarity Distillation Loss for selectively aggre-
gate knowledge from multiple teacher models. The proposed
loss benefits from the sparsity property of `2,1-norm to selec-
tively suppress noises in samples and teachers.

On the other hand, to alleviate the effect of scene varia-
tions between cameras for mining auxiliary supervision infor-
mation from unlabelled data, we propose a Camera-Aware
Hierarchical Clustering (CAHC) algorithm to learn pseudo
labels for unlabelled data. As pedestrian data for Re-ID is
intrinsically captured from different cameras and there exists
domain shift between cameras, the scale of intra-camera
similarity is generally larger than cross-camera similarity.
Clustering based on these two types of similarities simul-
taneously results in confusion. Therefore, we separate the
clustering process by performing intra-camera clustering and
cross-camera clustering hierarchically, so that the influence
of inconsistent similarity scales can be alleviated.

Our contributions are summarized as follows. First,
we propose a Multi-Teacher Selective Similarity Distilla-
tion Loss for selectively aggregate and distill knowledge
from multiple teachers to improve the generalization per-
formance of our model trained with limited labelled data.
Second, we propose a Camera-Aware Hierarchical Clustering
(CAHC) algorithm to alleviate the effect of scene variations
between cameras for learning pseudo labels for unlabelled
data for self training. The above two processes cooperate
to learn feature representation for semi-supervised person
re-identification in a Distilled Camera-Aware Self Training
framework.

II. RELATED WORK
A. SUPERVISED PERSON RE-IDENTIFICATION
In recent years, supervised person re-identification has under-
gone a fast development, from feature design [3], [21]–[23]
to distance metric learning [1]–[4], [21], [24]–[29] and
end-to-end deep learning [5]–[7], [30]–[34]. Among them,
the most competitive methods are deep-learning-based mod-
els. Although high performance can be achieved, these meth-
ods rely on a large amount of labelled data for learning

discriminative features and heavy labelling cost hinders the
scalability of these methods.

B. UNSUPERVISED AND SEMI-SUPERVISED PERSON
RE-IDENTIFICATION
Recently, reducing labelling cost for person re-identification
has drawn more attention for developing scalable Re-ID
system, since it is not feasible to label a large number
of identities for each new scene. Unsupervised learn-
ing [8]–[15], [35]–[41] has been studied to learn from unla-
belled data for Re-ID. Among the advanced unsupervised
methods, most of them rely on source data of other scenes
for transfer learning or learning prior knowledge of Re-ID,
and then learn from unlabelled data by pseudo label learn-
ing. In [10], [12], [41], the model was pretrained by source
data and learned from unlabelled target data by clustering
and fine-tuning. In [13]–[15], [35], [36], the knowledge was
transferred from source domain to target domain by image-to-
image transformation from source images to target images.
Wang et al. [11] proposed transferring knowledge from
attribute labels. Li et al. [37] learned from unlabelled data by
associating tracklets in videos across cameras. Yu et al. [38]
proposed to learn soft labels of source labelled data for target
unlabelled data. Yang et al. [39] exploited image patches
instead of whole images for more generalized unsupervised
learning. Zhong et al. [40] proposed learning invariance from
different aspects for unsupervised learning.

Compared with unsupervised learning, semi-supervised
learning [12], [16]–[20], [42] is relatively under-explored
for person re-identification. PUL [12] and MVC [16] were
based on clustering for learning pseudo labels, which were
similar to clustering-based unsupervised Re-ID methods.
Liu et al. [19] proposed to learn representation by dictionary
learning. Liu et al. [18] learned robust representation based
on attribute learning. Li et al. [17] learned distance metric by
exploring the neighbours. Ding et al. [20] aimed to improve
the performance of learning from labelled data by extra unla-
belled data generated by GAN.

The abovemethodsmainly focused onmining the auxiliary
supervision information in the unlabelled data, while the
overfitting problem that degrades generalization performance
caused by limited labelled data was seldom explored. Our
method focuses on effectively exploiting the limited labelled
data to improve generalization performance by dividing the
labelled training set into several subsets and aggregating the
shared and subset-specific knowledge of each subset in a
single model by knowledge distillation. Moreover, in our
Distilled Camera-Aware Self Training framework, we further
consider the scene variations between cameras in the cluster-
ing algorithm, which is a significant problem in Re-ID but
ignored in previous semi-supervised Re-ID methods.

C. ENSEMBLE LEARNING AND
KNOWLEDGE DISTILLATION
As limited labelled training data easily incurs overfit-
ting problem, ensemble learning has been a successful
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solution [43], which reduces the variance in classifier deci-
sion and thereby improve the generalization performance.
Generally, ensemble learning follows three steps, includ-
ing data sampling, classifier training and classifier com-
bination, in order to combine multiple weak classifiers to
obtain a stronger classifier. Bootstrap aggregating (bag-
ging) [44] and boosting [45] are representative ensemble
learning algorithms.

Although ensemble learning is effective, it requires multi-
ple models and increases model size and computation costs.
Hinton et al. [46] proposed knowledge distillation for trans-
ferring knowledge from a large teacher model to a smaller
student model by imitating the outputs. Likewise, knowledge
distillation can also transfer knowledge from an ensemble
system to a single model. Many existing knowledge dis-
tillation methods such as [46]–[49] are limited to closed-
set classification, since they are based on soft labels of the
teacher model to guide student model learning.

However, person re-identification is an open-set identifi-
cation problem, in which the identities in training and testing
are nonoverlapping, and thus the soft-label-based distillation
methods are not suitable. Some methods also considered
using information other than soft labels for imitation to con-
vey knowledge. Fitnets [50] and FSP [51] exploited feature
maps; PKT [52] exploited the probability distribution of data;
RKD [53] exploited the relation information of data. The
outputs that they used for imitation were not directly related
to similarity measurement for Re-ID. To transfer knowledge
more effectively, we distill knowledge embedded in similari-
ties by imitating pairwise sample similarities.

As for the related methods of multi-teacher knowledge
distillation, in [48], [49], their proposed methods exploited
the ensemble of multiple teachers, but they were limited
to closed-set classification and the knowledge of multiple
teachers cannot be selectively aggregated as in our method.

III. APPROACH
To study semi-supervised person re-identification, we first
formulate this problem as follows. From Ncam cameras,
we obtain a set of labelled images {(Ii, ycami , yi)}

NL
i=1 and a set

of unlabelled images {(Ij, ycamj )}NUj=1, where Ii, Ij are images,
ycami , ycamj ∈ {1, 2, . . . ,Ncam} are the corresponding camera
labels and yi ∈ {1, 2, . . . ,C} is the corresponding identity
label of Ii. NU is the number of unlabelled samples. NL is
the number of labelled samples and C is the total number
of labelled identities, which is limited for saving labelling
cost. The identities of the labelled set and unlabelled set
are nonoverlapping. Our objective is to learn a model F for
computing similarities between samples for retrieval.

A. MULTI-TEACHER KNOWLEDGE DISTILLATION FOR
LIMITED LABELLED DATA
To learn discriminative feature representation, we first train
a model with the labelled data. As the number of labelled
samples is limited, insufficient training data incurs overfitting

FIGURE 2. Training multiple teacher models by sampling multiple subsets
from limited labelled data. Each subset consists of samples of randomly
sampled Csub identities. The teacher model FTm is trained by subset m.

for model learning. To alleviate the overfitting problem,
ensemble learning [43] is commonly used, which can reduce
the variance in classifier decision and thereby improve
generalization performance by combining multiple models.
However, exploiting multiple models significantly increases
total model size and computation costs, which make ensem-
ble learning not practical in a large-scale re-ID system.

Motivated by ensemble learning that aggregates the predic-
tions of multiple models, we solve this problem by distilling
the knowledge of multiple teacher models in a single student
model, so that we can benefit from ensemble of models
without increasing model size and computation costs. The
process consists of two steps: (1) training multiple teacher
models and (2) multi-teacher selective similarity distillation.

1) TRAINING MULTIPLE TEACHER MODELS
To train multiple teacher models that are complementary to
each other for aggregation, in a similar way as bootstrap
aggregating (bagging) [44], we train each model using a ran-
domly drawn subset of the labelled training set. Each subset is
formed by images of randomly selected Csub identities from
C identities. Random sampling can increase the diversity of
data in different subsets. As shown in Figure 2, we draw
Nsub subsets for training Nsub teacher models {FTm}

Nsub
m=1,

respectively.
For person re-identification, the models can be trained by

using Softmax cross entropy loss for classifying the identities.
When extracting features for matching, we use the outputs
before the last fully connected layer for classification.

2) MULTI-TEACHER SIMILARITY DISTILLATION
After training multiple teacher models, to combine the
learned teacher models without increasing model size,
we aggregate the knowledge of the teacher models {FTm}

Nsub
m=1

in a single student model FS by knowledge distillation. The
overview is shown in Figure 3.

We first consider the case of using one teacher model.
Given a teacher model, knowledge distillation techniques
transfer its knowledge to a student model by making the
student model imitate the output of the teacher model. For
general object classification problems, soft class label is
commonly used for knowledge distillation [46]. However,
different from object classification problem in a closed-set
setting, the identities of training data and testing data are
nonoverlapping for person re-identification, so that using soft
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FIGURE 3. Overview of multi-teacher selective similarity distillation. The student model is expected to extract common
features XS that contain both shared and subset-specific knowledge. Subset-specific features are obtained by
subset-specific projections. The knowledge of multiple teachers is aggregated in a student model by similarity distillation
in different subset-specific subspaces by means of multi-task learning.

class label for knowledge distillation is not suitable. Instead
of soft class label, the knowledge of matching for Re-ID
is embedded in the similarities between samples. Motivated
by this, we make the student model imitate the pairwise
similarities of the teachermodel for knowledge distillation for
semi-supervised person re-identification. When the pairwise
similarities of all samples are equal for the teacher model and
the student model, the student model can obtain the same
retrieval results as those of the teacher model, and thus the
knowledge of the teacher model can be effectively transferred
by means of imitating pairwise similarities.

To compute pairwise similarities, we apply all data
{Ik}Nk=1 = {Ii}

NL
i=1 ∪ {Ij}

NU
j=1 including both labelled and unla-

belled data. The teacher model FTm( · ;2Tm) parameterized
by 2Tm is learned from subset m and fixed. Given an image
Ik , we can extract its feature xTm,k = FTm(Ik ;2Tm) ∈ RdTm .
In our case, we normalize the feature vector by `2-norm,
so that the inner product of two feature vectors is cosine
similarity. Let XTm = [xTm,1, xTm,2, . . . , xTm,N ] ∈ RdTm×N

denote the feature matrix of all samples {Ik}Nk=1 extracted by
teacher model FTm, which is constant for guiding the student
model. The similarity matrix ATm of teacher model FTm is
computed by

ATm = X>TmXTm, (1)

where the element in the p-th row and the q-th column ofATm
is the similarity between samples Ip and Iq.
To transfer knowledge of multiple teacher models to a stu-

dent model FS ( · ;2S ), we aggregate the knowledge embed-
ded in the similarity matrices {ATm}

Nsub
m=1. Since the teacher

models are trained by different subsets with both overlapping
and nonoverlapping identities, both shared knowledge and
subset-specific knowledge are learned in the teacher mod-
els. To explicitly and effectively model the subset-specific
knowledge, we propose to distill knowledge of each subset
in a subset-specific subspace.

Given samples {Ik}Nk=1, we expect that the stu-
dent model FS can extract common features XS =

[xS,1, xS,2, . . . , xS,N ] ∈ RdS×N , which contains both shared

knowledge and subset-specific knowledge. To achieve this,
we aggregate and distill the knowledge of multiple teachers
by means of multi-task learning and regard knowledge dis-
tillation for each teacher model as a task. For the distillation
task of teacher model FTm, we introduce a subset-specific
projection PSm ∈ RdS×dSm to map the featuresXS to a subset-
specific subspace by

XSm = P>SmXS , (2)

where XSm is the subset-specific feature matrix for the distil-
lation task of teacher model FTm.

To distill knowledge by imitating the pairwise similarities
between samples, we minimize the distance between subset-
specific similarity matrices of the student model and the
similarity matrices of the teacher models by

min
2S ,{PSm}

Lmsd =
Nsub∑
m=1

‖ASm − ATm‖
2
F , (3)

whereASm = X>SmXSm is the subset-specific similaritymatrix
of the student model for the m-th distillation task. We call
Lmsd the Multi-Teacher Similarity Distillation Loss.

3) MULTI-TEACHER SELECTIVE SIMILARITY DISTILLATION
In the above Multi-Teacher Similarity Distillation Loss Lmsd
in Eq. (3), the errors of pairwise similarities between teacher
models and the student model are measured by Frobenius
norm, which is sensitive to outliers as illustrated in [54].
In practice, there exist noises in the similarities, since not
all teacher models can provide correct and complementary
knowledge for aggregation and some samples may be out-
liers. Therefore, the pairwise similarities should be selec-
tively learned for the student model. We assume that the
noises of similarities are in theminority and thereby the errors
of similarities of these noises should be sparse. For more
robust similarity distillation under the influence of noises,
we take sparsity into account in the loss function and apply the
`2,1-norm for minimizing the errors of similarity matrices,
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in order to benefit from the row sparsity property of
`2,1-norm for sample selection.

To enforce row sparsity for similarity matrices of all
samples computed by all teacher models, we concate-
nate all subset-specific similarity matrices of the stu-
dent model to obtain the joint student similarity matrix
AS = [AS1,AS2, . . . ,ASNsub ]

> and concatenate the similar-
ity matrices of all teacher models to obtain the joint teacher
similarity matrix AT = [AT1,AT2, . . . ,ATNsub ]

>. We mini-
mize the distance between the joint similarity matrices by

min
2S ,{PSm}

Lmssd = ‖AS − AT ‖2,1 , (4)

where the `2,1-norm ‖M‖2,1 is computed by ‖M‖2,1 =∑Nrow
r=1 ‖mr‖2. (mr is the r-th row of M and Nrow is the

number of rows ofM.)
The r-th row of the similarity matrices AS or AT is a

similarity vector that contains similarities between the r-th
sample and all samples. The similarity vectors computed by
different teacher models are in different rows. Therefore,
the row sparsity property of `2,1-norm can force the errors of
similarity vectors of different samples computed by different
teacher models to be sparse and selectively suppress the
noises. We call Lmssd the Multi-Teacher Selective Similarity
Distillation Loss.

In summary, the process of multi-teacher selective simi-
larity distillation is shown in Figure 3. The teacher models
trained with different subsets learn both shared and subset-
specific knowledge for Re-ID. Joint learning of similarity
distillation for multiple teacher models in different subset-
specific subspaces can aggregate both shared and subset-
specific knowledge in the student model in the way of
multi-task learning.

B. CAMERA-AWARE HIERARCHICAL CLUSTERING FOR
UNLABELLED DATA
For semi-supervised learning, besides learning from labelled
data, mining auxiliary supervision information in the unla-
belled data is another key problem. Pseudo label learn-
ing [55], [56] based on similarity measurement for the
unlabelled data is commonly used for semi-supervised learn-
ing. For predicting pseudo labels for person re-identification,
clustering algorithms [10], [12] are often used.

However, directly applying clustering algorithm for unla-
belled data ignores the scene variations between cameras,
which is a significant factor that degrades matching perfor-
mance of person re-identification. Since the person images
are captured in different cameras, different backgrounds and
lighting conditions in different scenes cause domain shift
in the feature space. As a result, the distributions of intra-
camera similarity and cross-camera similarity are inconsis-
tent and the scale of intra-camera similarity is generally
larger than that of cross-camera similarity. We visualize
the similarity distributions of intra-camera matching and
cross-camera matching of two randomly selected cameras in
DukeMTMC [33] in Figure 4. The similarities are computed

FIGURE 4. Comparison of intra-camera similarity distribution and
cross-camera similarity distribution. ‘‘cam1’’ and ‘‘cam2’’ denote two
randomly selected cameras in DukeMTMC [33] dataset. We compute
pairwise similarities of samples of these two cameras by a
ResNet-50 model [57] trained by limited training data (1/3 identities in
the training set) and show the distributions of pairwise similarities of
camera pairs ‘‘cam1-cam1’’ (intra-camera matching) and ‘‘cam1-cam2’’
(cross-camera matching). The scale of intra-camera similarity is generally
larger than the scale of cross-camera similarity.

using a ResNet-50 model [57] trained by limited training data
(1/3 identities of the training set). The similarity distributions
of intra-camera matching and cross-camera matching are
inconsistent as shown in in Figure 4. If the inconsistency of
similarity distributions is ignored in clustering, the similari-
ties with domain shift give rise to confusion when simultane-
ously associating intra-camera sample pairs and cross-camera
sample pairs.

To address this problem, we divide the clustering process
into two hierarchical steps: (1) intra-camera clustering and
(2) cross-camera clustering, in order to handle intra-camera
similarity and cross-camera similarity separately. In this way,
clustering based on similarities of different scales can be
avoided in each clustering step and thus the influence of
domain shift can be alleviated.

We first introduce some notations for clustering. Let
{(xj, ycamj )}NUj=1 denote the extracted features and camera labels

of the unlabelled data {Ij}
NU
j=1 . To perform clustering, we com-

pute the pairwise distance matrix D for features {xj}
NU
j=1. The

element dp,q in the p-th row and the q-th column of D is
the distance between features xp and xq. Given the distance
matrix D, a clustering algorithm CLUSTER predicts pseudo
labels yp = CLUSTER(D) for {xj}

NU
j=1.

1) BASIC CLUSTERING ALGORITHM
As the amount of unlabelled training data for person
re-identification is uncertain, it is difficult to determine
the number of clusters. Moreover, some samples are
noises or have no corresponding positive sample of the same
identity. Therefore, we apply a density-based clustering algo-
rithm DBSCAN [58], which can determine the number of
clusters and remove noise by searching for sample sets with
high density to form clusters, as indicated in [41].

We briefly revisit the DBSCAN [58] algorithm. There are
two parameters for DBSCAN: distance threshold ε and the
minimum number of points Nmin required to form a cluster.
We start with an arbitrary point which is not visited. Then the
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FIGURE 5. Overview of camera-aware hierarchical clustering (CAHC). Due to scene variations between cameras, the scales
of intra-camera similarity and cross-camera similarity are different and lead to confusion in clustering. To address this
problem, we separate the clustering process into two hierarchical steps: intra-camera clustering and cross-camera
clustering. First, intra-camera sample pairs are clustered to predict intra-camera pseudo labels and the mean feature of
each cluster is computed as cluster center. Second, based on the first step, cross-camera cluster centers are further
associated to obtain the pseudo labels for each cluster center. Finally, the pseudo labels of cluster centers are assigned to
each sample according to the intra-camera pseudo labels. Note that, in this figure, different colors denote different
cameras and different shapes denote different identities. (Best viewed in color.).

samples of ε-neighbourhood are retrieved. If the number of
retrieved samples is not fewer than Nmin, a cluster is started;
otherwise the point is regarded as noise. If a sample is a part
of a cluster, its ε-neighbourhood also joins the cluster. After a
cluster is completely found, we process new unvisited points
following the above steps repeatedly.

Based on the basic clustering algorithm, we perform intra-
camera clustering and cross-camera clustering hierarchically
as follows. The overview of our Camera-Aware Hierarchical
Clustering (CAHC) algorithm is shown in Figure 5.

2) STEP 1: INTRA-CAMERA CLUSTERING
Since associating intra-camera samples does not suffer from
scene variations between cameras and is relatively less diffi-
cult than associating cross-camera samples, we perform intra-
camera clustering in the first step. Intra-camera clustering
only considers intra-camera sample pairs. We compute the
pairwise distance matrix D and convert the distance dp,q in D
to d intrap,q to form an intra-camera distance matrix Dintra by

d intrap,q =

{
dp,q ycamp = ycamq ,

dmax ycamp 6= ycamq ,
(5)

where d intrap,q is the distance in the p-th row and the q-th column
of intra-camera distance matrix Dintra. dmax is the maximum
value of distance. In our case, cosine distance is used and the
maximum value is dmax = 2.
By replacing the cross-camera distances with the maxi-

mum distance, the cross-camera sample pairs are ignored and
only intra-camera sample pairs can be assigned to the same
cluster. Based on the intra-camera distance matrix Dintra,
we perform intra-camera clustering to obtain pseudo labels
for all samples by

yintra = DBSCAN(Dintra). (6)

With the intra-camera pseudo labels yintra, we compute the
mean feature of each cluster as center to represent a cluster
of similar samples which are probably from the same identity.
Let {(cl, y

cam(c)
l )}Nclusterl=1 denote the set of cluster centers cl and

the corresponding camera labels ycam(c)l . Ncluster is the num-
ber of clusters. Based on the cluster centers of intra-camera

clustering, we further associate cross-camera cluster center
pairs in the next step.

3) STEP 2: CROSS-CAMERA CLUSTERING
To associate cross-camera cluster center pairs, we first com-
pute the center distance matrix D(c) of cluster centers,
in which d (c)p,q in the p-th row and the q-th column is the
distance between cluster centers cp and cq. As intra-camera
sample pairs have been associated in intra-camera clustering,
we only associate cross-camera cluster center pairs in the sec-
ond step. To ignore the intra-camera cluster pairs, we convert
the distance d (c)p,q inD(c) to dcrossp,q to form a cross-camera center
distance matrix Dcross by

dcrossp,q =

{
d (c)p,q ycam(c)p 6= ycam(c)q ,

dmax ycam(c)p = ycam(c)q ,
(7)

where dcrossp,q is the distance in the p-th row and the q-th
column of cross-camera distance matrix Dcross. As in Eq. (5),
dmax = 2 is the maximum value of cosine distance.
By replacing the intra-camera distances with the maximum

distance, only cross-camera cluster centers can be associated.
Based on the cross-camera distancematrixDcross, we perform
cross-camera clustering to obtain pseudo labels for the cluster
centers by

ycross = DBSCAN(Dcross). (8)

With the cross-camera cluster center pseudo labels ycross

and the intra-camera pseudo labels yintra, we assign ycross

to each cluster and then further assign the labels to each
sample in that cluster as indicated by yintra. Then, we can
obtain the pseudo labels of all samples yhier after the two-
step hierarchical clustering process. Note that, DBSCANmay
annotate some samples as noises and we discard the noises in
the subsequent processes.

Since intra-camera sample pairs and cross-camera sample
pairs are clustered in a hierarchical way, the intra-camera
similarity and cross-camera similarity with different scales
are handled separately in two steps to avoid confusion in
clustering caused by scene variations between cameras. We
call this clustering algorithm theCamera-Aware Hierarchical
Clustering (CAHC) algorithm.
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FIGURE 6. Overview of the distilled camera-aware self training framework. The framework consists of three steps:
(1) multi-teacher selective knowledge distillation, (2) camera-aware pseudo labelling and (3) joint self training. First,
multi-teacher selective knowledge distillation aggregates knowledge of multiple teacher models in a student model FS by
multi-teacher selective similarity distillation (Section III-A) to improve generalization performance for learning from
limited labelled data. Then, camera-aware pseudo labelling assigns pseudo labels to unlabelled data by Camera-Aware
Hierarchical Clustering (CAHC) (Section III-B) based on the features extracted by the student model FS . Note that, DBSCAN
[58] in our CAHC may annotate some samples as noises and we discard these samples. Finally, for joint self training,
the pseudo labelled data and labelled data are merged for fine-tuning the student model FS to obtain the self-trained
model F .

C. DISTILLED CAMERA-AWARE SELF TRAINING
To jointly exploit unlabelled data and limited labelled data
for semi-supervised learning, we develop a Distilled Camera-
Aware Self Training framework, as shown in Figure 6. The
framework consists of three steps: (1) multi-teacher selective
knowledge distillation, (2) camera-aware pseudo labelling
and (3) joint self training.

First, multi-teacher selective knowledge distillation aggre-
gates knowledge of multiple teacher models trained with
different subsets of training data and distills a student model
FS to improve generalization performance for learning from
limited labelled data without increasing model size by multi-
teacher selective similarity distillation (Section III-A). Then,
based on the common features XS extracted by the stu-
dent model FS , camera-aware pseudo labelling learns pseudo
labels for unlabelled data by Camera-Aware Hierarchical
Clustering (CAHC) (Section III-B), which can avoid the
influence of domain shift caused by scene variations between
cameras in clustering. Note that, DBSCAN [58] in our CAHC
may annotate some samples as noises and we discard these
samples. Finally, for joint self training, the pseudo labelled
data and the labelled data are merged to form an extended
training set. As there is no overlapping identity in labelled
data and unlabelled data, they can be merged directly. After
removing the subset-specific projections in the student model
FS , we fine-tune the student model FS with the merged data
to obtain the self-trained model F .
For testing, the self-trained model F is used for extracting

features and cosine distances between samples are computed
for retrieval.

IV. EXPERIMENTS
Our method was evaluated on two large-scale person
re-identification benchmark datasets Market-1501 [59] and
DukeMTMC [33]. We compared our method with the
state-of-the-art semi-supervised and unsupervised person
re-identification methods and evaluated the key components
and parameters in our framework.

Experiment Settings and Datasets. The experiments
were conducted on Market-1501 [59] and DukeMTMC [33].
Market-1501 [59] contains 32,217 images of 1,501 identities
in 6 cameras. DukeMTMC [33] consists of 36,411 images
of 1,812 identities in 8 cameras. We followed the standard
train/test split of Market-1501 [59] and DukeMTMC [33].
For evaluation in the semi-supervised setting, we randomly
selected data of 1/3 identities in the training set as labelled
data, (i.e., 250 identities for Market-1501 [59] and 234 identi-
ties for DukeMTMC [33]) and the other data was unlabelled,
following the setting in multi-view clustering (MVC) [16],
a recent advanced semi-supervised Re-ID method. No source
data of other pedestrian datasets was used for pretrain-
ing or transfer learning. The performance metrics, cumulative
matching characteristic (CMC) and mean Average Precision
(mAP), were applied following the standard evaluation pro-
tocols in [59] and [33].

Implementation Details. For training multiple teacher
models for multi-teacher selective knowledge distillation,
we first sampled Nsub = 5 subsets from labelled data by
randomly selecting Csub = b(Nsub − 1)C/Nsubc identities to
form each subset, where C is the number of identities of the
labelled data and b·c is the floor rounding function.
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For the self-trained model F , student model FS and teacher
models {FTm}

Nsub
m=1, we adopted ResNet-50 model [57] as

backbone model. Both the teacher models {FTm}
Nsub
m=1 and

student models FS were initialized by ImageNet pretraining.
The input images were resized to 384 × 128. In the teacher
models {FTm}

Nsub
m=1, a convolution layer was applied to the

feature maps before global average pooling of ResNet-50
to reduce the number of channels to 256 and then the fea-
ture maps were split into 6 stripes for computing Softmax
cross-entropy loss individually, following the training strat-
egy in [7]. For multi-teacher selective knowledge distillation,
the network architecture of the student model FS was the
same with the teacher models {FTm}

Nsub
m=1 except that there

were Nsub unshared subset-specific convolution layers for
reducing the number of channels to 256, which were playing
the roles of subset-specific projections Pm for multi-teacher
selective similarity distillation (Section III-A). For camera-
aware pseudo labelling, the common features XS of the stu-
dent model were extracted for clustering. Finally, for joint
self training of the student model with both labelled data and
pseudo labelled data, the layer of the common features of
the student model were used for computing Softmax cross-
entropy loss for classification.

In training, 30 epochs were used for training teacher mod-
els {FTm}

Nsub
m=1; 30 epochs were used for distilling the student

model FS ; 45 epochs were used for fine-tuning the student
model FS with both labelled data and pseudo labelled data.
For all training processes, the learning rate was 0.1 in the first
2/3 of all epochs and was reduced to 0.01 in the remaining
epochs. For optimization, we used SGD optimizer [60] with
momentum 0.9. The batch size was 64.

As for setting up the clustering algorithm DBSCAN [58],
cosine distance between features extracted by the student
model FS was used for clustering; the number of minimum
samplesNmin in each cluster was 1 for intra-camera clustering
and was 2 for cross-camera clustering; the threshold ε of
distance for searching for neighbourhood was adaptively set
by ε = 0.8 · d̄pos+ 0.2 · d̄neg, where d̄pos is the mean distance
of positive pairs and d̄neg is the mean distance of negative
pairs of the labelled data set. Detailed explanations of the
parameters are introduced in ‘‘Basic Clustering Algorithm’’
in Section III-B.

A. COMPARISON TO RELATED SEMI-SUPERVISED AND
UNSUPERVISED MODELS
We compared with recent advanced semi-supervised Re-ID
methods multi-view clustering (MVC) [16] and PUL [12],
which are closely related clustering-based methods. Our
default setting was using data of 1/3 of identities in the train-
ing set as labelled data (denoted by ‘‘1/3 of IDs’’ in Table 1),
which was the same with the setting of MVC [16]. For fair
comparison with PUL [12], we also followed the setting in
PUL [12] using data of 50 identities as labelled data (denoted
by ‘‘50 IDs’’ in Table 1). Both MVC [16] and PUL [12] used
ResNet-50 as backbone model, which was the same as ours.

TABLE 1. Comparison with related semi-supervised and unsupervised
Re-ID methods. Data of 1/3 of identities in the training set was labelled
for the semi-supervised setting. For semi-supervised Re-ID methods
MVC [16] and PUL [12], our method was compared with them in the same
setting, respectively. LOMO [3] and BOW [59] are unsupervised features.
The others are unsupervised transfer learning methods that require
source data. ‘‘R-k ’’ denotes rank-k accuracy (%). ‘‘mAP’’ denotes mean
average precision (%). ‘‘−’’ denotes not reported.

Moreover, we also compared with unsupervised Re-ID
methods including unsupervised features LOMO [3],
BOW [59] and unsupervised transfer learning models
PTGAN [13], CAMEL [10], SPGAN [14], TJ-AIDL [11],
HHL [15], MAR [38], PAUL [39] and Zhong’s [40], which
required source data of other pedestrian datasets for train-
ing. The experimental results on Market-1501 [59] and
DukeMTMC [33] datasets are shown in Table 1.

Our method outperformed the compared semi-supervised
and unsupervised Re-ID methods. Compared with semi-
supervised learning methods PUL [12] and MVC [16], our
method significantly outperformed them using the same
backbone model ResNet-50 in the same setting. Compared
with the second best model MVC [16], the improvement on
mAP of our method was about 15% on Market-1501 and
20% on DukeMTMC. PUL [12] and MVC [16] are based
on clustering for learning pseudo labels as our framework.
Compared with our Camera-Aware Hierarchical Clustering
algorithm, they ignore the scene variations between cameras,
which is a significant problem for person re-identification.
Moreover, in order to improve the generalization performance
of limited labelled data, compared with MVC [16] that learns
multiple deep neural networks of different architectures for
multi-view clustering, our method learns only one student
model without increasing model size and computation costs,
by means of distilling the shared and specific knowledge in
different subsets of limited training data.

B. FURTHER EVALUATIONS
In this section, we further evaluated and analysed the
components and parameters of our method. In our Dis-
tilled Camera-Aware Self Training framework shown
in Figure 6, multi-teacher selective similarity distillation
(Section III-A) and Camera-Aware Hierarchical Clustering
(CAHC) (Section III-B) are the key techniques. We eval-
uated and analysed these two techniques in the following
experiments.
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TABLE 2. Evaluation of multi-teacher selective similarity distillation. Data
of 1/3 of identities in the training set was labelled for the
semi-supervised setting. ‘‘Supervised (1/3 of IDs)’’ is the baseline model.
Please see Section IV-B.1 for details. The notations of performance are
the same as those in table 1.

TABLE 3. Evaluation of the number of teachers Nsub. Data of 1/3 of
identities in the training set was labelled for the semi-supervised setting.
Our default parameter is Nsub = 5. The notations of performance are the
same as those in table 1.

1) EVALUATION OF MULTI-TEACHER SELECTIVE
SIMILARITY DISTILLATION
For multi-teacher selective similarity distillation, we learned
a student model with 1/3 of labelled identities. We evaluated
training a ResNet-50 model using the same labelled data as
a baseline model, denoted by ‘‘Supervised (1/3 of IDs)’’.
For evaluating the effectiveness of our knowledge distillation
method, we compared with ensemble of our five teacher
models by similarity score fusion, denoted by ‘‘Teacher
ensemble’’. For evaluating the effectiveness of `2, 1-norm
for multi-teacher selective similarity distillation by Lmssd
(Eq. (4)), we compared with multi-teacher similarity distil-
lation by Lmsd (Eq. (3)) using Frobenius norm. These exper-
imental results are shown in Table 2. Moreover, we analysed
the number of teachers Nsub, a key parameter for multi-
teacher selective similarity distillation. The parameter eval-
uation results are shown in Table 3.

Comparison with Teacher Ensemble. As shown
in Table 2, the performances of the teacher models 1 to 5 are
slightly lower than the baseline supervised model, since data
of some identities was missing in each subset as compared
with the whole training set. Both our method and ensemble
of teacher models had notable improvement on the baseline
supervised model, which indicates that different subsets of
limited training data can provide complementary knowledge
for improving generalization performance. It is an interesting
observation that our method ‘‘Lmssd ’’ even outperformed
‘‘Teacher ensemble’’ in most cases. Note that, ensemble
of 5 teacher models requires 4 times more model size and
computation costs than a single student model learned by

TABLE 4. Evaluation of Camera-Aware Hierarchical Clustering. Data
of 1/3 of identities in the training set was labelled for the
semi-supervised setting. ‘‘Supervised (1/3 of IDs)’’ is the baseline model.
‘‘FS (Lmssd )’’ denotes the student model learned by our multi-teacher
selective similarity distillation. ‘‘DBSCAN’’ is our basic clustering
algorithm. ‘‘CAHC’’ denotes our Camera-Aware Hierarchical Clustering
algorithm. ‘‘FS (Lmssd ) + CAHC’’ is our full model. ‘‘Fully supervised (all
IDs)’’ is the ideal case of training with all ground-truth identities in the
training set. The notations of performance are the same as those
in Table 1.

distillation. Therefore, our multi-teacher selective similarity
distillation method can effectively aggregate knowledge of
multiple teachers without increasing model size.
`2, 1-norm v.s. Frobenius Norm. In Section III-A,

we proposed a Multi-Teacher Similarity Distillation Loss
Lmsd using Frobenius norm to measure the errors of similar-
ity matrices. We further proposed a Multi-Teacher Selective
Similarity Distillation Loss Lmssd by applying `2, 1-norm
instead of Frobenius norm for selective distillation. Compar-
ison between the results of Lmssd and Lmsd shows that the
performance can be improved by taking advantage of the
row-sparsity property of `2, 1-norm to suppress the noises in
samples and teacher models.

Effect of the Number of Teachers Nsub.We sampled Nsub
subsets in the training set for training Nsub teacher models,
respectively. Each subset contained data of randomly sampled
Csub = b(Nsub−1)C/Nsubc identities, where C is the number
of identities of the labelled data and b·c is the floor rounding
function. Our default value wasNsub = 5. The results of using
different numbers of teachers from Nsub = 2 to Nsub = 6 are
reported in Table 3.

With Nsub increasing, the performance was improved and
became stable after Nsub = 4, because using more teacher
models can better reduce variance of the model predictions
and achieve better generalization performance. Since more
teacher models required more computation costs in training,
we chose Nsub = 5 as default parameter.

2) EVALUATION OF CAMERA-AWARE
HIERARCHICAL CLUSTERING
To verify the effectiveness of our Camera-Aware Hierarchical
Clustering (CAHC) algorithm, we conducted component-
wise evaluations. The results are reported in Table 4, in
which ‘‘FS (Lmssd )’’ denotes the student model learned by our
multi-teacher selective similarity distillation and ‘‘CAHC’’
denotes Camera-Aware Hierarchical Clustering algorithm.
For comparison, we also evaluated the baseline model
‘‘Supervised (1/3 of IDs)’’ and the basic clustering algorithm
DBSCAN [58].
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Based on the models ‘‘Supervised (1/3 of IDs)’’ and ‘‘FS
(Lmssd )’’, learning from unlabelled data by our clustering
algorithm CAHC can further improve the performance with
an increment of about 4% rank-1 accuracy and 4% mAP.
The performance of our full model ‘‘FS (Lmssd ) + CAHC’’
is better than ‘‘Supervised (1/3 of IDs) + CAHC’’, with
mAP increased by about 4% and 3% on Market-1501 and
DukeMTMC, respectively. This indicates the significance of
multi-teacher selective knowledge distillation for learning a
better model for computing similarities for camera-aware
pseudo labelling. To show the effectiveness of separating
intra-camera clustering and cross-camera clustering in our
CAHC, we compared with DBSCAN [58], the basic cluster-
ing algorithm of our CAHC. It can be observed that, CAHC is
more effective than DBSCAN [58] and the improvement on
DukeMTMC is more significant than that on Market-1501,
since the scene variations between cameras are more severe
on DukeMTMC. This indicates that, hierarchically perform-
ing intra-camera and cross-camera clustering in CAHC can
effectively alleviate the influence of domain shift caused by
scene variations between cameras for clustering.

As for the performance of our whole framework, compared
with the ideal case of ‘‘Fully supervised (all IDs)’’ using the
model trained with all ground-truth identities in the training
set, our full model (using labelled data of 1/3 of identities) is
close to the ideal case with a gap of about 5% rank-1 accu-
racy. Compared with the baseline model ‘‘Supervised (1/3 of
IDs)’’, our full model can bring significant improvement of
about 6% rank-1 accuracy and 9% mAP, which shows the
effectiveness of our Distilled Camera-Aware Self Training
framework.

V. CONCLUSION
In this paper, we study the semi-supervised person
re-identification problem. Requirement of fewer labelled
identities brings about better scalability of a person
re-identification system, but lack of sufficient supervision
information gives rise to challenges as well.

On the one hand, limited labelled data degrades the gener-
alization performance of the learned model. To alleviate the
overfitting problem, we propose a Multi-Teacher Selective
Similarity Distillation Loss for selectively aggregating the
knowledge of different subsets in a single student model to
reduce variance of model prediction for improving general-
ization performance. Meanwhile, our model size can be kept
unchanged just as using a single model. On the other hand,
the scene variations between cameras cause domain shift
in the feature space and make it difficult to mine auxiliary
supervision information in the unlabelled data. To alleviate
this effect when learning pseudo labels for unlabelled data,
we propose a Camera-Aware Hierarchical Clustering algo-
rithm to perform intra-camera clustering and cross-camera
clustering hierarchically. To jointly exploit labelled and unla-
belled data based on the above two techniques for semi-
supervised learning, we develop a Distilled Camera-Aware

Self Training framework. Experimental results show that our
method outperformed the state-of-the-art unsupervised and
semi-supervised person re-identification methods.
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