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ABSTRACT Signal processing in the spherical harmonic (SH) domain has the advantages of analyzing
a signal on the sphere with equal resolution in the whole space and of decomposite the frequency- and
location-dependent components of the signal. Therefore, it finds recent applications in signal recovery and
localization. In this paper, we consider the gridless sparse signal recovery problem in the SH domain with
atomic norm minimization (ANM). Due to the absence of Vandermonde structure for spherical harmonics,
the Vandermonde decomposition theorem, which is the mathematic foundation of conventional ANM
approaches, is not applicable in the SH domain. To address this issue, a low-dimensional semidefinite
programming (SDP) method to implement the spherical harmonic atomic norm minimization (SH-ANM)
approach is proposed. This method does not rely on the Vandermonde decomposition and can recover the
atomic decomposition in the SH domain directly. As an application, we develop the direction-of-arrival
estimation approach based on the proposed SH-ANM method, and computer simulations demonstrate that
its performance is superior to the state-of-the-art counterparts. Furthermore, we validate the results in real-life
acoustics scenes for multiple speakers localization using measured data in LACATA challenge.

INDEX TERMS Spherical harmonic domain, atomic norm, gridless sparse signal recovery, semidefinite
programming, direction-of-arrive estimation.

I. INTRODUCTION
Sherical harmonics (SH) are a set of orthogonal polynomials
as the complete basis on the sphere which can be used for
approximation of the spherical manifolds. It has been studied
extensively to process the signals defined on the spherical
manifolds encountered in practice, such as astrophysics, med-
ical imaging, and audio processing, among others [1]–[3].
The signals on the spherical manifolds can be orthogonally
projected onto the vector of spherical harmonics, which is
known as spherical harmonic domain. Various signal process-
ing approaches have been extended to the SH domain for
signal recovery, direction-of-arrival (DOA) estimation, etc.

In last decades, several classical DOA estimation methods
and their applications have been proposed in literatures, such
as MUSIC [4], ESPRIT [5], propagator method [6], max-
imum likelihood [7] and tensor approaches [8], etc. Some
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conventional DOA estimation methods have been proposed
for SH domain in [9]–[11].

Inspired by the sparse representation technique [12], [13],
sparse signal processing in the SH domain has been drawn
attention to in recent years. In [14], [15], sparse recovery in
the SH domain for random sampling has been studied. In [16],
the `1-SVD (singular value decomposition, SVD) method in
the SH domain has been proposed for combating room rever-
berations. In [17], [18], the sparse Bayesian learning DOA
estimation methods were exploited to the SH domain. The
sparse Bayesian learning based methods may provide better
performance than `1 norm based ones [13], and they are with
slow convergence rate, however [28]. Furthermore, the afore-
mentioned sparsity-based approaches may be degraded by
the grid mismatch problem. To deal with the problem, some
efforts have been made to alleviate the grid modeling error to
some extent [19].

Recently, a unified framework has been proposed for
sparse representation on the finite/infinite dimensional dic-
tionary in [20]. It results in a gridless sparse recovery method
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by solving the optimization problem on the convex hull of
an atomic set, which is known as the atomic norm mini-
mization (ANM). Specially, for the atoms defined on the
set of complex exponentials, Candès and Fernandez-Granda
show that a bandlimited signal can be recovered with given
number of low rate samples if the frequency separation con-
dition holds [21]. Based on the theory, the ANM approach
has been extended to multidimensional frequency models
[22]–[24], prior kenowledge [25], multiple measurement vec-
tors (MMV) [26] and covariance matrix cases [27]–[29] for
gridless signal recovery and DOA estimation. However, these
conventional ANM methods depend upon the Vandermonde
structure of the array manifolds, and hence they are limited
to linear or rectangular arrays.

To apply the ANM approach to SH domain [30], one
straightforward idea is to solve the conventional ANM prob-
lem, where the atomic elements are Vandermonde vec-
tors, with the extra weighting constraints [31], [33], [34].
This approach results in an potentially higher dimensional
semidefinite programming (SDP) problem than the dimen-
sion of samples, which would be quite computational
demanding.

As the extensive real-time applications for gridless sparse
representation methods on the spherical manifolds, e.g. DOA
estimation, it motivates us to develop the low dimensional
spherical harmonic ANM approach, that is not yet reported
in the literature.

In this paper, we study the gridless sparse signal recovery
problem on the spherical manifolds, by means of atomic
norm minimization, with its application to DOA estimation
of spherical arrays. We first define the spherical harmonic
atomic norm based on covariance matrix in SH domain.
Due to the fact that spherical harmonics are not Vander-
monde, the major challenge of extending ANM approach to
SH domain is to formulate convex optimization problem in
absence of Vandermonde decomposition theorem. To deal
with this issue, we propose a low-dimensional SDP for-
mulation of spherical harmonic atomic norm minimization
(SH-ANM) problem, which retrieve the atomic decomposi-
tion in SH domain directly without the foundation of Van-
dermonde decomposition theorem. Then, we present the
SH-ANM based approach for DOA estimation of spherical
arrays and show the performance improvement beyond some
existed methods, especially in low signal-noise ratio(SNR)
and adjacent sources scenarios. Finally, we demonstrate effi-
cacy of our method with the experimental data taken from the
IEEE audio and acoustic signal processing (AASP) challenge
on acoustic source localization and tracking(LOCATA) [35]
in the context of speakers localization.

The paper is organized as follows. Section II introduce the
SH domain wavefield model briefly and section III present
the spherical harmonic atomic norm concept. The SDP for-
mulation of SH-ANM problem and SH-ANM based signal
denoising method is proposed in section IV. Consequently,
SH-ANM approach is applied to DOA estimation scenario
in Section V. Then the simulations and the experiments are

shown in Section VI and VII. Section VIII concludes the
paper.
Notations: (•)T denotes the transpose, vec(•) represents the

vectorization operator. (•)∗ and (•)H means complex conju-
gate and conjugate transpose operation. Re(•) is the real part
operator. The diagonal matrix is represented as diag(x). Tr(•)
is the trace. ‖•‖2, ‖•‖F are the Euclidean and Frobenius norm
respectively. ⊗ denotes the Kronecker product, for a matrix
M,M ≥ 0 denotes nonnegative definite. I denotes the identity
matrix and δk,l is the Kronecker delta. E {•} is understood as
the expectation.

II. SIGNAL MODEL
Consider a spherical array of I sensors, the ith element is
at ui = (R,8i) where 8i = (θi, ϕi) and R, θ , ϕ are
the radius, elevation and azimuth. There are K far-field
sources located at 9k = (θk , ϕk ) ∈ 4 with 4 =

{(θ, ϕ)|θ ∈ (0, π], ϕ ∈ (−π, π]}. The received signals of the
spherical array X(t) is

X(t) = A( E9)s(t)+ n(t) (1)

where s(t) and n(t) are the source and additional noise
component, respectively. The array manifold is A( E9) =
[a(91), . . . , a(9K )] ∈ CI×K .
Let Ymn (θ, ϕ) is the spherical harmonic of order n and

degree m,

Ymn (θ, ϕ) =

√
(2n+ 1)(n− m)!

4π (n+ m)!
Pmn (cos θ )e

imϕ

∀0 ≤ n ≤ N , 0 ≤ m ≤ n (2)

with the associated Legendre polynomial Pmn (cos θ ), the ith
element of a(9k ) can be represented as spherical harmonic
series expansion by ignoring the high order bn(κR) when n >
κR [3]

ai(9k ) =
N∑
n=0

n∑
m=−n

bn(κR)[Ymn (9k )]∗Ymn (8i) (3)

where N is the maximum spherical harmonics order, κ =
λ/2π and λ is the wavelength. The frequency dependent
component bn(κR) is modeled as [3]

bn(κR) =

4π i
nJn(κR) open sphere

4π in(Jn(κR)−
J ′n(κR)
u′n(κR)

un(κR)) rigid sphere.

(4)

where un and Jn are spherical Hankel function of second kind
and spherical Bessel function of first kind, respectively. The
derivatives of Jn and un are denoted by J ′n and u′n.
Then, we have the matrix form of the spherical array model

that

A( E9) = Y( E8)BYH( E9) (5)

where the ith raw vector of Y( E8) ∈ CI×(N+1)2 and the kth
raw vector of Y( E9) ∈ CK×(N+1)2 is

y(8i) = [Y 0
0 (8i),Y

−1
1 (8i),Y 0

1 (8i), . . . ,YNN (8i)],
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y(9k ) = [Y 0
0 (9k ),Y

−1
1 (9i),Y 0

1 (9k ), . . . ,YNN (9k )] (6)

and B ∈ C(N+1)2×(N+1)2 is given by

B = diag (b0(κR), . . . , bN (κR)) . (7)

Accordingly, we apply SH domain transformation as

P(t) = YH( E8)0X(t)

= BYH( E9)s(t)+ v(t) (8)

where 0 = diag(α1, α2, . . . , αI ) is satisfying [3], [50]

YH( E8)0Y( E8) = I. (9)

and v(t) is the transformed additional noise. Therefore,
the covariance matrix in SH domain is given by

R = E
{
P(t)PH(t)

}
= BYH( E9)RsY( E9)BH

+ V (10)

with V = E
{
v(t)vH(t)

}
and Rs = E

{
s(t)sH(t)

}
. It is

remarked that if E
{
n(t)nH(t)

}
= σ 2I (σ 2 is the power of

noise) and the location of spherical array elements E8 obeys
spherical t-design distribution in [3](0 = I), then V = σ 2I.
Denote the ith column of matrix R in (10) as ri, it can

be regarded as a single measurement of the array. Thus, let
H = RsY( E9)BH, we can remodel ri as

ri = E
{
P(t)p∗i (t)

}
= BYH( E9)hi + vi (11)

where pi(t) is the ith row of P(t), hi and vi are the ith column
of H and V, respectively. By (10) and (11), the matrix form
of covariance matrix in SH domain in (10) is [36]

R = BYH( E9)H+ V

=

K∑
k=1

ckBYH(9k )ρk + V (12)

where ck is the Euclidean norm of kth raw vector ofH and ρk
denotes the normalized kth raw vector of H, i.e.

∥∥ρk∥∥2 = 1.
Observe that the covariance matrixR in (12) reveals aMul-

tipleMeasurement Vectors (MMV) formulation, by whichwe
shall propose a novel compact formulation of the atomic norm
for the covariance matrix in next section.

III. SPHERICAL HARMONIC ATOMIC NORM
Following the scheme proposed by
Chandrasekaran et al. [20], we can define an atomic set where
the elements are the basis of the representation to the signals
analyzed. For the signals in SH domain, the atomic set A
depends on the atoms of the spherical harmonic vectorsY(9)
and the signals can be described as a sum of distinct atoms

x =
K∑
k=1

c9kY(9k ), Y(9k ) ∈ A. (13)

The decomposition in (13) is known as an atomic
decomposition.

Finding the sparsest atomic decomposition of x results in
the l0 spherical harmonic atomic norm as

‖x‖A,0 = inf

{
K |x =

K∑
k=1

c9kY(9k ),Y(9k ) ∈ A
}
. (14)

To recover the signal within a convex optimization frame-
work, [20] suggests a convex heuristic of the l0 atomic norm,
which is denoted by

‖x‖A = inf {t > 0 : x ∈ t conv(A)} , (15)

where conv(A) is the convex hull of A. Thus, we have

‖x‖A= inf

{
K∑
k=1

c9k |x =
K∑
k=1

c9kY(9k ),Y(9k ) ∈ A
}
, (16)

which is named spherical harmonic atomic norm and the
corresponding dual norm ‖•‖∗A is [37]

‖x‖∗A = sup
‖q‖A≤1

Re
{
Tr
[
xHq

]}
(17)

For the application of DOA estimation, various kinds
of atomic norms are developed for covariance matrix in
[27]–[29]. Here, we propose a new atomic norm of the covari-
ance for DOA estimation of the spherical arrays.
Observe the MMV model of the noiseless covariance

matrix in (12) that R =
K∑
k=1

ckBYH(9k )ρk , we define the

spherical harmonic atomic set as

A :=
{
BYH(9)ρ

∣∣9 ∈ 4, ‖ρ‖2 = 1
}
. (18)

Thus, we define the spherical harmonic atomic l0 norm of the
covariance matrix R as

‖R‖A,0= inf

{
K |R =

K∑
k=1

ckBYH(9k )ρk .ck ≥ 0

}
, (19)

and the spherical harmonic atomic norm of R as

‖R‖A= inf

{
K∑
k=1

ck

∣∣∣∣∣R=
K∑
k=1

ckBYH(9k )ρk , ck ≥ 0

}
. (20)

Regarding the spherical harmonic atomic norm defined
above, we have the following remarks:
Remark 1: Our spherical harmonic atomic norm of covari-

ance matrix defined in (20) can be regarded as the atomic
norm for MMV model from the perspective of the represen-
tation in (12), and also can be interpreted as an extension of
the atomic norm for single measurement vector (SMV) by
averaging over the snapshots. That is similar to the idea pre-
sented in [38], but our atomic norm is without the limitation
of the non-zero mean assumption over the original sources
since the covariance matrix is positive semidefinite.
Remark 2: Unlike dimensional reduction technique pre-

sented in [39] for ANM problem in MMV case, the proposed
spherical harmonic atomic norm does not require additional
computations, such as QR decomposition or square rooting
of the covariance matrix.
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Remark 3: The proposed spherical harmonic atomic norm
can be referred to as a kind of nuclear norm as defined in [28]
for the uncorrelated signals, but it does not depend on the
uncorrelated signals assumption which is different from [28].
It implies that the proposed method has the robustness to the
correlated or even coherent signals, which can be found in
various applications of radar, sonar and wireless communica-
tion [40].

IV. SEMIDEFINITE PROGRAMMING TO SOLVE
SPHERICAL HARMONIC ATOMIC NORM MINIMIZATION
The conventional ANM methods for linear spectrum relies
on the Vandermonde decomposition theorem to construct
the equivalent SDP implementation. Unfortunately, this
approach cannot be extended to SH-ANM problem in (20)
directly, due to the fundamental difficulty that vectors of
spherical harmonics are not with Vandermonde structure.
To deal with this issue, we develop an SDP formulation for
the SH-ANM problem in this section.

A. SDP IMPLEMENTATION OF SH-ANM
Note thatPmn (cos θ ) is a order n trigonometric polynomial that

Pmn (cos θ ) =
n∑

l=−n
βn,m,le

ilθ
with unique coefficients

{
βn,k,l

}
,

the spherical harmonic in (2) can be expressed by 2-D Fourier
series as [34]

Ymn (θ, ϕ) =
n∑

l=−n

An.mβn,m,leilθeimϕ (21)

where An.m =
√

(2n+1)(n−m)!
4π (n+m)! . By (21), we can rewrite (8) as

P(t) = BGD( E9)s(t)+ v(t) (22)

where D( E9) = [f(91), . . . , f(9K )] with

f(9k ) = fθ (θk )⊗ fϕ(ϕk ),

fθ (θk ) =
[
e−iNθk , . . . , 1, . . . , eiNθk

]T
,

fϕ(ϕk ) =
[
e−iNϕk , . . . , 1, . . . , eiNϕk

]T
, (23)

andG is a constant matrix constructed by An.m, βn,m,l . There-
fore, substituting (22) into (12), we have

R = E
{
P(t)PH(t)

}
= G̃D( E9)RsDH( E9)G̃H

+ V (24)

with G̃ = BG.
By utilizing the relationship revealed in (24) about the SH

domain steering vector and Vandermonde matrix, we start
with the noise-free case where V = 0 and develop the fol-
lowing low dimensional SDP implementation for SH-ANM
approach.
Theorem 1: Given the location of sources E9, let minimiz-

ing the objective value of the following optimization problem
yield the norm ‖R‖T, i.e.

‖R‖T = min
Q,M

1
2ζ 2

Tr(G̃S(Q)G̃H)+
1
2
Tr(M)

s.t.
[
G̃S(Q)G̃H R

RH M

]
≥ 0, (25)

if the maximum spherical harmonics order N is sufficiently
high and strong duality holds, we have ‖R‖T = ‖R‖A, where
‖R‖A is the spherical harmonic atomic norm defined in (20)
with R ∈ C(N+1)2×(N+1)2 .

ζ =

∥∥∥G̃∥∥∥
F
=

√√√√ N∑
l=0

(4l + 1)
4π

‖B‖F , (26)

and S(Q) is a Hermitian matrix consisted of Q as [22]

S(Q) =


Q0 Q−1 · · · Q−2N
Q1 Q0 · · · Q−2N+1
...

...
. . .

...

Q2N Q2N−1 · · · Q0

 (27)

with Ql is a Toeplitz matrix defined by lth row of Q as

Ql =


ql,0 ql,−1 · · · ql,−2N
ql,1 ql,0 · · · ql,−(2N−1)
...

...
. . .

...

ql,2N ql,2N−1 · · · ql,0

 . (28)

We prove this theorem in Section IV-B based on the
sum-of-squares relaxation of polynomial and the equivalence
between the prime and dual problem followed by strong
duality.

B. PROOF OF THEOREM 1
Easy to show that ‖R‖T ≤ ‖R‖A (See [37]), However, there
is no guarantee to ensure the positive semidefinite property
of S(Q), and thus we are not sure there exists a Vandermonde
decomposition for the two folds block Toeplitz matrix S(Q).
Consequently, the conventional proof procedure for ‖R‖T ≥
‖R‖A proposed in [23], [26], [37] is not applicable in our
case.
To investigate the relationship between SDP implementa-

tion in (25) and the original spherical harmonic atomic norm
in (20), we alternate the route to the dual problem.
Following the definition of the dual norm in (17), the dual

spherical harmonic atomic norm of the covariance matrix R
is repesented as

‖R‖∗A = sup
‖�‖A≤1

Re
{
Tr
[
RH�

]}
= sup

9∈4,‖ρ‖2=1
Re
{
Tr
[
RHBYH(9)ρ

]}
= sup

9∈4,‖ρ‖2=1

∣∣∣Tr [ρRHBYH(9)
]∣∣∣

= sup
9∈4

∥∥∥RHBYH(9)
∥∥∥
2
. (29)

By the Largrangian analysis, we have the dual problem
of (20)

max
�

Re
{
Tr
[
RH�

]}
156558 VOLUME 7, 2019
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s.t. ‖�‖∗A ≤ 1, (30)

and propose the following SDP implementation of the dual
SH-ANM problem based on the sum-of-squares relaxation of
polynomials [24].
Theorem 2: Given the location of sources E9, the dual

SH-ANM problem in (30) results in the identical solution �
to following SDP

min
P,�
− Re

{
Tr
[
RH�

]}
s.t. Tr(2k,lG̃HPQG) = δk,l

k, l ∈ H[
P −�H

−� I

]
≥ 0 (31)

if the maximum spherical harmonics order N is sufficiently
high, where 2k ∈ R(2N+1)×(2N+1) denotes the matrix with
zeros except ones on the kth diagonal, 2k,l = 2l ⊗2k , δk,l
is the Kronecker Delta function and H is a half space that
k, l ∈ [−2N − 1, 2N + 1].

Proof: Observe that the objective of (31) and (30) are the
same, we only need to show they share the identical feasible
set.

Since

‖�‖∗A ≤ 1

⇔ Y(9)BH�H�BYH(9) ≤ 1

⇔ F(9) = 1− Y(9)BH�H�BYH(9) ≥ 0, (32)

where F(9) is a real positive polynomial. Let y =

[y0,0, y1,−1, . . . , yN ,N ] ∈ R(N+1)2 , with yn,m denoting the real
spherical harmonic Yn,m(9) for 9 ∈ 4, we have

F(9) = 1− Y(9)BH�H�BYH(9)

=
1
CN

N∑
n=0

n∑
m=−n

y2n,m −
∑
j

(
N∑
n=0

n∑
m=−n

αn,m,jyn,m

)2

, f (y) (33)

with CN =
N∑
n=0

(4n+1)
4π .

Note that the spherical harmonic yn,m can be written as a
homogeneous polynomial of y1,0, y1,1 and y1,−1, i.e. yn,m =
Hn,m(y1,0, y1,1, y1,−1). Thus we define some nonnegative
polynomials

gv(y) =



n∑
m=−n

y2n,m −
2n+ 1
4π

, v = n+ 1,

2n+ 1
4π

−

n∑
m=−n

y2n,m, v = n+ N + 2,

yn,m − Hn.m(y1,0, y1,−1, y1,1),
v = 2N + 2+ n2 + n+ m+ 1,
Hn,m(y1,0, y1,−1, y1,1)− yn,m,
v = N 2

+ 4N + 3+ n2 + n+ m+ 1,
where m = −n, . . . , n and n = 0, . . . ,N

(34)

and the sets

M(g) =

{
P ∈ R[y]|P = s0 +

χ∑
v=1

gvsv, sv ∈
∑

R[y]2
}
,

D(g) =
{
y ∈ R(N+1)2

∣∣∣ gv(y) ≥ 0, v = 1, 2, · · · , χ
}

(35)

where χ = 2(N+1)2+2N+2,R[y] and
∑

R[y]2 denote the
set of real polynomials and real sum of squares polynomials
on y respectively.

Observe that the polynomials gi(y) defined in (34) state
Unsold’s theorem and the relationship between real spherical
harmonics, which implies for any y ∈ D(g), y determines a
vector of spherical harmonics Y(9) uniquely. Applying this
and (32) gives f (y) ≥ 0 for any y ∈ D(g).
Therefore, M(g) is a quadratic module, because of

non-empty D(g) [41]. Using this and (34) gives
N∑
n=0

2n+ 1
4π

−

N∑
n=0

n∑
m=−n

y2n,m =
2N+2∑
v=N+2

gv(y) · 1 ∈M(g), (36)

and thus M(g) is Archimedean, followed by Corol-
lary 5.1.14 in [41]. This means for any y ∈ D(g), we have
f (y) ∈M(g), i.e.

f (y) = s0 +
χ∑
v=1

gvsv,

= s0, sv ∈
∑

R[y]2, (37)

which implies F(9) is sum-of-squares of real spherical har-
monics.

Strictly speaking, the result in (37) is based on the sum-
of-squares relaxation of the polynomial as shown in [24].
For a given E9, [24] provides a mechanism to determine the
harmonic order for the sum-of-squares relaxation.

Therefore, given a sufficient large N , according to the
Gram matrix representation of trigonometric polynomi-
als [42], a positive semidefinite matrix P ≥ 0 is existed that

F(9) ≥ 0⇔


Tr(2k,lG̃HPG̃) = δk,l,

k, l ∈ H ,[
P −�H

−� I

]
≥ 0.

(38)

By (38) and (32), we can conclude that

‖�‖∗A ≤ 1⇔


Tr(2k,lG̃HPG̃) = δk,l
k, l ∈ H[

P −�H

−� I

]
≥ 0,

(39)

and thus (30) and (31) share the identical solution �.
To show the optimality of solution for the SH-ANM prob-

lem in (20), we have the following dual certificate.
Theorem 3: The optimal solution of SH-ANM problem

in (20) gives the unique atomic decomposition which is iden-
tical to (12) if there exist a dual polynomial:

q(9) = Y(9)BH� (40)
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Satisfying {
q(9k ) = ρk , ∀k = 1, 2, . . . ,K
‖q(9)‖2 < 1, ∀9 6= 9k

(41)

Proof: The proof is shown in Appendix A.
Now the proof of Theorem 1 can be accomplished.

As shown in [37], for a given E9, the dual polynomial with
sufficiently high order satisfying Theorem 3 indeed exists.
Followed by (37), this polynomial is with the sum-of-squares
relaxation order, which can be denoted as N , and thus Theo-
rem 2 holds. In this situation, the dual problem of (20) can
be solved by SDP problem in (31) and yield the identical
atomic decomposition with the ground truth. By utilizing
the standard Largrangian analysis (derivation details can be
found in Appendix B), the dual problem of (31) is (25), which
implies that ‖R‖T = ‖R‖A, followed by strong duality.

Regarding the Theorem 2 and 3 above, we have the follow-
ing remarks:
Remark 4: Both the SDP formulation in Theorem 2 and

the one in [34] are developed for super resolution with the
spherical manifold and they both are based on the sum-of-
squares relaxation for the polynomial either. In particular, our
method is with a low-dimensional SDP formulation.
Remark 5: The methods in [25] and Theorem 2 are

both based on a semi-algebraic set constrained by nonneg-
ative polynomials. In particular, we limit the semi-algebraic
set as the space of spherical harmonic vectors in our
work.
Remark 6: It is noted that whether the SH-ANM approach

can retrieve atomic decomposition exactly and the proposed
method can solve SH-ANM problem efficiently are both
related to the capability of resolution. Similar with [34],
wewill demonstrate the capability of resolution via numerical
simulation in SectionVI. Furthermore, we also note that some
recent progress for the super resolution without resolution
threshold can be found in [43], [44].

C. SH-ANM WITH SIGNAL DENOISING
In this section, we step to noisy cases where V 6= 0. The
covariance matrix estimation is obtained by averaging over
snapshots in practice that

R̂ =
1
J

J∑
t=1

P(t)PH(t)

= G̃D( E9)RsDH( E9)G̃H
+ η

= R̄+ η (42)

where η is the outlier caused by additional noise and the finite
snapshots effect.

A natural way to deal with additional noise for sparse
recovery problem is via regularization.

It is shown in [45] that for the known number of sources,
the smallest fitting error ε should be the optimal choice as
long as no false alarm is observed. To this end, the signal

denoising problem via SH-ANM can written as

min
Q,M,R

1
2ζ 2

Tr(G̃S(Q)G̃H)+
1
2
Tr(M)

s.t.
[
G̃S(Q)G̃H R

RH M

]
≥ 0∥∥∥R̂− R

∥∥∥2
2
≤ ε2 (43)

where ε = ‖η‖2 is the optimal choice for the recovery of
covariance matrix R. Here, we argue that ε can be set of ε =
(N + 1)2σ 2, followed by [46], where σ is estimated by the
square root of the smallest eigenvalue of R̂.

V. APPLICATION TO DOA ESTIMATION
In previews section, we presented a low dimensional SDP
algorithm based on spherical harmonic atomic norm min-
imization (SH-ANM) approach for gridless sparse signal
recovery on the spherical manifolds, which may yield various
applications in signal denoising, imaging and source localiza-
tion. As an example, we demonstrate the proposed algorithm
to DOA estimation of spherical sensors array in free space
and room reverberation environment.

A. POINT SOURCE DOA ESTIMATION IN FREE SPACE
Point source model is quite common in various scenarios,
such as radar, wireless communication and acoustics, which
represents the wavefield as a sum of Diracs. With a far-field
assumption, the point source DOA estimation of spherical
array can be regarded as identifying atoms from measure-
ments in SH domain, and hence can be implemented based
on SH-ANM approach.

Our SH-ANM based DOA estimation method steps from
the recovered covariance matrix

R̃? = G̃S(Q̃?)G̃H, (44)

where Q̃? is the optimal solution of (43).
To extract DOAs from the solution to SH-ANM method,

i.e. (44), we show the following analysis.
According to Theorem 1, (Q?,M?) given by

S(Q?) =
K∑
k=1

ck f(9k )fH(9k ),

M?
=

K∑
k=1

ckρkρ
H
k , (45)

is one of the optimal solutions to the primal problem (25).
Note that the interior point methods found the solution

with maximum rank since they searched the relative interior
of the optimal face to obtain solution [47], which implies
that interior point method results in the solution of (25) that
spans the range space of the solution in (45). On the other
hand, the objective function of (25) is the trace norm, which
yields the solution of (25) with smaller rank.

Therefore, we argue that the principle component of R̃?

spans the range space of (45), which motivates us to apply
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the subspace method to the the recovered covariance matrix
R̃? as

R̃? = Us6sUH
s + σ

2UNUH
N . (46)

The eigen-value decomposition of R̃? formulates the signal
subspace Us and noise subspace UN , and thus we have

R(Us) ≈ R(BYH( E9)) (47)

where R(�) denotes the spanned subspace, so that
SH-ESPRIT algorithm can be applied to Us for 2-D DOA
estimation.

Followed by the Legendre polynomial recurrence relation-
ship, let

D1 = diag{ 0︸︷︷︸
n=1

,−1, 0, 1︸ ︷︷ ︸
n=2

, . . . ,−N + 1, . . . ,N − 1︸ ︷︷ ︸
n=N

},

D2=diag{K
−

1,0︸︷︷︸
n=1

,K−2−1,K
−

2,0,K
−

2,1︸ ︷︷ ︸
n=2

, . . . ,K−N ,−N+1,. . . ,K
−

N ,N−1︸ ︷︷ ︸
n=N

},

D3= diag{K+1,0︸︷︷︸
n=1

,K+2−1,K
−

2,0,K
+

2,1︸ ︷︷ ︸
n=2

,. . . ,K+N ,−N+1,. . . ,K
+

N ,N−1︸ ︷︷ ︸
n=N

}

(48)

and

E = [D2U(−1)
s D3U(1)

s ], (49)

where K±n,m =
√
(n∓ m)(n± m+ 1) and U(−1)

s ,U0
s ,U

(1)
s is

generated from Us as shown in [10], we have

D1U0
s = E

[
1T

1H

]
, (50)

then 1 can be solved as

1 = (EHE)
−1

EHD1U0
s . (51)

By computing the eigenvalues uk , k = 1, 2, . . . ,K , of 1,
we can obtain DOA of the kth source by θ̂k = tan−1 |uk | and
ϕ̂k = arg(uk ) respectively.

B. SPEAKERS LOCALIZATION IN ROOM REVERBERATION
ENVIRONMENT
Room reverberation induces the scenario with high corre-
lated sources and underdetermined system, which degrade
the performance of conventional DOA estimation method
significantly. To deal with issues, the frequency diversity
and the Time-Frequency sparsity of speech are exploited
to address speakers localization problem in reverberation
environment. In this work, we apply the SH-ANM approach
for multiple speakers localization based on the Direct-Path
Dominance (DPD) test [48]. The algorithm is consisted of
four steps:

Firstly, we transformSHdomainmeasurement data (8) into
short time Fourier transform (STFT) domain as

Pν,ι = BνYH( E9)s(ν, ι)+ v(ν, ι), (52)

FIGURE 1. DOA Estimation error versus angular separation in noiseless
single snapshot case.

and compute the local Time-Frequency (TF) covariance
matrices in SH domain via frequency smoothing as

R̂(ν, ι) =
1
JνJι

Jν∑
jν=1

Jι∑
jι=1

B−1ν−jνPν−jν ,ι−jιP
H
ν−jν ,ι−jι (B

H
ν−jν )

−1,

(53)

where ν and ι are the frequency and time index, Bν denotes
the matrix B in (7) at frequency index ν.
Subsequently, DPD test is applied to the covariance matri-

ces to identify TF-bins with the principle component on
direct-path. The desired set of TF-bins is described as
follows:

ADPDtest =

{
(ν, ι) :

σ1(ν, ι)
σ2(ν, ι)

> ζ

}
(54)

with σ1(ν, ι) and σ2(ν, ι) the first and second largest eigen-
value of R̂(ν, ι).

Assume that there is single dominant direct-path compo-
nent in the selected TF-bins (ν, ι) ∈ ADPDtest, the candidate
DOAs of direct-path9TF(ν, ι) can be estimated by SH-ANM
approach described in Section V-A.

Finally, we fusion the candidates of DOA
estimation 9TF(ν, ι) to establish the trajectories of speak-
ers. Given the angle 9

(j)
TF(ν, ι) in jth sliding observa-

tion window of 9TF(ν, ι), where the time index ι ∈

[ιj, ιj + ιw] and the frequency index ν ∈ [νL, νH],
we can calculate the spatial spectrum at 9(j)

TF(ν, ι) in the
window by

p(ν, ι) = Y(9(j)
TF(ν, ι))Un, (55)

and choose DOAs 9i, i = 1, . . . , q corresponding
to the q highest peaks as the centers for
clustering.

Define the distance between the clustering center 9i =

(θi, φi) and a certain DOA 9TF = (θTF, φTF) in the
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FIGURE 2. Performance comparison under different SNRs for uncorrelated sources at (θ, ϕ) = (20◦,50◦), (30◦,120◦), L = 200 when SNR
varies from 0 to 20dB.

FIGURE 3. Performance comparison with various number of snapshots for uncorrelated sources at (θ, ϕ) = (20◦,50◦), (26◦,128◦), SNR = 0dB.

observation window 9(j)
TF(ν, ι) as

d(9i, 9TF)

= cos−1(cos θTF cos θi + cos(φTF − φi) sin θTF sin θi), (56)

we list and sort the count of the elements in the set

Bi =
{
9TF(ν, ι) : d(9i, 9TF) < 10◦

}
, (57)

and pick up Bi with the highest count as the first cluster
and removed from the sorted list. If the next set Bj satisfy-
ing d(9i, 9j) < 10◦, the set Bj is removed from the list
and combined into the existed cluster, otherwise establish a
new cluster. Repeat the procedure till all candidates in the
list are clustered. The DOAs of speakers in such frame can
be obtained via Gaussian-Mixed Model(GMM) cluster by
cluser.

The efficacy of the algorithm proposed in Section V-A
and V-B will be verified with simulations and real-life mea-
surements data in Section VI and VII, respectively.

VI. SIMULATIONS
This section evaluates the DOA estimation performance of
proposed method in Section V-A for point sources in free
space through simulations.

Firstly, we demonstrate the capability of resolution to
SH-ANM method and the super resolution method on the
sphere in [34] for single snapshot and noiseless case. Then,
the comparison of the DOA estimation performance in
noisy case between SH-ANM method in Section V-A and
l1 norm based method in [16], the SHESPRIT in [10],
TSDA (estimate elevations with U-SHESPRIT and estimate
azimuths with U-SHRMUSIC) in [11], CV-VSBL in [17] and
Cramer-RaoBound (CRB) in [49] is presented. Here, we refer
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FIGURE 4. Probability of resolution versus angular separation for uncorrelated sources at (θ, ϕ) = (30◦,50◦), (30◦ + δ,50◦ + δ), SNR = 3dB.

FIGURE 5. Performance comparison with different SNRs for correlated sources (θ, ϕ) = (20◦,50◦), (30◦,120◦), L = 200, α = 0.6.

to the SH-ANM method with SH-ESPRIT in Section V-A as
ANM-SHESPRIT.

All the simulations are carried out on the order N = 4
rigid spherical array with 38 sensors followed by Lebedev
distribution [50]. The radius of spherical array is r = 0.042m
and the signals are narrowband AM signals with 2πr/λ =
2.7 to avoid the spatial aliasing. The discretion sparsity based
methods estimates DOAs by searching the K largest peaks
of the spectrum with the 0.2◦ grid interval (unless otherwise
specified). As a metric of performance, RMSE is utilized to
algorithm evaluation as

RMSE=

√√√√√ 1
MK

K∑
i=1

M∑
j=1

(
_

θ ij − θi)2 (58)

with the simulation trials number M and the source number
K .

_

θ ij and θi denote the estimation and the ground truth of the

ith DOA at jth trial. For each simulation, 200 Monte Carlo
trials are performed using PC with Intel i7-8700K, 3.7GHz
and 6GB memory.

A. COMPARISON OF RESOLUTION CAPABILITY
Suppose that two sources locate at (θ, ϕ) = (30◦, 50◦) and
(30◦+δ, 50◦+δ), and the angle separation δ varies from 1◦ to
20◦. We refer to the super resolution on the sphere method in
[34] as SR-Sphere and compare the average DOA estimation
error of ANM-SHESPRIT method and SR-Sphere method in
noiseless single snapshot case. The signals are the complex
random data with equal power. Fig. 1 shows the average esti-
mation error of 200 trails varus angle separation. We can see
that the two methods have the similar DOA estimation error
which implies they may have almost the identical capability
of resolution. To evaluate the computational complexity,
we compute the average time per trail of the two methods.
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FIGURE 6. Performance comparison with various numbers of snapshots for correlated sources at (θ, ϕ) = (20◦,50◦), (26◦,128◦), α = 0.7,
SNR = 5dB.

FIGURE 7. Estimated DOAs as a function of time with the DPD-SHANM, DPD-MUSIC and DPD-EDS method for
Task 2 Recording 2 in LOCATA challenge.

Our method takes 0.4388s average per trail and SR-sphere
method takes 1.2626s average per trail respectively,
which indicates that our method is more computational
efficient.

B. PERFORMANCE FOR UNCORRELATED SOURCES
We compare SH-ANM based method with some baselines
for uncorrelated sources. In this example, there are two
equal-power independent sources impinging onto the spher-
ical array from(θ, ϕ) = (20◦, 50◦) and (30◦, 120◦). We use
200 snapshots in each trail and SNR level varies from
20 to 0 dB.

Fig. 2 shows the RMSE of TSDA, ANM-SHESPRIT,
CV-VSBL and SHESPRIT methods. For azimuth esti-
mation ANM-SHESPRIT provides similar accuracy with
TSDA method and performs better for elevation estima-
tion however. Furthermore, our method shows the superior

performance compared to the other algorithms. Note that
L1-norm based method exhibits poorest performance among
sparsity based methods. This is probably due to the difficulty
on the choice of regularization parameter and the effects to
the truncating SVD processing.

Next, we present the comparison of the algorithms versus
different number of snapshots with fixed SNR at 0dB. The
two uncorrelated sources are located at (θ, ϕ) = (20◦, 50◦)
and (26◦, 128◦).

It is indicated in Fig.3 that the ANM-SHESPRIT demon-
strates the best performance.

Then we compare the resolution probability of the
ANM-SHESPRIT with L1-Norm, SHESPRIT, CV-VSBL
and TSDA method versus angle separation. The grid interval
is 1◦ and SNR is fixed at 3dB. Suppose two uncorrelated
sources are at (θ, ϕ) = (30◦, 50◦) and (30◦ + δ, 50◦ + δ),
we assume the elevation of the two signals to be resolved
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FIGURE 8. Estimated DOAs as a function of time with the DPD-SHANM, DPD-MUSIC and DPD-EDS method for
Task 3 Recording 1 in LOCATA challenge.

successfully that both
∣∣∣θ̂1 − θ1∣∣∣ and ∣∣∣θ̂2 − θ2∣∣∣ are less than

|θ1 − θ2| /2, and the resolution probability of azimuth can be
defined similarly.

The ANM-SHESPRIT method outperforms the other
methods as shown in Fig. 4, and thus exhibits super resolution
capability of proposed method to DOA estimation.

C. PERFORMANCE FOR CORRELATED SOURCES
In this section, we investigate robustness of algorithms to
correlated sources. The locations of two sources are the same
as the simulations shown in Fig.2 with the signal correlation
coefficient of α = 0.6 and 200 snapshots. The RMSE simu-
lation results of the different methods versus SNR are shown
in Fig.5.

It is shown that for the correlated sources, all subspace
based methods suffer the performance degradation com-
pared in uncorrelated sources case, but the ANM-SHESPRIT
method shows robust to correlated signals. For azimuth esti-
mation case, the ANM-SHESPRIT method can achieve best
accuracy among these methods when SNR varies from 10dB
to 20dB. And for elevation estimation, ANM-SHESPRIT
method is also satisfactory.

Fig.6 demonstrates the RMSE of our method, L1-Norm,
SHESPRIT and TSDA method versus number of snapshots,
where we assume two correlated sources located at (θ, ϕ) =
(20◦, 50◦) and (26◦, 128◦) with correlation coefficient of α =
0.7 and SNR = 5 dB. Results reveals that ANM-SHESPRIT
method provides robustness to highly correlated sources.

VII. EXPERIMENTS
In this section, we verify the algorithm proposed in section
V-Bwith real recording from LOCATA challenge [35], which
presents several acoustics scenarios in a lecture room at
Hulboldt University Berlin. Here, we consider two of the
tasks from the challenge for multiple static loudspeakers

(Task 2) and single moving speaker (Task 3) using Eigen-
mike spherical microphone array. The proposed method in
Section V-B is referred to as DPD-SHANM and compare its
performance with DPD-MUSIC [48] and DPD-EDS [51].

The sample frequency of the recorded signals is 48kHz and
we choose a Hamming window of 1024 samples with 75%
overlap for STFT transformation. The SH order is N = 3 and
the processing frequency band is 1000-3000Hz. The length
and bandwidth of a frame for frequency smoothing in (53)
are Jν = 15 and Jι = 15 and the length of slide window for
trajectories fusion is ιw = 10 (about 0.25s). The ratio ζ for
DPD test is set to 2. The array calibration was carried out as
mentioned in [51].

For the multiple static sources localization task, the record-
ing 2 in task 2 of the challenge is used to evaluate the
algorithms, and the results of localization and tracking are
shown in Fig. 7. The results of the single moving speaker
tracking is presented in Fig. 8. We can see that the estimates
of moving speakers are perturbated more seriously than the
static loudspeaker scene but the proposed method has fewer
estimation outliers than the counterparts.

VIII. CONCLUSION
We study the gridless sparse signal representation problem
for the signal on the spherical manifolds, where the signals
are composed of a combination of the vectors of spherical
harmonics, with the application to DOA estimation of spher-
ical array in this paper. An covariance matrix based SH-ANM
approach is proposed with a low-dimensional SDP imple-
mentation. We also develop SH-ANM based DOA estimation
method for free space and room reverberation environment.
As shown in simulated results, the SH-ANM based method
presents the enhancement of performance in various sce-
narios compared with conventional techniques. Finally the
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experiments with LOCATA challenge recordings verify the
superiority of the SH-ANM based method.

APPENDIX A
PROOF OF THEOREM 3
Since any � satisfying (41) is dual feasible, it gives

‖R‖A ≥ ‖R‖A‖�‖
∗

A ≥ Re
{
Tr(R�H)

}
= Re

{
Tr(

K∑
k=1

ckBYH(9k )ρk�
H)

}

=

K∑
k=1

Re
{
ckTr(�HBYH(9k )ρk )

}
=

K∑
k=1

Re
{
ckTr(ρHk ρk )

}
=

K∑
k=1

ck ≥ ‖R‖A. (59)

Thus, Re
{
Tr(R�H)

}
= ‖R‖A. By strong duality, we have

the atomic decomposition in (12) is optimal to (20) and � is
dual optimal.

To show the uniqueness, given R has another optimal
atomic decomposition that

R =
K∑
k=1

ckBYH(9k )ρk

= R+
K∑
k=1

c′kBY
H(9k )ρ′k +

L∑
l=1

clBYH(9l)ρl . (60)

where ck , c′k , cl > 0, the set {9k}
⋂
{9l} = ∅. By (40)

and (41), there exists �′ that{
q′(9k ) = ρ′k , ∀k = 1, 2, . . . ,K∥∥q′(9)

∥∥
2 < 1, ∀9 6= 9k

(61)

with q′(9) = Y(9)BH�′. It implies

K∑
k=1

c′k + Tr{
L∑
l=1

cl�′HBYH(9l)ρl} = 0 (62)

and
L∑
l=1

cl > |Tr{
L∑
l=1

cl�′HBYH(9l)ρl}|, (63)

thus
L∑
l=1

cl >
K∑
k=1

c′k . (64)

We then have

‖R‖A ≥
L∑
l=1

cl +
K∑
k=1

(c′k + ck )

≥

K∑
k=1

ck +
L∑
l=1

cl −
K∑
k=1

c′k

>

K∑
k=1

ck = ‖R‖A, (65)

which is a contradiction. Hence, R =
K∑
k=1

ckBYH(9k )ρk is

the unique solution of (20).

APPENDIX B
DERIVATION OF DUAL PROBLEM OF (31)

Let 3 =
[
S Z
ZH M

]
≥ 0 and Q be the Largrangian multipli-

ers of the two constraints of (25), the Largrangian function
of (25) can be given as

L(Q,M,S,Z)

= −Re
{
Tr(R�H)

}
+

∑
k,l∈H

qk,l(Tr(2k,lG̃HPG̃)− δk,l)

−Tr
{[

P −�

−�H I

]
3

}
= −

1
2
Tr(R�H

+�RH)− Tr(PS−�ZH
−�HZ+M)

+

∑
k,l∈H

qk,l(Tr(2k,lG̃HPG̃)− Tr(2k,lG̃HG̃)/ζ 2). (66)

which is followed by Tr(2k,lG̃HG̃)/ζ 2 = δk,l .
For minimizing L(Q,M,S,Z), we can partial derivate to

L(Q,M,S,Z) with respect to (P, �) which results that
S = G̃

∑
k,l∈H

qk,l2k,l

 G̃H,

1
2
R = Z,

(67)

and thus it gives

inf(L) = −Tr(G̃S(Q)G̃H)/ζ 2 − Tr(M). (68)

Then the dual problem of (31) is

min
Q,M

1
ζ 2

Tr(G̃S(Q)G̃H)+ Tr(M)

s.t.

G̃S(Q)G̃H 1
2
R

1
2
RH M

 ≥ 0, (69)

which is equivalent to

min
Q,M

1
2ζ 2

Tr(G̃S(Q)G̃H)+
1
2
Tr(M)

s.t.
[
G̃S(Q)G̃H R

RH M

]
≥ 0. (70)

Therefore, the dual problem of (31) is (25).
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