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ABSTRACT Point-of-Interest (POI) recommendation is one of the important services of location-based
social networks (LBSNs), which has become an important way to help users discover interesting places
and increase the potential income of related companies. Although human movement presents a sequential
pattern in the LBSN. There still are the following problems: (1) when modeling the sequence data, most of
the existing works assume that the check-in time depends on the location transformation in the location
sequence. In particular, these works emphasize the equivalent transition probabilities between locations
for all users to capture the check-in sequential pattern, whereas they ignore the spatial and temporal
information of personalized context in some actual personal check-in scenarios; (2) most of the existing
POI recommendation algorithms fail to utilize the social information related to modeling users to improve
the final recommendation performance.To tackle the above challenges, we propose a new personalized
successive POI recommendation model called Spatiotemporal Sequential and Social Embedding Rank
model, named SSSER. First, we use a hybrid deep learning model based on the convolution filter and
multilayer perceptron model to mine the sequence pattern among the users’ checked-in locations. Then,
we use the method of metric learning to model the social relationship among users. Finally, we propose
a unified framework to recommend POIs combining the users’ personal interests, the check-in sequen-
tial influence and social information simultaneously for the successive POI recommendation. And the
BPR standard is used to optimize the loss function to fit the user’s partial order of POIs. The experimental
results on the real datasets show that our proposed POI recommendation algorithm outperforms the other
state-of-the-art POI recommendation algorithms.

INDEX TERMS Recommender systems, social network services, sequential analysis, neural networks.

I. INTRODUCTION
With the rapid development ofWeb2.0, wireless communica-
tion and location collection technology have promoted many
location-based social networks (LBSNs), such as Foursquare,
Yelp, Facebook and so on. Via these LBSNs, users can
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establish social connections with other users, explore the
surrounding environment, and share their life experiences
by checking in points-of-interest (POIs) such as restaurants,
shopping centers, and tourist attractions. In addition to pro-
viding an interactive platform for users, LBSN contains rich
data (check-in data, social relationships, comment informa-
tion, etc.), which can be applied to predict users’ preferences
and recommend some unvisited POIs that may be of interest
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to users. The recommendation, by means of LBSN, of a geo-
graphical location that a user may be interested in is referred
to as the recommendation of POI. The POI recommendation,
on the one hand, satisfies the individualized needs of users to
explore new geographical areas and discover new POIs and at
the same time alleviates the problem of information overload
faced by users. On the other hand, the recommendation of
POI helps LBSN service providers to play a pivotal role
in realizing intelligent location services. Therefore, how to
provide users with accurate POI recommendation has drawn
the attention of more andmore researchers in recent years [1].

Recently, as LBSN develops, growing numbers of
researchers have observed, through the movement patterns
and mobile trajectories of human The characteristics of
humanmovement are also known as spatiotemporal sequence
effects [2], [3]. The users’ check-in behavior is influenced by
a combination of factors, but is most closely related to the
spatiotemporal effects. Obviously, the POI recommendation
algorithm is a location-aware personalized recommendation
model based on context information. It cannot meet the
requirements of accurate POI recommendation by capturing
the context information, such as the geographical influence of
the check-in or the social information between users and their
friends [4], [5]. The POI recommendation in consideration of
the influence of the spatiotemporal sequence pattern on the
user’s check-in behavior is called successive POI recommen-
dation or the next POI recommendation [6].

Although researchers have proposed some successive
POI recommendation algorithms in recent years, the existing
successive POI recommendation algorithms still face many
challenges, mainly due to the following problems:

1) The current research into successive POI recommen-
dation mainly uses the Markov chain model or RNN
to model the checkin spatiotemporal sequence pat-
tern. The study of the literature [7], [8] utilizes the
Markov chain model. However, when modeling the
spatiotemporal sequence data, these models need to
estimate V n̄

m · (Vm − 1) parameters in the n̄-order
Markov chain model. Each parameter corresponds to
Vm states of the (n̄-1)-th order probability value. Obvi-
ously, it involves extremely complicated calculations.
Therefore, in order to reduce the size of the predic-
tion space, most Markov chain-based works [9]–[11]
use first-orderMarkov chain tomodel sequence effects,
which only considers the last in the sequence of loca-
tions checked-in by the user to recommend new loca-
tions. Obviously, this method does not distinguish
the personalized check-ins of users in some partic-
ular periods, so that the check-in behavior of all
users is finally modeled as a unified check-in location
sequence pattern. At the same time, deep learning is
an important research direction in machine learning
and breakthroughs have been made in the field of
recommendation systems in recent years [12]. Among
them, RNN brings new opportunities to capture
spatiotemporal sequence effects in recommendation

FIGURE 1. An example of point and union level dynamic pattern effects.

systems because it can model the dependencies
between sequence data during different periods. How-
ever, when modeling spatiotemporal sequence data,
RNN assumes that the time dependence varies mono-
tonically with the location in the sequence (as shown
in Figure1 (b)). Nevertheless, in some real check-in
scenarios, not all adjacent check-ins have dependen-
cies, so that RNN cannot produce satisfactory recom-
mendation results [13] (for example, the skip behaviors
of sequential patterns as shown in Figure1 (b)), where
the impact from past check-in behaviors may skip a few
steps and still have strong impact. A tourist has check-
ins sequentially at an airport, hotel, restaurant, bar, and
beach. While the check-ins at the airport and hotel do
not immediately precede the check-in of the beach, they
are strongly associated with the latter. On the other
hand, checking in at the restaurant or bar does not have
little effect on checkin at the beach (because they don’t
necessarily happen).

2) With the rapid advancement of LBSN, more and more
POI recommendation algorithms use the rich infor-
mation provided by social networks to improve the
performance of recommendation algorithms and alle-
viate the data sparsity and cold start problems faced by
recommendation methods. Most POI recommendation
research work, like the literature [14]–[16], prefers
to exploit the similarity of users’ social relationships
based on the traditional collaborative filtering model
to model users’ social links. These methods make full
use of a collaborative filtering model to mine users’
social links, but fail to achieve stable and reliable cal-
culation results in the case where the number of com-
mon friends or common check-in information is scarce.
Yet the literature [17] prefers to use the link-based
graph model to model users’ social link. However, this
method is not effective in the case of active users of
social networks, due to the fact that they have too
many indirect friends, so the graph model cannot accu-
rately capture the user’s preferences based on the link
method.
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To resolve the above problems, we have studied multiple
factors that affect users’ check-in decisions in the POI rec-
ommendation (such as the saptiotemporal impact between
users’ check-in locations, check-in time and users’ social link
information) and the interaction between these factors and
users. The key contributions of this paper is as follows:

1) We propose a hybrid deep learning model based on
a convolution filter [18] and a multi-layer perceptron
model [19] to capture user preferences and the effects
of spatiotemporal sequence patterns. This model first
embeds a series of spatiotemporal sequences of users’
check-in locations and other check-in information into
the latent space, regarding them as a series of ‘‘images’’
and the spatiotemporal sequence pattern and user
check-in information as local features of the ‘‘images’’.
Then, we use the CNN method in the joint convolution
filter based on image recognition to study these local
features so as to capture the modeling of spatiotem-
poral sequence pattern effects on check-in locations
and user preferences. Unlike the ‘‘image’’ recognition,
these ‘‘images’’ do not indicate input and must be
learned in combination with all filters at the same
time. This method effectively improves the predic-
tive ability of users’ personalized check-ins based on
check-in sequence spatiotemporal effects estimation.
In addition, this paper applies a multilayer perceptron
to learn the final interaction function of users’ check-
in location spatiotemporal sequence effects and users’
personalized check-ins, which will improve the non-
linear modeling ability of the above-mentioned hybrid
deep learning model.

2) We propose a model based on metric learning theory
[20] to model users’ social links. The basic idea is to
capture user preferences through spatial distance. This
method simultaneously trains the samples and the dis-
tance metric, updates the distance metric and the coor-
dinates of different users while satisfying the distance
constraint, and embeds the users into a unified low-
dimensional space so as to generate a recommendation
result via utilizing the distance between different users.
Finally, a social weighting function is constructed on
the basis of metric learning theory to accurately mea-
sure the degree of the social relationship between dif-
ferent users, so that the final recommendation is even
more accurate.

3) We develop a unified framework based on matrix fac-
torization technology to integrate users’ check-in infor-
mation, users’ check-in the saptiotemporal impact and
users’ social link. Then, the BPR strategy [21] is used
to optimize the loss function of thematrix factorization,
so that the above-mentioned context information can
be modeled more accurately. Finally, a comprehensive
experimental evaluation based on real-world datasets
is conducted, which demonstrates that the proposed
model is effective and is significantly superior to the
state-of-the-art algorithms.

II. RELATED WORK
Our work is related to two lines of literature, POI recommen-
dation and neural networks. We review the recent advances
in both areas.

A. POI RECOMMENDATION
The hybrid recommendation method, namely the POI rec-
ommendation system incorporated with multi-source het-
erogeneous side information, attracts even wider attention
because it can alleviate the problems of data sparsity and cold
start in the traditional POI recommendation systems. How-
ever, as side information tends to feature multimodality, data
heterogeneity, large scale, sparse data, uneven distribution,
among other complicated characteristics, the hybrid recom-
mendation research incorporated with multi-source heteroge-
neous data still faces severe challenges.

Many recent works [2], [22]–[24] indicate that there is
a strong correlation between users’ check-in activities and
geographic distances, spatiotemporal relationships of dif-
ferent check-in locations and social relationships. There-
fore, the current research into POI recommendation mainly
focuses on using geographical influences, spatiotemporal
relationships of different check-in locations and social influ-
ence to improve the accuracy of POI recommendation. For
example, Ye et al. proposed a friend-based collaborative fil-
tering (FCF) method for POI recommendation, which proves
that users’ social link is effective for improving the final
recommendation performance [25]. Then, spatiotemporal
information and geographic restrictions are proven to be valid
for the recommendation. Cheng et al. proposed a tensor-based
FPMC-LR model that considers the first-order Markov chain
of POI transformation and localized region constraint [26].
Yin et al. proposed a unified probability generation model
(namely TRM), which is based on the discovery of the
semantic, temporal and spatial patterns of users’ check-in
activities to construct a unified modeling of the combined
effects of the above patterns of users, thus deciding to choose
the POI to be visited [27]. Liu et al. proposed a dual-weighted
low-rank graph model that combines static user interests with
changing user POI sequence preferences and time intervals
so as to achieve the POI recommendation [28]. Zhao et al.
developed a ranking-based pairwise tensor factorization
framework called STELLAR for the recommendation of the
POI [4]. STELLAR combines fine-grained contextual infor-
mation of check-in and generates significant improvements.
All these efforts attempt to adapt to the model by maximizing
the interaction between users and POI, with recommenda-
tions made based on the last POI check-in. In addition,
Xie et al. proposed a novel embedded learning-based rec-
ommendation model for the next POI recommendation [29],
which uses the bipartite graph model to model related con-
textual factors in the POI recommendation process and is
called the GE Model [29]. Four pairs of contextual fac-
tors, namely POI-POI, POI-region, POI-time, and POI-word
are modeled in a unified optimization framework.
The experimental results show that GE is significantly

156806 VOLUME 7, 2019



Y. Xu et al.: SSSER for Successive Point-of-Interest Recommendation

superior to other competitor methods algorithms in the
POI recommendation.

B. NEURAL NETWORK
In recent years, neural networks (deep learning) have made
great breakthroughs in the fields of image processing,
natural language processing, and speech recognition, and
have become an upsurge in artificial intelligence, bring-
ing new opportunities for the research of recommendation
systems.

In various neural network structures, an MLP with a single
hidden layer containing a sufficient number of non-linear
elements can approximate any continuous function on the
compact input domain to arbitrary precision [30]. Recently,
He et al. developed a matrix factorization method based on a
deep neural network for the collaborative filtering of implicit
feedback data [31]. Based on item embedding and user
embedding, they apply multi-layer MLP to extract advanced
hidden features by maximizing user-item interaction. Chen
et al. studied the problem of personalized location-aware
news recommendation [32]. By adding a location channel
in DSSM, MLP learns the implicit representation of users,
news and locations from user information, news information
and local location topic distribution, and finally combines
the three aspects of information to calculate the degree of
relevance between user interest and news content at specific
locations so as to generate news recommendations.

Recurrent neural networks (RNN) [33]–[35] has been
widely used to model sequence data and are therefore rapidly
being introduced into the study of user behavior sequence
pattern modeling. However, the main idea of collaborative
filtering based on recurrent neural network is to model the
influence of user check-in history sequence on user check-
in behavior through the recurrent neural network, so as to
generate users’ item recommendation list and behavior pre-
diction. The collaborative filtering method based on recur-
rent neural network and its variants, namely the long-term
short-term memory (LSTM) [36] and the gated recurrent
unit (GRU) [37], are widely used in current recommendation
systems, because they have a high degree of applicability and
can effectively model the sequence pattern of user check-
in behavior. What’s more, they can integrate spatiotemporal
information and other context information [39] and various
types of auxiliary data to improve the quality of recommen-
dation [40] by changing the input of the recurrent neural net-
work [35] and defining different weight matrixes [38]. How-
ever, research on the use of neural networks for the next POI
recommendation is very limited. Liu et al. proposed a classic
RNN-based neural network model [13], called STRNN [13].
STRNN uses a time transitionmatrix and a distance transition
matrix within the framework of the RNN model. Yin et al.
gained inspiration from DBN’s better performance than SDA
in classification tasks and its robustness to noise, used DBN
to learn the semantic representation of POI from the hetero-
geneous features in users’ check-in process, and then inte-
grated the obtained spatiotemporal personal preferences and

the semantic representation of POI to propose a probabilistic
model framework called Spatial-aware Hierarchical Collab-
orative Deep Learning (SH-CDL) [41].

The model we propose differs from the above-mentioned
models in the following aspects. First, this paper proposes
a model based on CNN. Convolutional neural networks are
mainly used in the recommendation system to extract hid-
den features of items from images and text content, thereby
obtaining low-dimensional vector representations of items,
and generating recommendations list for users in combina-
tion with users’ implicit representation. However, we use the
CNN model-based method to capture images’ local feature
search mode in image recognition to realize the modeling of
users’ check-in spatiotemporal patterns. Secondly, we have
designed a better interaction function based on a multilayer
perceptron, which is used to model the potential feature inter-
action between users, check-in locations and users’ check-
in spatiotemporal patterns so as to improve its ability to
capture the user interaction data structure. The final exper-
iment also verifies this. Thirdly, this paper adopts the metric
learning theory to model users’ social links, and integrates the
above-mentioned context information for POI recommenda-
tion. Finally, the BPR strategy is used to optimize the final
objective function, which accurately fits users’ preferences
for POI.

III. PROBLEM FORMULATION AND PRELIMINARIES
In this section, we first formulate the POI recommendation
problem of this paper, and then introduce the necessary
preliminaries.

A. PROBLEM FORMULATION
In most LBSNs POI recommendation normally consists of
two sets: assuming the set of all users is U = {u1,
u2, · · · , u|U |} and the set of all POIs is L = {l1, l2, · · · , l|L|}.
The set of POI visited by each user u is obtained
from the collection L. The sequence of a user is S =
{Su1 , S

u
2 , · · · , S

u
i , · · · S

u
ι }, where S

u
i ∈ L, and its length is ι.

The index t (t ∈ T ) of Sut indicates that the order of action is
in the sequence S, where T is the check-in time collection.

Each POI is geocoded using <Longitude, Latitude> in
addition to its unique identifier. Users’ check-in record
constitutes a User-POI check-in frequency matrix F ∈

RU×L , and each element fui,ln in the check-in frequency
matrix F represents the check-in frequency of the user ui
on the POI ln. The users’ check-in frequency reflects their
preference degrees of POI. Normally, the user only vis-
its a small portion of the POIs, so the user-POI check-
in frequency matrix F is extremely sparse. The purpose
of POI recommendation is to use users’ check-in data
and other context information in the LBSN to predict the
frequency f̂ui,ln , a user’s frequency to visit an unchecked-
in POI, and provide the user with a list of POIs that
may be of interest to them according to the predicted
frequency.
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B. METRIC LEARNING
In the machine learning field, a metric (or distance function)
is a function that defines the distance between the elements
in a set. A set with metrics is called a metric space [42].
The main purpose of metric learning is to learn and obtain
the optimal parameters that satisfy the upper constraints.
Using the training samples to learn a metric matrix A allows
the resulting distance function dA(xi − xj) to improve the
performance of the learning algorithms or to meet certain
application requirements.

Supervised distance metric learning can be divided into
two categories [43]: global distance metric learning and local
distance metric learning. In general, the training samples of
supervised distance metric learning are divided in the form
of pairwise constraints. The former learn distance metrics in
a global sense by keeping all the data points in each class
close together while satisfying all pairwise constraints at
the same time and ensuring that data points from different
classes are separated. The purpose of global distance metric
learning is to learn and then obtain a distance metric based
on given constraints. The latter is to learn distance metrics in
local settings, which means that not all pairwise constraints
are satisfied at the same time, but only ‘‘local’’ pairwise
constraints are satisfied.

The proposed method in this paper applies the global
distance metric learning to the recommendation system, and
the distance metric is represented as matrix A ∈ Rl×l . The
distance between any two points xi and xj is expressed as:

g2A(xi, xj) =
∥∥xi − xj∥∥2 = (xi − xj)A(xi − xj)T (1)

where A is a semi-positive definite matrix used to ensure
that the distance is non-negative and symmetrical. The global
optimization problem under constraints can be expressed as:

min
A

∑
(xi,xj)∈B

∥∥xi − xj∥∥2A
s, t. A ≥ 0,

∑
(xi,xj)∈D

∥∥xi − xj∥∥2A ≥ θ (2)

where B denotes an equivalence constraint collection in
which xi and xj belong to the same class of samples, and
D denotes a non-equivalence constraint collection in which xi
and xj belong to different classes of samples. θ is a constant
that limits the minimum distance between data points in
different classes of samples.

C. CONVOLUTIONAL NEURAL NETWORK
More attention was paid to applying convolutional neural
networks on recommendation [12], [18]. The neural network,
which has plentiful neurons, consists of convolutional layers,
some of which are followed by pooling layers, and connected
layers with a final softmax [45]. Using multiple layers of
neurons to represent some functions are much simpler. Each
of neurons can have different values of weights and biases.
Weights and biases are network parameters. We discuss a
model of a neuron. For the neuronG is input (x1, x2, . . . , xn),

FIGURE 2. The framework of SSSER model.

the weight (w1,w2, . . . ,wn) and the bias (b0), the neuron
output value is G = f1(x1 w1 + x2 w2 + . . . . + xn wn + b0).
Now G is already a certain value. The function f1 is defined
as a non-linear activation function, and since it only accepts a
function of one variable, it is not complicated. This not only
ensures the flexibility of the artificial neural network, but also
makes the neuron function not too complicated. According to
the already defined layer and equation, let the calculation pass
to the back layer in turn. The result is finally obtained at the
output layer.

Our ultimate goal is to obtain a personalized and infor-
mative description, so we introduce patiotemporal sequential
and social information and further provide an improved def-
inition. The spatiotemporal model utilize the Convolutional
Neural Network(CNN) and Multilayer Perceptron(MLP) to
capture potential features of check-ins matrix E (u,t) by user.
our problem can be formally defined as generating a objec-
tive function ŷ, based on the convolutional neural network,
multilayer perceptron as well as the metric learning.

IV. THE SSSER MODEL
In this section, we present the proposed hybrid neural network
framework for the next POI recommendation task, named
SSSER. Specifically, we first propose a hybrid deep learning
model to learn the spatiotemporal characteristics of users’
check-in POI in this section. At the same time, the metric
learning theory is used to model users’ social link, and then
the matrix factorization technology is used to integrate the
two kinds of information. Finally, the BPR strategy is applied
to optimize the loss function and users are fitted to the partial
order relationship of the POIs. The SSSER model framework
is shown in Figure 2.

A. SPATIOTEMPORAL MODEL
This paper proposes a convolution sequence embedding
model for capturing the effects of the top-N locations’
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FIGURE 3. The framework of spatiotemporal model.

check-in spatiotemporal sequence information. The proposed
model uses a convolutional neural network (CNN) to learn
spatiotemporal sequence features while using latent factor
models to learn the latent features of users. The model in
this paper regards the check-in location matrix as the embed-
ded matrix of the potential space regards this matrix as the
‘‘image’’ of the historical L check-in locations in the potential
space, and regards the spatiotemporal sequence of the check-
in location as a local feature of the ‘‘image’’. It has also made
use of the advantages of the convolution filters in Convo-
lutional Neural Networks (CNN), namely their capacity to
efficiently capture local features in image recognition and
natural processing. As shown in Figure 3, the spatiotemporal
model consists of four parts: the Embedding look-up layer,
the Convolution layer, the Fully Connected layer, and the
MLP Layers.

1) EMBEDDING LOOK-UP
The task of the Embedding layer is to transform the collec-
tion of locations into a document matrix consisting of word
vectors. In order to model users’ spatiotemporal patterns,
each user u is associated with a sequence of locations from
the location collection L. Each user u is associated with a
sequence of locations S = {Su1 , S

u
2 , · · · , S

u
i , · · · S

u
ι }.

We provide the previous M locations to the hybrid neu-
ral network proposed in this paper to capture the sequence
features in the potential space. Location l is embedded into
Ql ∈ Rd , d is the number of potential dimensions. The
role of Embedding Look-up is to retrieve the embedding of

the top M locations and superimpose them to get the matrix
E (u,t)

∈ RM×d of the user u during a certain period of time,
as represented in the green grid in Figure 3.

E (u,t)
=


QSut−M
...

QSut−2
QSut−1

 (3)

Apart from the embedding operation on the location,
embedding operation Pu ∈ Rd is also conducted on users,
as represented in the pink circles in Figure 3.

Pu =


u1
u2
...

ud

 (4)

2) CONVOLUTIONAL LAYER
Inspired by the idea of literature [44], [45], our model repre-
sents the top-M check-in locations in the historical check-in
record as theM×dmatrix, where d is the number of potential
dimensions, and the rows of the matrix save the spatiotem-
poral sequence of check-in locations. This embedded matrix
is then treated as an ‘‘image’’ of the M check-in locations
in the potential space, and multiple convolution filters are
used to jointly capture the sequence of the local features of
this ‘‘image’’. The convolution kernel of the convolutional
layer in CNN continually slides from left to right and top to
bottom on the matrix E after embedding to capture continu-
ous spatiotemporal features. This paper uses joint horizontal
and vertical convolution filters to search for spatiotemporal
sequence patterns.

Horizontal convolution kernel. In Figure 3, the horizontal
convolution kernel Fk has a size of h × d and the number
of ν, where h is height of a filter and the full width equal
to d , respectively. The horizontal convolution kernel Fk will
start from the upper left corner of the matrix E and slide from
top to bottom in sequence with a step size of 1. It interacts
with all horizontal dimensions E of the location li, 1 ≤ i ≤
M − h + 1. The result of the interaction is calculated by the
ith convolution value:

cki = fc(Ei ∗ Fk + bi), 1 ≤ i ≤ M − h+ 1 (5)

where ∗ is the convolutional operator,bi is the ith biased
vector, and fc(·) is the activation function for convolution
layers. In this paper, the activation function uses ReLU. And
f (x) = max(0, x) defines the nonlinear output of the neuron
after linear transformation(w ∗ x + b). It is more biologically
sound and has proven to not cause supersaturation [45].

Each convolution kernel interacts with matrix E to map a
newmatrix. The convolutionmapping attribute vector formed
by all the convolution mapping attribute values extracted by
the k th convolution kernel can be expressed as:

cki = (ck1, c
k
2, · · · c

k
M−h+1) (6)
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Then conduct the maximum pooling operation for cki =
(ck1, c

k
2, · · · c

k
M−h+1). The set of cki represents all mapping

attributes and does not represent the most significant feature,
so the maximum value is extracted, through maximum pool-
ing, from all the values generated by the specific convolution
kernel. The maximum value captures the most important
feature extracted by the filters.

ci = (max(c1i ),max(c2i ), · · ·max(cνi )) (7)

The horizontal filters interact with each successive h iterms
and matrix E by their embedding. The embedding and convo-
lution kernels are learned to minimize the objective function
of the prediction error of the encoding target term.

Vertical convolution kernel. In Figure 3, the green dotted
line indicates the vertical convolution kernel F̃k , and its size
is M × 1, and its number’s range is 1 ≤ k ≤ ν̃. There are
ν̃ vertical filters. Each filter F̃k interacts with the matrix E by
sliding (d − 1) times from left to right on the matrix E . The
result of the interaction is calculated by the i-th convolution
value:

c̃ki = fc(Ei ∗ F̃k + bi) (8)

where ∗ is a convolutional operator. bi is the i-th biased vector.
Each convolution kernel interacts with matrix E to map a new
matrix. The convolution mapping attribute vector formed by
all the convolution mapping attribute values extracted by the
k th convolution kernel can be expressed as:

c̃i = (c̃1i , c̃
2
i , · · · , c̃

ν̃
i ) (9)

After the convolution of the vertical convolution kernel,
we do not conduct the maximum pooling to guarantee that
we do not lose too many potential dimensions.

3) FULLY-CONNECTED LAYERS
In the fully-connected layer, this is a process of highly puri-
fied feature, and in order to prevent overfitting, a Dropout
layer is added to the fully-connected layer. After Dropout,
merge ci and c̃i before the fully-connected layer and use this
result as an output value, which is used as an input to the
fully-connected layer:

yc = fa(w
[
ci
c̃i

]
+ b) (10)

where w ∈ Rd×(ν+d ν̃) is a nonlinear mapping matrix which
is a weight matrix that projects the fully-connected layer into
a d-dimensional hidden layer. fa(·) is the activation function
ReLU for fully connected layer. b ∈ Rd is the biased vector.

4) MULTILAYER PERCEPTRON
The two components described above extract the different
latent features from two different information sources. It is
expected that the integration of the two components could
complement each other and yield better prediction perfor-
mance. We use the standard MLP (Multilayer Perceptron) to
learn the interaction between the user and the latent features

of the check-in POI sequence, which makes the model to
have high-level flexibility and nonlinear modeling capability.
More precisely, theMLPmodel under our SSSER framework
is defined as:

Y1 = ϕ1(Pu, yc) =
[
pu
yc

]
(11)

ϕ2(Y1) = f2(W T
2 Y1 + b2) (12)

. . . . . . . . . . . .

ϕout (YX−1) = fX (W T
X YX−1 + bX ) (13)

whereWX , bX , fX , ϕX and ϕout represent the weight matrix in
the X -layer perceptron, the biased vector (the neuron thresh-
old value of the neural network), the activation function,
the x-th layer and the mapping function for the output layer
respectively.
The objective function to learn POI spatiotemporal features

through CNN and MLP is expressed as:

Y=
L∑
i

∥∥∥∥ṽi−fX (W T
X (fX−1(· · · f2(W

T
2

[
Pu
yc

]
+b2) · · · ))+bX )

∥∥∥∥2

+ λW

|W |∑
α

‖Wα‖
2 (14)

where ṽi and λW represent the initial value of the POI latent
features and regularization parameter, respectively.

B. SOCIAL LINK MODEL
In social networks, whether there is a social relationship
between users tends to be dependent on the level of mutual
trust between users. Considering that users’ trust levels are
not the same for each friend, then how to estimate the trust
levels between users constitutes one of the important issues
that affect the further improvement of the recommendation
algorithm [46], [47].
The main idea of distance metric learning is to learn an

expected distance metric, making the distribution of same-
class samples more compact and the distribution of samples
from different classes looser. And the metric learning algo-
rithm is designed tominimize the distance between each users
and their friends while maximizing the distance from users
they don’t like. Based on this, if the user is closer to a certain
user, it indicates that this user is positively related to that
user and vice versa; if the user is far away from a certain
user, it indicates that this user is negatively related to that
user. Therefore, we apply a metric learning-based algorithm
to construct a weight function for the prediction of the degree
of the social relationship between different users so as to
improve recommendation performance. The metric learning
algorithm is used to predict the degree of trust between users.
To learn distance metric, a suitable distance metric form

must be defined in the first place. The pairwise constraint
set is constructed as follows [48]: given two users, if one
user has a closer distance to the other, the user-user pair is
categorized into an equivalence constraint collection; if the
user is farther away from the other, then the user-user pair is
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included into a non-equivalence constraint collection. Given
a pair of users um and un. The way we learn these user vectors
is their Euclidean distance. The Euclidean distance between
the user vectors um ∈ Rd and un ∈ Rd can be used to estimate
the degree of relationship between them:

g(um, un) = ||um − un|| (15)

The higher the degree of the social relationship between the
users, the smaller the Euclidean distance is. In order to make
the users who have a high degree of relationship much closer,
we use the following loss function to model such a constraint:

w(g)=
∑

(um,un)∈U

∑
(um,ur )/∈U

ρmn · σ [ϑ+g (um, un)2−g (um, ur )2]

(16)

where the relationship between user um and user un is closer
than that between user um and user ur . σ [x] = max(x, 0)
represents the standard hinge loss, ρmn is the sequence loss
weight, and ϑ is the safety margin size to prevent the result
from being 0.

To punish lower-rank socially connected users, we use a
rank-based weighting scheme to punish lower-rank socially
connected users and adopt the same method [49] called
Weighted Approximate Rank Pairing (WARP) loss . Given
a metric q, let U denote the total number of users and
rankq(um, un) denote the rank of user un as the recommended
use of user um, and we punish the positive user un by the
setting according to its rank.

ρmn = log(rankq(um, un)+ 1) (17)

where q is the given metric. This scheme penalizes a positive
user at a lower rank much more heavily than one at the
top, and produces the state-of-the-art results in many prior
works [48], [49].

C. JOINT FRAMEWORK
Based on the above subsections, we use the matrix factor-
ization method to model users’ preferences and effectively
combines social relationship and spatiotemporal information
so as to integrate the two kinds of heterogeneous information
into a unified framework. The SSSER POI recommendation
algorithm is proposed to provide the next POI recommenda-
tion services. Similarly to [31], we can formulate the objec-
tive function as follows:

ŷ

=min
U ,V

∑
(um,un)∈U

∑
(um,ur )/∈U

ρmn ·σ [ϑ+g(um, un)2−g(um, ur )2]

+

L∑
i

∥∥∥∥ṽi−fX (W T
X (fX−1(· · · f2(W

T
2

[
Pu
yc

]
+b2) · · · ))+bX )

∥∥∥∥2

+ λW

|W |∑
α

‖Wα‖
2 (18)

According to the literature [21], when providing POIs for
users in this paper, the Bayesian Personalized Ranking [21]
strategy is used to fit the user’s partial ordering on POIs in this
paper so as to optimize the models mentioned above. The POI
recommended by a given user is modeled as a ranking prob-
lem so that the POI-based ranking list is eventually learned.

The goal of our successive personalized POI recommenda-
tion is to recommend top-k new POI to users. Thus, we can
model it as a ranking over locations. The following definition
is then obtained:

li >u,t lj : ⇔ ŷu,t,li > ŷu,t,lj (19)

For locations li ∈ L, to find the correct-ranking is to max-
imize the calculation of the following posterior probability
based on the Bayesian equation. Then, according to the partial
order relationship >u,t of the user u at all POIs at time t ,
a recommendation list is finally generated. According to BPR
strategy, we get:

p
(
2| >u,t

)
∝ p

(
>u,t |2

)
p(2) (20)

where 2 is the SSSER model parameter.
It is assumed that each user’s check-in at the POI is inde-

pendent, and that for a specific user, the partial order rela-
tionship at a specific POI location pair (li, lj) is independent
of that at other POI location pairs. Furthermore, the set of
training data Dl based on pairwise constraints is defined as
Dl :=

{
(u, t, li, lj)|li >u,t lj

}
. The likelihood function of the

partial order relationship of all users at all POIs is:∏
u∈U

p(>u,t | 2) =
∏

Dl∈U×T×L

p(li >u,t lj| 2)γ ((u,t,li,lj)∈Dl )

· (1− p(li >u,t lj| 2)γ ((u,t,li,lj)/∈Dl )) (21)

where γ is the indicator function.

γ (b) =

{
1 if b is True
0 other

(22)

We extend >u,t on all POI pairs (li, lj) and consider the
overall attribute and asymmetric attribute of users’ partial
order relationship, Equation (21) is further simplified to:∏

u∈U

p(>u,t | 2) =
∏

ï£¡u,t,li,ljï£¡∈Dl

p(li >u,t lj| 2) (23)

Next we use the definition in Equation (21) to represent
p(li>u,t lj| 2), then we get:

p(li >u,t lj| 2) = p(ŷu,t,li > ŷu,t,lj | 2) (24)

We use the Sigmoid function δ(z) to define p(z > 0) =
δ(z) = 1

1+e−z , which indicates the probability of user u’s
a preference for POI li being higher than that for POI lj at
time t:

p(li >u,t lj| 2) = δ(ŷu,t,li,lj ) = δ(ŷu,t,li − ŷu,t,lj )

=
1

1+ e−(ŷu,t,li−ŷu,t,lj )
(25)
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Further, we introduce the zero-mean Gaussian prior with
the covariance of 1

λ2
to the model parameters, which means

2 ∼ N (0, 1
λ2

).
Similarly to GeoMF++ [60], by combining the Equa-

tion (20)∼(25), we can minimize the following objective
function of the SSSER model:

L̂ = min ln p
(
>u,t |2

)
p(2)

= min 1n
∏
u∈U

∏
Ltu∈Lu

∏
i∈Ltu

∏
j/∈Ltu

δ
(
ŷu,t,li − ŷu,t,lj

)
p(2)

= min
∑
u∈U

∑
Ltu∈Lu

∑
i∈Ltu

∑
j/∈Ltu

(
−ln δ

(
ŷu,t,li−ŷu,t,lj

)
+λ2‖2‖

2
)

(26)

where λ2 is the regularization parameter corresponding to
δ(z) to prevent overfitting during the learning process.

D. OPTIMIZATION
The objecti function optimization can be done by per-
forming stochastic gradient descent (SGD) according to the
literature [31].

∂L̂
∂um
=
−e−ŷu,t,li,lj

1+ e−ŷu,t,li,lj

∑
(m,n)∈U

∑
(m,r)/∈U

ρmn
∂

∂um
σ (g (um, un)2

− g (um, ur )2)+ 2λt,m · um (27)

∂L̂
∂un
=
−e−ŷu,t,li,lj

1+ e−ŷu,t,li,lj

∑
(um,un)∈U

∑
ur /∈U

ρmn
∂

∂un
σ (g (um, un)2

− g (um, ur )2)+ 2λt,n · un (28)

∂L̂
∂vi
= λW

−e−ŷu,tli,lj

1+ e−ŷu,t,li,lj

×

L∑
i=1

(ṽi − fN (W T
X fX−1(f (w

′z+ b′))))
∂ ṽi
∂vi
+ 2λivi (29)

Meanwhile, for each parameter 2, the update process is
performed as follows:

2← 2+ α(
∂

∂2
ln σ (ŷu,t,li − ŷu,t,lj )− 2λ222) (30)

where α is the learning rate and Algorithm 1 describes the
steps of parameter learning in SSSER model.

E. TIME COMPLEXITY
The time complexity calculation of the SSSER model
depends on the calculation of the objective function L̂ and
the process of calculating the gradient iteration. The model
proposed in this paper ismainly divided into two components:
spatiotemporal information modeling and social link model-
ing. For the learning of spatiotemporal information features,
when calculating the latent feature vectors used to update
the weights, the complexity to update is governed by the
calculation of the convolutional layer. Therefore, the time
complexity to update the weights and bias variables in the

Algorithm 1 Learning Algorithm of SSSER
1: Initialize hyperparameter
2: Randomly initialize F, F̃k ,w , b , WX , bX , λ1, ρmn
3: Input: Check-in collection L and social link U
4: Output: F, F̃k ,w, b,WX , bX , ρmn,2
5: while not convergence do
6: for 1 to The maximum number of iterations do
7: Iterative update parameters for each calculation

w, b,WX , bX
8: end for
9: for each pair, sampleU negative user and approximate

ρmn
10: update parameters ρmn
11: Take a gradient step to optimize Equation (16)
12: end for
13: Update parameters according Equation (27)-(30)
14: until Equation (26) converges
15: end while

convolutional neural network is O(L · de · nl). Np indicates
the number of POIs, de indicates the embedding dimension,
and nl indicates the number of spatiotemporal features to
be learned. The MLP layer requires more time and its time

complexity isO(
Nm̃∑̃
n=1

zñ−1zñ) with zñ−1 denoting the size of the

ñ-th layer. And the time complexity of social link modeling
is O(d3s + nsd

2
s ), where ns is the number of training samples

and ds is the dimension of the data. Therefore, the total time

complexity of SSSER isO = (Np · de · nl+
Nm̃∑̃
n=1

zñ−1zñ+d3s +

nsd2s ).

V. EXPERIMENT
A. EXPERIMENTAL DATASET
Weuse two public datasets, Foursquare [50] andGowalla [51],
to evaluate the performance of our proposed recommendation
algorithm.

Similary to [22], we removed users and POIs which
have less than 10 or 15 check-in records respectively in
the Foursquare dataset,. After filtering, the number of users
is 18,737, the number of POIs is 32,510, the number of check-
ins is 1,278,274 and the sparsity of the user POI check-in
matrix is 99.79%.

In the Gowalla dataset, users and POIs with less than
10 check-in records aremanually removed [22]. In the filtered
dataset, the number of users is 24,941, the number of POIs
is 28,593, the number of check-ins is 1,196,248 and the
sparsity of the user POI check-in matrix is 99.83%. Check-in
time ranges from April 2012 to September 2013. Therefore,
these two datasets are very sparse.

Therefore, in these two datasets, a user should check-in
at least five different POIs. In the experiments, 70% of the
dataset is randomly selected as the training dataset, and the
next 10% is used as the validation set to search for the optimal
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TABLE 1. Statistics of the two datasets.

hyperparameter settings for all models, with the remaining
20% being used as the test dataset. The datasets statistics are
shown in Table 1.

B. EVALUATION METRICS
We evaluate the recommendation quality of the SSSER by the
four wide-use metrics. i.e., precision (Precision @ N) [48],
recall (Recall@N) [48], mean average precision (MAP) [48],
and normalized depreciation cumulative gain (nDCG) [48].
Given a list of top N predicted POIs for a user, denoted R̂N ,
and the last actions in users’ sequence.

Precision@N =
|R ∩ R̂N |

N
(31)

Recall@N =
|R ∩ R̂N |
|R|

(32)

where N ∈ {1, 5, 10}.
The equation for Average Precision (AP) is:

AP =

∑∣∣∣R̂∣∣∣
N=1 precision@N × rel(N )∣∣∣R̂∣∣∣ (33)

when the N -th location in R̂ is also in R, then rel(N ) = 1. The
mean of each class of AP is taken as MAP.

nDCG is one of the important indicators used in the field
of information retrieval to measure the quality of ranking. For
the target user u, the Equation to calculate the nDCG value of
the POI at the location of e in the recommendation list is:

nDCG@e =
∑
u

1
Yu

e∑
n=1

2reln−1

log2(e+ 1)
(34)

where Yu indicates the largest DCG value of the user u,
and reln represents the correlation between the n-th POI and
the user. reln = 1, which indicates correlation; otherwise
reln = 0.

C. EXPERIMENTAL SCHEME
In order to verify the effectiveness and advancement of the
proposed algorithm, the algorithm is tested from four differ-
ent perspectives to verify its effectiveness.

(1) The Spatio-SSSER method (This method correspond-
ingly only ignores the social interaction in SSSER.) pro-
posed in this paper is compared with four state-of-the-art
spatiotemporal modeling methods to verify the effectiveness
and advancement of the proposed Spatio-SSSER method.
(2) The social link weight calculation modeling method pro-
posed in this paper is compared with four state-of-the-art
social link modeling methods to verify the effectiveness and

superiority of the Social-SSSER method (This method corre-
spondingly only ignores the spatiotemporal effect in SSSER.)
proposed in this paper. (3) The proposed SSSER model is
applied to compare and analyze the contribution of the two
components of the users’ check-in spatiotemporal pattern
effects and users’ social link, namely the Spatio-SSSER and
Social-SSSER, to the evaluation indicators of the recom-
mendation system. (4) We discuss the influence of relevant
parameters on the final recommendation performance.

This paper compares the Spatio-SSSER spatiotemporal
modeling method with the following four state-of-the-art
spatiotemporal modeling algorithms:

[1] FPMC [52]: FPMC models spatiotemporal sequence
pattern based on the first-order Markov model and integrates
users’ check-in transformation matrix based on the matrix
decomposition technique.

[2] Fossil [8]: Fossil simulates high-order Markov chains
and uses a similarity model instead of LFM to model user
preferences.

[3] HRNN [53]: This is the session-based recommendation
proposed in [8]. This model uses RNN to capture sequence
dependencies and make predictions.

[4] PRME [54]: A personalized ranking metric model
(PRME) is proposed to jointly model sequence information
and personal preferences. By mapping each POI into the low-
dimensional Euclidean potential space of an object, we then
use the metric embedding algorithm to effectively calculate
the locational transition in the Markov chain model.

In order to verify the validity and advancement of the social
link proposed in this paper, we choose the following three
models:

[1] iGSLR-FCF: The literature [55] uses the FCF model to
calculate the similarity of users by using the social links of
users.

[2] USG-CIFCF: In the literature [25], based on the simi-
larity of the user’s check-in POI behavior, the cosine similar-
ity calculation formula is used to calculate users’ similarity
based on the POI jointly checked-in by users.

[3] Trust-FCF: In the literature [56], based on the assump-
tion that users’ behaviors are influenced by the ratings and
comments of other users and that their own ratings and com-
ments also influence other users, we consider explicit trust,
implicit trust and users’ different roles in social links while
predicting trust between users.

[4] SPRE [57]: The SPRE model maps each user to the
objects in the low-dimensional Euclidean potential space and
uses the prevailing metric embedding algorithm to efficiently
calculate the social links between users, thus enabling social
embedding models to effectively alleviate the data sparsity
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problem of social links and further improving the recommen-
dation performance.

The SSSER proposed in this paper is compared with three
state-of-the-art POI recommendation models:

[1] FPMC-LR [26]: The FPMC-LR model proposes a POI
model based on the extended local region constraints to fac-
torize personalizedMarkov chains and consider geographical
constraints of neighboring locations.

[2] LTSCR: The literature [6] uses a unified linear model
to integrate user preferences, social link information, users’
check-in time, and the check-in POI sequential effects to con-
duct POI recommendation. This model also applies weighted
estimates of pairwise sorting function to improve recommen-
dation performance.

[3] GE [29]: A recommendation model based on a graph
embedding method is proposed. This method uses the bipar-
tite graph to model context-related factors in the context
of POI recommendation. Then the context factors, namely
POI-POI, POI-region, POI-time, POI-word, are embedded
and modeled in a low-dimensional space in the unified opti-
mization framework.

[4] TMCA: the literature [61] employs the LSTM-based
encoder-decoder framework to automatically learn deep
spatial-temporal representations for historical check-in activ-
ities and integrate multiple contextual factors. Furthermore,
this model use multilevel context attention mechanisms to
adaptively select relevant check-in activities and contextual
factors.

Then we analyze the interactions in the SSSERmodel, that
is, in the final objective function, the corresponding ignored
social link interaction, POI-time interaction between users,
which are represented by Spatio-SSSER and Social-SSSER
respectively.

[1] Spatio-SSSER: this method correspondingly only
ignore the social link between users and their friends inter-
action in SSSER model.

[2] Social-SSSER: this method correspondingly only
ignore users’ check-in spatiotemporal effect in SSSER
model.

D. EXPERIMENTAL PREPROCESSING
1) PARAMETER SETTINGS
Hyper-parameters have a significant effect on the perfor-
mance recommender system [58], [59], we use a grid search
to use the validation collection to find the optimal settings
of hyperparameters. These include the latent dimension d
from {5, 10, 20, 30, 50, 60, 70}. To control the complexity
of the model and avoid overfitting, we use two regularization
methods: applying the L2 norm to the model parameters and
using the Dropout [60] technique with a 50% reduction rate
on the fully-connected layer and the MLP layer. We set the
learning rate parameter η to the range of {1,10−1,10−2, 10−3,
10−4}. We select 10−3 as the parameter of learning rate. The
height h of the horizontal convolution kernel of this paper
starts from {1, . . ., I}, the first I locations are from {1, . . .,
5}, the target number L is from {1,2,3}. The parameters we

choose for I and L are 5 and 3, respectively. For each height h,
the number of corresponding horizontal filters is from {4, 8,
16, 32, 64}, and the number of vertical filters is from {1, 2, 4,
8, 16}, the step size of the sliding of the convolution kernel is
set to 1, the proportion of the Dropout of the fully-connected
layer is 0.5, the MLP structure utilizes 4 layers, and the
SSSERmodel is implemented based on Linux PyTorch 0.4.0.
We compare the results of each method under the optimal
hyperparameter settings of each method.

2) PRE-TRAINING
It is well known that neural networks are quite sensitive to
initialization [31]. In order to train SSSER better, we use a
simplified version to pre-train it. Using the pre-trained model
as the initialization, we further train the SSSER model. Note
that we use Adam [31] in the pre-training phase, which has
fast convergence due to its self-adaptive learning rate strategy.
After pre-training, we use SGD optimization, which is a
common choice for fine-tuning pre-training models.

E. PERFORMANCE COMPARISON
1) COMPARISON OF SPATIOTEMPORAL SEQUENCE
MODELING
The experimental results of the comparison between the
proposed model and different state-of-the-art POI recom-
mendation models are shown in Figure 4 to Figure 5. The
Spatio-SSSER model achieves better performance than all of
the compared models. From the above figures, the following
conclusions can be obtained:

1) FPMC: This algorithm is based on the first-order
Markov chain model to model and learn users’ check-
in transformation process. The matrix factorization
technique is used to factorize the Markov transfor-
mation matrix. To model users’ check-in location
transformation, FPMC represents each item as two
separate vectors, which means the transformation of
check-in locations is modeled as the inner product
of two independent vectors. However, FPMC cannot
model the close relationship between multiple items.
FPMC cannot reflect the complex correlation between
the above-mentioned check-in locations. At the same
time, the prediction of the user’s next check-in location
should also consider the user’s check-in history, rather
than merely consider the user’s latest check-in record.
Therefore, FPMC shows the poorest recommendation
performance.

2) Fossil: In order to predict the user’s next check-in
location, these gorithm models the user’s personalized
preferences based on two aspects: long-term temporal
changes and short-term dynamic temporal changes.
Unlike FPMC, Fossil uses a high-order Markov chain
model to model the short-term dynamic temporal
changes of users. However, this method only uses
a simple linear weighting method for the integra-
tion of the long-term temporal changes and the short-
term dynamic temporal changes. This method is not
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FIGURE 4. Performance comparison on Gowalla dataset.

sufficient to capture the complex interaction between
features, and it is also impossible for the high-order
Markov chain model to model some real-world sce-
narios during the user’s check-in process, such as the
phenomenon of check-in skips. Therefore, this method
is ranked as the second poorest in terms of recommen-
dation performance.

3) PRME: This algorithm uses a pair-by-pair sorting
scheme to learn parameters and employsmetric embed-
ding for POI recommendation tasks. The core of the
method is network embedding, the purpose of which
is to learn the check-in location as a low-dimensional
vector representation of a certain node in the location
social network. However, as with most other network-
embedding algorithms, this model merely considers
those social networks that only contain positive links,
that is, only those obvious transformations that are
observable in the user’s check-in location transforma-
tion. The check-in locations with a farther distance
in between and those that have not been observed
are ignored in this method, while these links, which
are considered negative by the network-embedding

algorithms, can significantly improve the predictive
performance of the positive links and can also enhance
the recommendation performance [22]. Therefore, this
method is rated as the third in terms of recommendation
performance.

4) HRNN: This algorithm, based on a recurrent neural net-
work (RNN), implements the modeling of spatiotem-
poral sequence patterns. As one of the various deep
learning frameworks, RNN exhibits its superiority to
the Markov chain model over the prediction process
based on sequential patterns. However, when modeling
sequential data, RNN simply assumes that the time
dependency changes monotonically with the location
in the sequence, which means RNN cannot simulate
local spatiotemporal sequence patterns very well in
some real-world scenarios, especially for personalized
check-ins in historical check-in sequences. Therefore,
this method ranks second among the above-mentioned
POI recommendation methods.

5) Spatio-SSSER: Compared with the state-of-the-art rec-
ommendation models, the proposed model achieves a
certain degree of improvement in both datasets based

VOLUME 7, 2019 156815



Y. Xu et al.: SSSER for Successive Point-of-Interest Recommendation

FIGURE 5. Performance comparison on Foursquare dataset.

on all metrics. This verifies the validity of the idea
to model sequence information proposed in this paper.
The reasons are as follows: (1) This model embeds the
most recent item sequences into the ‘‘image’’ of the
latent space and uses the sequence pattern as the local
features of the ‘‘image’’, thereby adopting a method
based on the joint convolution filter for image recogni-
tion to capture local features. It is a good complement
to the Markov chain model and the RNN model whose
shortcoming is that they cannot capture the spatiotem-
poral sequence information of the user’s personalized
check-in when modeling sequence information [61].
(2) In this paper, in terms of sequencemodeling, we add
a multilayer perceptron to learn the interaction function
of a user-check-in location-Spatiotemporal pattern so
as to better capture the deeper user-location interac-
tions, thus giving the model in this paper a high-level
ability of nonlinear modeling.

In addition, among all the compared and evaluated mod-
els, as the value of N increases, the precision rate becomes
lower, the recall rate higher, andMAP and nDCG also exhibit
similar trends with the precision and recall. This is because

the more POIs that are recommended to the user, the more
POIs the user will find that they may be willing to check-in,
but the chances of some recommended POIs to be visited by
the user will be reduced. The Spatio-SSSER model performs
better in Foursquare than Gowalla, because the average num-
ber of user check-in POIs in the Foursquare dataset is higher
than that in the Gowalla dataset and the Gowalla dataset is
sparser than the Foursquare dataset, as shown in Table 1.

2) COMPARISON OF SOCIAL LINK MODELING
Figures 6 and 7 show the experimental results of a comparison
of different social link models. Obviously, iGSLR-FCF is the
worst performing social link modeling part of the iGSLR
model. One possible explanation is that the model uses the
sigmoid function to calculate the effect of this correlation.
In the USG-CIFCF model, the interaction between users is
reflected by the idea that the similarity of the user’s check-
in behavior is affected by the similarity of friends and the
sigmoid function tends to exhibit the problem of under-fitting
in calculating the relevant social link effects, so that the final
result is relatively low. The fact that the Trust-FCF model
is superior to the USG-CIFCF model indicates that to make

156816 VOLUME 7, 2019



Y. Xu et al.: SSSER for Successive Point-of-Interest Recommendation

FIGURE 6. Recommendation performance comparison on Gowalla dataset.

FIGURE 7. Recommendation performance comparison on Foursquare dataset.

more use of his/her friends in the social linkmodeling process
can help to aggregate more related contextual information
of cold-start users based on explicit trust relationship and
implicit trust relationship so as to alleviate data sparsity
issues and effectively improve recommendation performance.
SPRE is essentially a link-based approach to modeling social
information, which takes into account all possible friend
relationships between the user and other users. Therefore,
its performance is superior to that of the Trust-FCF model.
However, this approach may affect the final recommendation
performance for active users due to the fact that active users
have too many indirect friends. At the same time, SPRE only
mines positive links in social networks during the modeling
process, ignoring negative links, while many studies on social
network-based network embedding algorithms have shown
that the untrusted or adversarial negative links in social net-
works provide powerful support for positive links in various
predictive tasks.

The proposed method in this paper is superior to other
mainstream advanced algorithms based on all metrics in the

two datasets. The main reasons are as follows: This paper
uses spatial distance to reflect user preferences, and it is
different from the general spatial distance. In this paper,
the Mahalanobis distance is used instead of the Euclidean
distance to measure the spatial distance. All users and items
are embedded in a unified space, making the user closer to
their favorite items and friends in terms of spatial distance and
farther from the items they do not like. The distance between
the user and the items is used to generate the recommen-
dation results. Therefore, this method can provide accurate
recommendations for both cold-start users and active users.
The experimental results also verify the correctness of this
method.

In addition, this paper observes that the Social-SSSER
model performs better in Foursquare than Gowalla. The rea-
son is that the data concentration in the Foursquare dataset
is greater than that in the Gowalla dataset. At the same time,
recommending more POI to users helps users to find more
POI, which will promote users to be more willing to check in
points of interest. Therefore, as the number of POI increases,
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the precision continues to decrease and the recall continues
to rise. Therefore, the results are reasonable, which is also
consistent with the conclusions in the literature [55].

3) COMPARISON OF POI RECOMMENDATION ALGORITHMS
1) GE [29]: This algorithm is based on the bipartite graph

model to represent the sequence information of users’
check-ins, users’ check-in information and the check-
in time information. The above-mentioned heteroge-
neous information graphs are then embedded into a
shared low-dimensional space to be represented as a
low-dimensional space vector. Graph embedding mod-
els are often used to deal with sparse data-based data
mining tasks and they excel in such tasks. However,
the GE model still ignores negative links in social
networks just like most graph embedding models, con-
sidering only positive links in social networks. With
the deepening of the graph embedding model, many
researchers have proved that negative links are of great
help to the final performance improvement. At the same
time, compared with the deep neural network model,
the graph embedding model can’t perfectly capture the
complex feature interaction between social network
nodes. Therefore, this model ranks third in all the POI
models compared in this paper.

2) FPMC+LR: This algorithm considers the sequence
influence of the user’s check-in POI by using the lat-
est visited location in the user’s check-in sequence to
obtain the probability of visiting the next POI, and at
the same time the user’s candidate recommendation
location is regionally constrained. However, in real-
world scenarios, it is far from enough to consider only
the latest visited location in the check-in sequence.
The location prediction of the next POI the user may
visit depends on the user’s historical visiting informa-
tion, the user’s visiting temporal information and other
context-related information. In addition, in the mod-
eling of geographic information, only the constraints
of local geographic regions are considered. Therefore,
the performance of FPMC+LR based on the evaluation
indicators is inferior to several other algorithms, and
this algorithm finally exhibits the worst recommenda-
tion effect.

3) LTSCR: This algorithm models the location informa-
tion, the user’s social link, and the user’s visiting
time information based on the extended collabora-
tive retrieval model, and optimizes the loss function
using the weighted estimation paired sorting criteria.
This approach provides a comprehensive considera-
tion of the user preferences as a result of multidi-
mensional interactions and mutual influences between
users, users’ friends, check-in time, and check-in POI.
However, the algorithm is still based on the linear
interpolation method to integrate the above-mentioned
several types of context-related information. As ana-
lyzed in the literature [6], the general linear weighted

integration is not desirable. In practice, the context
information influence received by users in different
datasets is totally different, so that the distribution
of weights can be completely different. At the same
time, the social information, time information and
geographic information are simply modeled by the
similarity calculation equation. Obviously, the simi-
larity calculation cannot reflect the mutual influence
of social information, spatiotemporal information, and
other information in users’ check-in process. There-
fore, LTSCR ranks fourth in terms of recommendation
performance as shown in Figure 8 and Figure 9.

4) TMCA: this algorithm proposes an encoder-decoder
based neural network model to capture the complex
spatial and temporal dependencies among historical
check-in activities automatically, which leverages the
embedding method to incorporate heterogeneous con-
textual factors to boost recommendation performance.
Furthermore, the TMCA model introduces the tem-
poral and multi-level context attention mechanisms to
dynamically select the relevant check-ins and discrim-
inative contextual factors. However, limited by the fact
that the SPREmodel considers only the spatiotemporal
sequential influence without social influence in POI
recommendation, it only this model ranks second in
all the POI models compared in this paper, as illus-
trated in Figs. 4 and 5 above. That is, the impact of
spatiotemporal influence on the final recommendation
performance improvement is greater than the social
impact, and the integration of multiple context infor-
mation would greatly enhance the final performance
of the POI recommendation. furthermore, this model
uses the attention mechanism to select relevant check-
in activities and contextual factors. However?the using
of attention mechanism is no help for improving the
final performance. This phenomenon also conforms to
the conclusions of literature [61].

5) SSSER: Compared with the above-mentioned state-of-
the-art recommendation models, the proposed model
achieves a certain degree of improvement in both
datasets according to all metrics. This bears testimony
to the validity of the sequence-based modeling idea
and the effectiveness of the method to integrate various
spatiotemporal features and users’ social link influ-
ence. The reasons are as follows: (1) In the aspect
of sequence modeling, the joint convolution kernel in
CNN is used to capture the local features in image
recognition. In the meantime, we add a multilayer
perceptron to learn the interaction function of user-
user’s check-in locationcheck-in sequence pattern to
capture the deep interaction among them, thus giving
the model in this paper a high-level nonlinear model-
ing ability. The deep user’s intent feature extracted by
SSSER in a nonlinear way can better capture the user’s
spatial behavior. (2) We propose to model the social
link between users based on metric learning theory to
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FIGURE 8. Performance comparison on Gowalla dataset.

improve the performance of the final recommendation.
(3) The BPR strategy is applied to optimize loss func-
tion and it fits the partial order relationship at POI pairs.
(4) We integrate the above-mentioned spatiotemporal
sequence information and social information and gen-
erate the fine-grained modeling of the interaction of
the context information in the above-mentioned users’
check-in process, which is effective for the task of the
next POI recommendation.

4) ANALYSIS OF COMPONENTS’ INFLUENCE
In this section, we discuss how the two related components,
namely temporal sequence information, and social link,
influence the final results of the proposed model and also
demonstrates the contribution of these two components to
the recommendation performance improvement. As shown
in the above figures, we observe that the recommendation
performance of the SSSER model has been improved on
two datasets according to the evaluation indicators. This
paper presents the following conclusions: First, SSSER is
constantly superior to its components based on two eval-
uation indicators in the two datasets, which indicates that
the use of social links can effectively improve the final

recommendation performance and also verifies the effective-
ness of the proposedmodel. In addition, as shown in the above
figures, the spatiotemporal sequence effects bear on users’
check-in behavior. The temporal information exerts a greater
impact on the final recommendation performance when com-
pared with social links, but the two components themselves
compete with each other. One feasible explanation is that
in the LBSN, spatiotemporal location interaction is possible
only when users check-in at the geographical location during
certain periods. Finally, the integration of relevant contextual
information contributes to the improvement of recommen-
dation performance. This is evident from the fact that the
SSSER model outperforms the two components in terms of
precision and recall, which is consistent with the observations
in the literature [61]. This is because, in real-world activities,
people more or less are affected by spatiotemporal sequences
and social links, etc., and only one type of contextual informa-
tion cannot correctly and comprehensively model the check-
in behavior of users.

5) THE IMPACT OF DIMENSION
The change of the latent factor dimension will have a sig-
nificant impact on the robustness of the proposed model.
The size of the dimension also affects the number of

VOLUME 7, 2019 156819



Y. Xu et al.: SSSER for Successive Point-of-Interest Recommendation

FIGURE 9. Performance comparison on Foursquare dataset.

FIGURE 10. Recommendation performance comparison on Gowalla dataset.

iterations in the optimization process of the recommendation
model, the running time of the algorithm, and the mem-
ory used. However, the larger size of the latent dimension

does not necessarily lead to better model performance.
The recommendation model achieves optimal performance
only when the dimension selection is based on a balanced
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FIGURE 11. Recommendation performance comparison on Foursquare dataset.

FIGURE 12. Analysis of the impact of SSSER model on dimensionality based on the two datasets.

consideration between recommendation performance and
calculation cost.

Figures 12 clearly show that this paper uses the two eval-
uation indicators, Precision@5 and Rrecall@5, to verify the
performance impact of different latent factor dimensions on
the proposed algorithm based on two datasets. As shown
in Figures 9, as the dimension increases, the performance
of the recommendation model improves. When the dimen-
sion is larger than 35, for both datasets, Precision@5 and
Recall@5 become stable and do not fluctuate because of
further changes in the dimension. One possible explanation
is that an oversized dimension can lead to overfitting of the
recommendation model. Therefore, the experiments in this
paper select a dimension of 35, so that the balance perfor-
mance and calculation cost are reasonable and effective, and
the recommendation model proposed in this paper obtains
stable performance.

VI. CONCLUSION
In this paper, we develop a hybrid recommendation model
called SSSER to integrate convolutional neural networks and
metric learning for POI recommendation. On the one hand,
we use CNN tomodel the spatiotemporal association between
the check-in POIs and the user. On the other hand, we apply
users’ social link and user/user potential relationships to alle-
viate the data scarcity problem that is common in the POI
recommendation process. Our experiments demonstrate the
effectiveness and efficiency of the proposed method.

For future work, we hope to integrate richer contextual
information into the model proposed in this paper, which may
generate additional performance improvements in SSSER.
In addition, recent advances in deep learning, e.g., atten-
tion mechanism, dilated convolutional neural network, and
generative adversarial network, have shown great potential
in the fields of natural language processing and computer
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vision. Hence, applying the above deep learning techniques
to recommender systems would be an interesting direction.
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