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ABSTRACT Understanding passenger behaviors is of great importance in intelligent transportation and
infrastructure planning. However, the passenger trajectories are actually complex temporal data, which
consist of rich spatial and temporal information. What’s more, the observed passenger trajectories may
be a mixture of different types of passengers with various travelling purposes. These difficulties make
the prediction of passenger behaviors a challenging work. To address these problems, this paper improves
the existing passenger behavior prediction methods from the following two aspects: 1) Encoding the
travelling sequence with personalized semantic sensing, and 2) constructing multi-pattern prediction models
to capture multiple travelling purposes and dynamics. Along this line, this paper provides a novel passenger
behavior prediction model, namely, Semantic and multi-Pattern Long Short-Term Memory (SP-LSTM)
model. Particularly, 1) a translation unit is designed, which is able to encode an observed travelling sequence
into a structured sequence with consideration of individual travelling semantics; 2) a multi-pattern learning
schematic is proposed, which first identifies the travelling patterns of passengers and then handles different
patterns with different learning modules; 3) a unified learning framework is provided to integrate the
semantic sensing module and multi-pattern learning module together, and present the final prediction results.
To evaluate the proposed method, this paper conducts experiments on real-world passenger travelling data.
Results demonstrate the superiority of SP-LSTM over both classical and the state-of-the-art methods.

INDEX TERMS Behavioral sciences, big data applications, predictive models, public transportation.

I. INTRODUCTION
Public transportation plays an important role in daily life
of residents, especially in metropolises such as New York,
USA and Beijing, China. On the one hand, data mining and
machine learning have undergone a rapid development in
the recent years, machine-learning technology powers many
aspects of modern society [1]; on the other hand, we have
accumulated a large amount of transportation data, such as
NYC Taxi Open Data [2], Uber Trip Data, Taxi Trip Records
and so on. Hence, an opportunity of improving the public
transportation service by data-driven solutions and strategies
has been witnessed by many scholars such as [12]–[16].

This paper focuses on modelling passenger behaviors and
predicting passengers’ next stations. By doing this, we can
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FIGURE 1. An illustration of next-station prediction.

help the government and enterprises optimize to dispatch
the transportation resources, and also help the citizens to
circumvent the crowded stations. As shown in Fig. 1, If trav-
elling behaviors of passengers can be predicted precisely,
a better traffic route planning can be made for workers with
regular moving patterns, such as P1 and P3, and recom-
mended routes or tourism products can be provided for trav-
elers shown as P2. It is also helpful for making better city
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planning to facilitate people who come to cities for business
such as P4.
Essentially, the prediction of passengers’ next stations

could be formulated as a sequence prediction problem, which
has been studied in both academia and industry for many
years. Many methods have been proposed to model the
relationships of historical sequences with future events. For
instance, Hidden Markov Model (HMM) [3] first recognized
the current hidden state which was not easy to be observed
directly in sequences, then presented the prediction according
to the current state. Another approaches based-on Markov
chain also have been widely applied for sequence prediction.
S. Rendle et al. proposed Factorizing Personalized Markov
Chain (FPMC) which combined Markov chains with matrix
factorization to achieve the target of next-basketball predic-
tion [4]. C. Chen et al. proposed an embed personalized
Markov chain method based on FPMC in order to solve the
next POI recommendation [18]. Markov Renewal Process
(MRP) [5] also aimed at modeling sequential processes with
time intervals using Markov-based method.

With the development of deep learning in recent years,
Recurrent Neural Network (RNN) [6] was proposed for mod-
eling sequences by recursive unit, and its variants have also
become popular state-of-the-art methods on this field. For
example, Y. Zhang et al. showed how to use recurrent neural
networks to handle sequential click prediction for sponsored
search [7]. B. Hidasi et al. proposed a RNN solution to solve
the session-bases recommendation task [8]. Long Short-Term
Memory (LSTM) [9], an important variant of RNN architec-
tures which can handle the gradient vanishing problem, has
been applied to many sequence prediction problems. Phased
LSTM added the time information to prediction by spatial-
designed time gates [10]. Gated Recurrent Unit (GRU) [11]
simplies the LSTM to achieve higher efficiency.

Even so, the passenger behavior prediction is still a chal-
lenging problem due to the next two facts: firstly, a same
station may have different semantics for different passengers.
Therefore passenger behavior prediction without taking sta-
tion semantics into consideration often fails to get the correct
prediction results. Secondly, the collected passenger trajecto-
ries consist of multi-various travelling patterns and onemodel
can not uncover all these patterns, if we don’t divide data
into different parts and train multiple models according to
their own patterns, the results of prediction will be definitely
incorrect. Due to the above difficulties, most of the existing
sequence prediction methods can not provide precise next-
station prediction.

To fill these research gaps, we propose a novel pas-
senger behavior prediction method named Semantic and
multi-Pattern Long Short-Term Memory (SP-LSTM) model.
This model contains two modules called Semantic Sens-
ing module (SS-LSTM) and multi-Pattern Learning module
(PL-LSTM) respectively. Correspondingly, two particularly
designed structures are added into the classical LSTM: one
is to encode the observed travelling sequence into a struc-
tured sequence with consideration of individual travelling

semantics then decode it back; another is to ensemble mul-
tiple LSTMs with different patterns to predict behaviors of
passengers with various travelling purposes.

The main contributions of the paper can be summarized as
follows:

1) A novel semantic sensing module is proposed for
LSTM-based sequence prediction, which improves the
prediction performance by uncovering semantics hid-
den in the observed sequences.

2) A multi-pattern learning schematic is provided, which
is able to identify the travelling purposes and then
handle multiple travelling patterns by different learning
units.

3) A unifying learning framework is designed to incor-
porate the above two modules with the basic LSTM
model.

The rest of this paper is organized as follows. In Section II,
the related work about sequence prediction and recently
invented models are reviewed briefly. The details of our
methods are presented in Section III. Experiments results on
three real-world data sets are shown in Section IV. Finally,
we summarize our work in Section V.

II. RELATED WORK
This section provides a three-fold introduction of the related
researches, which includes travelling behavior analysis,
sequence prediction problem, and recently invented models
for sequence prediction.

Travelling behavior analysis has attracted a lot of attentions
in urban data analysis. Early study [12] proposed multiple
dimensions to analyze people’s travel demands based on
their traveling behavior. In recent years, travelling behavior
analysis is frequently used for Point-Of-Interest (POI) recom-
mendation and urban function perception. The work in [13]
utilized taxi drop-offs to profile temporal popularity patterns
of POIs for improving the performance of POI recommenda-
tions. Y. Zhu et al. modelled user behaviors with considera-
tion of time intervals to predict people’s next behavior [14].
P. Zhao et al. gave the list of users’ next locations with
considering spatio-temporal factors [15]. Human mobility
patterns were extracted from taxi trajectories to help under-
stand zones’ function [16]. And the work in [17] proposed
a time-aware metric embedding approach with asymmetric
projection for successive POI recommendations. FPMC-LR,
a tensor-based model, got Markov chain of transitions with
distance together [18]. A personalized ranking metric embed-
ding method (PRME) was proposed to model personal-
ized check-in sequences for next POI recommendation [19].
Z. Zhang et al. tried to learn user’s next movement intention
and incorporated different contextual factors to improve next
POI recommendation [20].

Sequence prediction has become a popular research spot
in recent years and been applied to multiple situations.
A representative application is prediction of next basket.
S. Rendle et al. proposed a method based on personal-
ized transition graphs over underlying Markov chains to
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recommend items to users that they might want to buy next
time [4]. F. Yu et al. proposed a model based on RNN for
next basket recommendation [21]. And R. Guidott et al.
defined a method which was able to understand the level
of the customer’s stocks and recommended the set of most
necessary items [22]. Sequence prediction is also applied to
health care. C. Estebann et al. modelled clinical processes
based on clinical data to develop a clinical decision support
system [23]. The work in [24] achieved predictive clinical
decision support system based on RNN encoding and tensor
decoding. I. M. Baytas et al. proposed a patient subtyping
model using an improved version of LSTM [25]. L. Li et al.
introduced a novel application to next career move predic-
tion with a contextual LSTM model [26]. C. Yang et al.
jointly modeled a social network structure and users’ tra-
jectory behaviors with a neural network model named
JNTM [27].

Sequence prediction is a very important, but still chal-
lenging problem. To satisfy the demands of multi-behavior
prediction, Q. Liu et al. proposed amethod based on LBL [29]
which could model multiple types of behaviors in historical
sequences with behavior-specific transition matrices [28].
To provide users POI recommendations for a specific period,
Y. Liu et al. proposed a time-aware model to integrate the
users’ interests and their evolving sequential preferences with
temporal interval assessment [30]. To take spatial and tempo-
ral contexts into consideration at the same time, Q. Liu et al.
extended RNN and proposed a method which could model
local temporal and spatial contexts in each layer [31]. Consid-
ering that users’ long-term preferences might keep evolving
over time, H. Ying et al. proposed a two-layer hierarchical
network with attention module [32]. However, to the best of
our knowledge, all of these methods have not solved the fol-
lowing two problems: semantic understanding of sequences
and multi-pattern learning of sequences, which absolutely
have significant impact on the prediction results and should
be taken into consideration definitely. This paper aims to
fill these two research gaps, and provides a new passenger
behavior prediction model.

III. PROPOSED METHODOLOGY
This section is organized as follows. We will introduce prob-
lem statement at first. Then we will review basic LSTM
and explain its usage in this problem. Next we presents
the passenger behavior prediction method proposed in this
paper, namely Semantic and multi-Pattern Long Short-Term
Memory (SP-LSTM) model. It consists of two key learning
modules, semantic sensing module and multi-pattern learn-
ing module. At last we will give theoretical analysis about
relationships between our modules and basic LSTM.

A. PROBLEM STATEMENT
The travelling behavior prediction problem studied in this
work can be formulated as follows:

Let P = {p1, p2, . . . } be a set of passengers and S =
{s1, s2, . . . } be a set of stations. For each passenger p,

his travelling behavior sequence Tp is given by Tp
:=

[(sp1, t
p
1 ), (s

p
2, t

p
2 ), . . . , (s

p
np , t

p
np )], where (spm, t

p
m) means that

passenger p gets on or off at his m-th station spm at time tpm
and (spnp , t

p
np ) means passenger p’s last trip. Our target is to

predict the next station spnp+1 ∈ S of a certain passenger p.

B. PREDICTION WITH BASIC LSTM
In this subsection, we plan tomake a quick review about Long
Short-Term Memory network, which is the most popular
method adopted to sequence prediction problem in recent
years. Then we will introduce two ways in which it can be
used in this problem.
LSTM [9] was proposed with special designed mem-

ory cells and gate unites to solve the problem of insuf-
ficient decaying error back flow in 1997. We combine
the commonly-used equations [33] with our settings. The
updated equations of basic LSTM can be put as follows:

im = σi(WxiTm +Whihm−1 + bi),

fm = σf (Wxf Tm +Whf hm−1 + bf ),

c̃m = σc(WxcTm +Whchm−1 + bc),

cm = fm � cm−1 + im � c̃m,

om = σo(WxoTm +Whohm−1 + bo),

hm = om � σh(cm), (1)

where im, fm, om represent the input, forget and output gates
of them-th object respectively. Tm represents the passengers’
m-th travel vector and hm is the hidden output vector. And
� represents for the element-wise (Hadamard) product. The
update of cell state cm has two parts. The former part is the
previous cell state cm−1 that is controlled by forget gate fm,
and the latter part is the new candidate value scaled by how
much we decided to add state value. Whi, Whf , Whc, Who,
Wxi, Wxf , Wxc, and Wxo are weight parameters connecting
different inputs and gates. bi, bf , bc, and bo are corresponding
biases.

And the loss function is often defined as:

L =
N∑
p=1

∥∥∥hpnp − ypnp∥∥∥ , (2)

where N is the count of sequences and ypnp is the last station
spnp of passenger p which is also called ground truth.

For our task, we can use basic LSTM in the following two
ways. The first one is to extract station sequence of passenger
p from Tp and simply regard the m-th station label as Tm,
then put it into (1) after one-hot encoding process. We mark
this way as LSTM_1. The second way is to add an embedding
layers to the original sequence so as to transformTp to vectors
as the input data. And this way is called LSTM_2.Wewill use
the first way as baseline in section IV.

C. SEMANTIC SENSING AND SS-LSTM
The same stations may have different semantics for different
passengers, the superficial labels are very likely to mislead
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FIGURE 2. Sketch map of semantic sensing. Through this process, station
A is marked as ‘‘H ’’ (Home) and station B as ‘‘O’’ (Office) for girl, station D
is marked as ‘‘H ’’ and station B as ‘‘O’’ for boy according to their
sequences. After prediction, the translation label H will be decoded for
each passenger.

the learning models. For example, as shown in Fig. 2, if we
directly predict the next stations of these two sequences,
the next stations after station B are difficult to predict,
because station A and D have the same probability. However,
if we could sense semantics of stations for each user and
‘‘translate’’ them to their semantic structure data, such as
‘‘Home", ‘‘Office,’’ ‘‘Mall’’ and so on, it is not difficult to pre-
dict the next-station as H , which is abbreviation of ‘‘Home,’’
that is, A for girl and D for boy. In this case, a sequence
prediction model can predict the next-station correctly.

To achieve this goal, we design two units to encode an
observed travelling sequence into a structured sequence with
consideration of individual travelling semantics, and recover
the travelling sequence by a co-trained decoder. These two
processes are named ‘‘Translation’’ and ‘‘De-Translation’’
separately. Because of the Semantic Sensing ability, this mod-
ule is named as SS-LSTM.

To design a semantic sensing module, we extract
d-dimensional features of a station from transition records.
We use vector f pm grouped by features to replace the tuple
(spm, t

p
m), and f

p
m means the m-th station information of pas-

senger p which is extracted from both spatial data spm and
temporal data tpm. This process should consider reducing the
loss of information. Travelling behavior sequence Tp can be
updated as:

Tp′
= [f p1 , f

p
2 , . . . , f

p
np ]. (3)

Then we extend the LSTM by adding two trainable matrices
Win andWout to achieve semantic understanding.

After multiplying the matrixWin with input feature vectors
to simulate the process of translation, we get the updated
equations of (1) as follows:

im = σi(Wxif pmWin +Whihm−1 + bi),

fm = σf (Wxf f pmWin +Whf hm−1 + bf ),

c̃m = σc(Wxcf pmWin +Whchm−1 + bc),

cm = fm � cm−1 + im � c̃m,

om = σo(Wxof pmWin +Whohm−1 + bo), (4)

hm = om � σh(cm), (5)

where im, fm, om represent the input, forget, and output gates
of them-th object respectively. cm is the cell activation vector.
f pm and hm represent the input feature vector and the hidden
output vector respectively. Whi, Whf , Whc, Who, Wxi, Wxf ,
Wxc, and Wxo are weight parameters connecting different
inputs and gates. bi, bf , bc, and bo are corresponding biases.

We add a matrix Wout to achieve De-translation based
on hidden output vector in (5) and use output vector ŷpnp to
represent the prediction results of passenger p as shown in (6).

ŷpnp = hpnpWout . (6)

Euclidean distance between the last output vector ŷpnp of
passenger p and true label vector ypnp is used to measure per-
formance of training. Loss function L in (2) can be updated
to follows:

L =
N∑
p=1

∥∥∥ŷpnp − ypnp∥∥∥ = N∑
p=1

∥∥∥hpnpWout − ypnp

∥∥∥ . (7)

Our goal is to minimize the loss L through training weighted
parameters, biases and two translation matrices.

For each epoch, we update two translation matrices as the
following process. Some simplifications are made to acceler-
ate our training process. Firstly, translation and de-translation
are two reversible processes, so we setWin andWout with the
relationship in (8).

Win = Wout
−1. (8)

Secondly, we redefine (9) based on (7) and the updating
process ofWout is shown in (10).

g(Wout) =
N∑
p=1

1
2

∥∥∥hpnpWout − ypnp

∥∥∥2 , (9)

∇Woutg =
∂g(Wout)
∂Wout

=

N∑
p=1

hpnp
T(hpnpWout − ypnp ),

Wout
′
= Wout − lr∇Woutg, (10)

where 0 < lr < 1 means learning-rate factor, hpnp
T is

the transposed matrix of hpnp and Wout becomes Wout
′ after

update. Through limited training process, we could improve
the prediction performance according to above operations.

D. MULTI-PATTERN LEARNING AND PL-LSTM
There is no doubt that a LSTM model could uncover the
pattern by mining data generated by a same pattern, but what
will happen if the collected data are generated by multiple
patterns? Is it a reasonable way to fit these data with one
single model? Actually most of our data collected in real
life are generated by different patterns. Taking the passenger
trajectories for example, some of the passengers are citizens,
they travel regularly to or from work, but the others are
travellers, they come to this city for business or tourism. It is
obvious that the travelling dynamics of different people are
quite different. In this case, it is necessary to employee mul-
tiple learning models to handle the multiple dynamics. This
is the motivation of designing multi-pattern LSTM model to
improve the prediction performance. In this paper, we design
a novel model called PL-LSTM with multiple cores which
identifies the travelling patterns of passengers at first and then
handles different patterns with different learning modules.
Fig. 3 shows its sketch map.
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FIGURE 3. Sketch map of PL-LSTM. (a) Using one model to uncover all
patterns. (b) Identifying passengers’ patterns then handle different
patterns with different modules.

This design is derived from a famous unsupervised learn-
ing method, namely, Self-Organizing Maps (SOM) [34]. The
classical SOM is a two-dimensional array of neurons, indi-
cated by

N = {n1,n2, · · · ,nK }, (11)

whereK is the number of neurons, nk is the vector representa-
tion of k-th patterns. When there comes a new data object xj,
which first finds the nearest neurons w.r.t Euclidean distance
argmink‖xj − nk‖, k ∈ 1, 2, · · · ,K , then updates the nk
according to previous representation and xj.
Different from the existing SOMmodel, the problem stud-

ied in this paper is a supervised learning task. Therefore,
the above fitting measure needs to be changed. Assume we
have K single LSTM models in our model pool. The i-th
model is marked as mi and the j-th observation sequence is
marked as Seqj. So we have the following equation:

mji = f (mj−1i , Seqj, lrcj,i), (12)

which means the j-th state of mi is defined by its (j − 1)-th
state, the j-th sequence Seqj, and learning rate function lrcj,i ,
which is used to determine the impact of sequence Seqj on the
model mi. The first subscript cj is defined by the following
condition,

∀i,
∥∥∥Seqj − mjc∥∥∥ ≤ ∥∥∥Seqj − mji∥∥∥ . (13)

mc is the model that matches best with Seqj and we call
it Winner Model. cj refers to the Winner Model mc for the
j-th sequence. The ‘‘distances’’ between sequence Seqj and
models are put into set Lj as shown in (14).

Lj := {
∥∥∥Seqj − mj1∥∥∥ , . . . , ∥∥∥Seqj − mjk∥∥∥}. (14)

To follow the principle that sequence Seqj has the great-
est contribution to winner model and declining contribution
to the others, we define the learning rate function lrcj,i as
follows:

lrcj,i = LR∗ ∗ exp(−

∥∥∥Seqj − mji∥∥∥− ∥∥∥Seqj − mjc∥∥∥
maxLj −

∥∥∥Seqj − mji∥∥∥+ a ), (15)

where 0 < LR∗ < 1 means the learning-rate constant which
should be defined before experiments and the range of lrcj,i
is between 0 and 1. a is set to be an extremely small number
to avoid any divided by zero or overflow. This function can

measure whether the sequence is applicable to the model.
For example, if i = c, then lrcj,c = LR∗, which means this
modelmjc can get biggest learning rate LR∗ for sequence Seqj;
if i = z and z satisfies that

∥∥∥Seqj − mjz∥∥∥ = maxLj, then
lrcj,z = 0, means this sequence has no contribution to the
model and will not be fed into it. With these settings and
conditions above, each sequence can find its own pattern and
choose most suitable model for itself.

Different datasets may have different pattern numbers, and
the choice of core number K should be decided according to
the specific dataset. Considering the balance between com-
putational complexity and prediction performance, K can be
chosen from 2 to 10 based on the experiment results.

E. OVERVIEW OF SP-LSTM
To integrate the semantic sensing module and multi-pattern
learning module introduced above together, we provide a
unifying learning framework named Semantic and multi-
Pattern Long Short-Term Memory (SP-LSTM) model to pre-
dict passengers’ next behaviors. The proposed framework is
illustrated in Fig. 4.

FIGURE 4. Architecture of SP-LSTM. It contains three modules which are
travelling behavior sequences module, semantic sensing module and
multi-pattern learning module, respectively.

As shown in Fig. 4, this structure has three modules, trav-
elling behavior sequences module, semantic sensing module
and multi-pattern learning module, respectively. The pro-
cess of training is as follows: firstly, feature vectors will be
extracted from sequence T j to T j ′ before it is fed into this
model and then multiply with a matrixWin. This procedure is
called ‘‘Events Embedding"; secondly, this matrix sequence
will be sent into each LSTM in PL-LSTM to judge which
model is the winner model, and their learning rate function
lrcj,i will be calculated; thirdly, the last hidden state of win-
ner model will be sent back to semantic sensing module
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and translate back to prediction result through the matrix
Wout ; finally, the loss between ground truth’s feature vec-
tor and prediction result will achieve the process of back
propagation [35] with updating Win, Wout of SS-LSTM and
PL-LSTM.

F. THEORETICAL ANALYSIS
1) RELATIONSHIP BETWEEN SS-LSTM AND BASIC LSTM
As we can see from (4-6), SS-LSTM has two matrices Win
and Wout more than basic LSTM in structure. And if we set
these two matrices both equal to unit matrix I , (4) and (6) can
be simplified to the following equations:

im = σi(Wxif pm +Whihm−1 + bi),

fm = σf (Wxf f pm +Whf hm−1 + bf ),

c̃m = σc(Wxcf pm +Whchm−1 + bc),

cm = fm � cm−1 + im � c̃m,

om = σo(Wxof pm +Whohm−1 + bo),

ŷpnp = hpnp . (16)

And if we regard f pm as the input vector of subsection III-B,
SS-LSTM can be simplified as the basic LSTM, which means
that the basic LSTM is a special case of SS-LSTM.

2) RELATIONSHIP BETWEEN PL-LSTM AND BASIC LSTM
We set k LSTMs in PL-LSTMwhichmeans dividing data into
k patterns, and if we set k = 1, it is can be inferred from (13)
that the only one model is theWinnerModel, and the learning
rate function lrcj,i can be simplified to the next equations:

lrcj,c = LR∗ ∗ exp(−

∥∥∥Seqj − mjc∥∥∥− ∥∥∥Seqj − mjc∥∥∥∥∥∥Seqj − mjc∥∥∥− ∥∥∥Seqj − mjc∥∥∥+ a )
= LR∗, (17)

and PL-LSTM changes back into basic LSTM with learning
rate LR∗. That also means basic LSTM is one of special cases
of PL-LSTM.

IV. EXPERIMENTS
In this section, we evaluate the proposed methods by experi-
ments on real-world data sets. We first validate the design of
our methods partly, then compare our methods with baselines
by prediction accuracy.

A. VERIFICATION EXPERIMENTS
1) IMPORTANCE OF SEMANTIC SENSING
To prove the importance of semantic sensing in the process
of sequence prediction, we design a verification experiment.

We select 22,556 travel sequences with only two differ-
ent stations in each sequence to form test data set 1, and
44,921 sequences with three different stations to form test
data set 2. We design the verification experiment as following
steps: in test data set 1, we mark the station appearing more
in each sequence as ‘‘H,’’ while appearing less as ‘‘O’’.

FIGURE 5. Performance comparisons on test data sets with translating
process or not. ACC is used to measure the predicting accuracy of results.

And in test data set 2, the station which appears most in each
sequence is marked as ‘‘H,’’ the minimal station is marked
as ‘‘T’’, the others is ‘‘O’’. And these translation processes
are also recorded. Then we feed these translated sequences
into basic LSTM. After training process, we translate the
prediction results back to their original stations based on the
translation records. Of course we also feed original travel
sequences into basic LSTM model as controlled experiment.
ACC(Accuracy) is used to measure the predicting perfor-
mance after all of these process. As we can see from Fig.5,
the accuracy of prediction can be improved by 30% after
translation, and that also proves the process of translation can
be very helpful for prediction.

Therefore, a prediction model without semantic under-
standing is not able to achieve desired prediction results.

2) IMPORTANCE OF CONSIDERING MULTIPLE PATTERNS
To prove that model’s performance on prediction task will be
misled by multi-pattern data, we design a set of experiments
using three kinds of chaotic time series to model behavior
sequences with multiple patterns. Mackey Glass, Lorenz, and
Rossler are selected to simulate three models of travel data
and their mixed data analogy the real-world data we collected.

In the first experiment, we select 10,000 sequences of
length 100 as experimental data for each kind of chaotic time
sequences and make them to three data sets. Then we choose
3,000 sequences of Glass, 4,000 of Lorenz, and 3,000 of
Rossler to build up the fourth data set. For each data set
we split 80% of sequences as training set and the rest as
testing set. We add different levels of noise to simulate real-
world data set before feed them to the basic LSTM model.
RMSE(Root Mean Square Error) is used to measure the
losses of predicting results with the true labels. The results
is shown as Fig.6. As we can see from this figure, with the
increase of noise, LSTM performs much worse on mixed data
set than any other separate data set. As collected real-world
data often have many noises and contains more than one
pattern, it is not strange that LSTM has such bad performance
on real-world data.
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FIGURE 6. Performance comparisons on different data sets with LSTM
model. The RMSE of model which is trained on mixture of three series is
much bigger than that on the other separate data set.

FIGURE 7. Performance comparisons on data set with
one-core or three-core LSTM models. The bar chart can reflect the gap
between two models under the same operation and line chart can show
the trend of RMSE with adding increasing noise.

Then we do our second experiment and this experiment
is based on the fourth data set. Because these three kinds of
series have different regulations which one-core LSTM(basic
LSTM) model may has difficulty to handle, we design a
special LSTM model with three cores which can divide
different kinds of sequences to different models. In order
to prove experiment results batter, we also make one-core
LSTM as controlled experiment which is trained at the same
experiment conditions. RMSE is still our target to measure
the losses. The results is shown as Fig.7 and it can be inferred
definitely that three-core LSTM has batter performance on
multi-pattern data set.That also shows the necessity of con-
sidering multi-mode factors.

B. DATASETS AND EXPERIMENT SETTINGS
The datasets are collected from citizen transition records of
buses and railways in Beijing, China, dating from June to
September 2017. To observe the performance of the predic-
tion models in different cases, the datasets are divided into
three subsets according to the number of stations in passenger

TABLE 1. Statistics of three datasets.

travelling sequences. They are named as TBD1, TBD2, and
TBD3 which are abbreviations of the 1-th, 2-th, and 3-th
Traveling Behavior Dataset, respectively. Table 1 presents
the details of them. Each subset consists of 4,500 traveling
behavior sequences which present 4,500 people’s traveling
behavior records with different lengths from 20 to 400. For
example, passenger p only has been to three different stations
and his travelling sequence is longer than 20 but shorter than
400, his sequence will be divided into TBD1.

Each travelling sequence contains a series of tuples
〈p_id, s_id, t〉, where p_id is the passenger ID, s_id is the
station ID, t is the time label.

For each dataset, 80% of the travelling sequences are
used to train prediction models. 20% of them are used as
testing sequences. For a testing sequence Tu := [(su1, t

u
1 ),

(su2, t
u
2 ), . . . , (s

u
nu , t

u
nu )], the tuples with index from 1 to (nu−1)

are assumed to be known to us, sunu is the station needing to
be predicted by our model.

At the beginning of semantic sensing, we extract
11-dimensional features from Tu to ensure our translating
matrices can get inner laws better. And these features are
shown in Table 2. We select these features based on our
general knowledge and each of them can reflect the function
of station from one aspect.

TABLE 2. Features extracted from data.

C. BASELINES
Both the classical and state-of-the-art methods are employed
to provide benchmark performance. The classical sequence
prediction methods include:

1) Most PopThismethod regards themost popular station
of each passenger as the prediction result.

2) Markov Model (MM) It is a Markov chain model
based on passenger travelling prediction method.

Deep learning based sequence prediction methods include:
1) RNN We feed sequences handled by one-hot encoding

to basic RNN with two superimposed layers.
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FIGURE 8. The losses of training and testing on three data set. (a) Losses on TBD1. (b) Losses on TBD2. (c) Losses on TBD3.

2) LSTM_1 This method has been introduced in section
III-B, which is widely applied in prediction field.

3) GRU As another version of LSTM, GRU has some
advantages in precision and the speed of training
process.

D. EVALUATIONS
To get a comprehensive evaluation of the proposed method,
the following four metrics are used to measure the consis-
tency of prediction results with the ground-truth.

1) Precision (PRE) is the ratio of correct prediction to
total prediction, which measures the accuracy of pre-
diction results.

PREn =
αnn∑I
i=1 αin

,

where PREn denotes prediction precision of the n-th
ground truth, {αij} is the confusion matrix, αij is the
number of cases that, prediction result is ej but ground
truth is ei, I is the total number of related stations.

2) Recall (REC) is the ratio of correct prediction to total
ground truth, which measures the coverage rate of
prediction.

RECn =
αnn∑J
j=1 αnj

,

where RECn means prediction recall of the n-th ground
truth. J is the total number of predicted stations.

3) F1-Score (F1) is a comprehensive measurement to
evaluate model’s performance, which is defined as

F1n =
2PREn × RECn
PREn + RECn

,

where F1n, PREn, and RECn represent the F1-Score,
Precision, and Recall of the n-th ground truth,
respectively. In the experiments, the average of
{F11,F12, · · · } is used to compare the prediction
methods.

4) Accuracy (ACC) is the most intuitive evaluation which
can show the ratio of correct prediction to all prediction,

ACC =

∑I
i=1 αii∑I

i=1
∑J

j=1 αij
.

TABLE 3. Comparison of the proposed method with baselines.

E. RESULTS AND DISCUSSIONS
Table 3 presents the comparison of our method with base-
lines. It can be seen that our method outperforms other
baselines significantly on all the three data sets in terms
of all the four performance evaluation metrics. Compared
with the classical deep learning methods, the prediction
accuracy of our method has been improved from less than
1% to 72.67%, 42.56%, and 30.33% respectively, the other
evaluation metrics have also witnessed a significant improve-
ment of our method in prediction performance. An interest-
ing observation is that the performance of statistics-based
sequence prediction methods is also better than the deep
learning baselines, the reason is that statistics-based models
are implemented at an individual level, and therefore, they are
not affected by the confusion of multiple travelling patterns.
Figure 8 shows the losses of SP-LSTM training on three data
sets and we can conclude that SP-LSTMmodel can be trained
to convergence in our experiments. Fig. 9 presents the contri-
butions of the two learning modules to SP-LSTM. As shown
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FIGURE 9. The comparison of variants of our method. (a) Performance on TBD1. (b) Performance on TBD2. (c) Performance on TBD3.

in each of sub-graph, the performance of SP-LSTM is the best
among the three models, which suggests the effectiveness of
both two learning modules. Additionally, the performance
of SS-LSTM performance is always better than PL-LSTM,
which demonstrates that the semantic sensingmodule is more
useful than multi-pattern learning module.

FIGURE 10. Semantic understanding shown in map. Stations with same
color are regarded as belonging to the same semantic.

To illustrate how the semantic sensing module works,
the stations are represented by vectors with consideration
of individual travelling semantics, and then the stations are
divided into four clusters. Fig. 10 presents the distributions
of these stations belonging to different clusters, where gray
points are ‘‘Home’’ stations, red points denote ‘‘Office’’
stations, blue points indicate tourist spots, and green points
could be the traffic transfer stations. To the best of our
knowledge, the travelling sequences have not been decom-
posed semantically as our method did in Fig. 10. Obviously,
the semantic sensing module can help improve the inter-
pretability of the sequence prediction models.

Compared with the existing sequence prediction models,
the proposed SP-LSTM is equipped with two novel learning
modules: semantic sensing module which translates the raw
travelling sequence into a semantic sequence, and multi-
pattern learningmodule which is designed to capture the mul-
tiple travelling patterns of passengers with various travelling
purposes. All the above facts demonstrate the effectiveness of
the two proposed learning modules.

V. CONCLUSION
This paper aims to improve the passenger behavior pre-
diction method from two perspectives: 1) uncovering the
semantics of travelling sequence at an individual level, and
2) discovering the multiple travelling patterns and modeling
them simultaneously. Correspondingly, two novel learning
modules were proposed: 1) an semantic sensing module
that translates the raw travelling sequence into a semantic
representation, and 2) a multi-pattern learning module that
constructs exclusive prediction model for passengers with
different travelling purposes. Finally, a unifying learning
framework was designed to incorporate the above two learn-
ing modules with the LSTM model, the proposed method for
passenger behavior prediction method was named SP-LSTM.
Experiments were conducted on real-world data sets,
SP-LSTMdemonstrates significant superiority over the exist-
ing methods, which validates the effectiveness of the pro-
posed learning modules.

REFERENCES
[1] Y. Lecun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

no. 7553, pp. 436–444, May 2015.
[2] C. Whong. NYC Taxi Data (FOILed 2013-14). Accessed: 2019. [Online].

Available: http://chriswhong.com/open-data/foil_nyc_taxi/
[3] L. E. Baum and T. Petrie, ‘‘Statistical inference for probabilistic func-

tions of finite state Markov chains,’’ Ann. Math. Statist., vol. 37, no. 6,
pp. 1554–1563, 1966.

[4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, ‘‘Factorizing person-
alized Markov chains for next-basket recommendation,’’ in Proc. WWW,
2010, pp. 811–820.

[5] J. Janssen and N. Limnios. Semi-Markov Models and Applications.
Springer, 2013.

[6] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur.
‘‘Recurrent neural network based language model,’’ in Proc. INTER-
SPEECH, 2010, pp. 1045–1048.

[7] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and
T.-Y. Liu, ‘‘Sequential click prediction for sponsored search with recur-
rent neural networks,’’ in Proc. 28th AAAI Conf. Artif. Intell., 2014,
pp. 1–7.

[8] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, ‘‘Session-based rec-
ommendations with recurrent neural networks,’’ 2015, arXiv:1511.06939.
[Online]. Available: https://arxiv.org/abs/1511.06939

[9] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, pp. 1735–1780, Dec. 1997.

[10] D. Neil, M. Pfeiffer, and S. C. Liu, ‘‘Phased LSTM: Accelerating recurrent
network training for long or event-based sequences,’’ in Proc. NIPS, 2016,
pp. 3882–3890.

VOLUME 7, 2019 157881



H. Wang et al.: Passenger Behavior Prediction With Semantic and Multi-Pattern LSTM Model

[11] K. Cho, B. van Merrienboer, C. C. Gülçehrere, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder-decoder for statistical machine translation,’’ in Proc. EMNLP,
2014, pp. 1724–1734.

[12] D. Mcfadden, ‘‘The measurement of urban travel demand,’’ J. Public
Econ., vol. 3, no. 4, pp. 303–328, 1974.

[13] Z. Yao, Y. Fu, B. Liu, Y. Liu, and H. Xiong, ‘‘POI recommendation:
A temporal matching between POI popularity and user regularity,’’ inProc.
IEEE ICDM, Dec. 2016, pp. 549–558.

[14] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai, ‘‘What to
do next: Modeling user behaviors by time-LSTM,’’ in Proc. IJCAI, 2017,
pp. 3602–3608.

[15] P. Zhao, H. Zhu, Y. Liu, Z. Li, J. Xu, and V. S. Sheng, ‘‘Where to go next:
A spatio-temporal LSTM model for next POI recommendation,’’ 2018,
arXiv:1806.06671. [Online]. Available: https://arxiv.org/abs/1806.06671

[16] Z. Yao, Y. Fu, B. Liu,W. Hu, and H. Xiong, ‘‘Representing urban functions
through zone embedding with human mobility patterns,’’ in Proc. IJCAI,
2018, pp. 3919–3925.

[17] H. Ying, J. Wu, G. Xu, Y. Liu, T. Liang, X. Zhang, and H. Xiong,
‘‘Time-awaremetric embedding with asymmetric projection for successive
POI recommendation,’’ World Wide Web, vol. 22, no. 5, pp. 2209–2224,
Jun. 2018.

[18] C. Cheng, H. Yang, M. R. Lyu, and I. King, ‘‘Where you like to go next:
Successive point-of-interest recommendation,’’ in Proc. IJCAI, vol. 13,
2013, pp. 2605–2611.

[19] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, ‘‘Personalized
ranking metric embedding for next new POI recommendation,’’ in Proc.
IJCAI, 2015, pp. 2069–2075.

[20] Z. Zhang, C. Li, Z. Wu, A. Sun, D. Ye, and X. Luo, ‘‘NEXT: A neural net-
work framework for next POI recommendation,’’ 2017, arXiv:1704.04576.
[Online]. Available: https://arxiv.org/abs/1704.04576

[21] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘A dynamic recurrent model for
next basket recommendation,’’ in Proc. ACM SIGIR, 2016, pp. 729–732.

[22] R. Guidotti, G. Rossetti, L. Pappalardo, F. Giannotti, and D. Pedreschi,
‘‘Next basket prediction using recurring sequential patterns,’’ 2017,
arXiv:1702.07158. [Online]. Available: https://arxiv.org/abs/1702.07158

[23] C. Estebann, D. Schmidt, D. Krompaß, and V. Tresp, ‘‘Predicting
sequences of clinical events by using a personalized temporal latent embed-
ding model,’’ in Proc. ICHI, 2015, pp. 130–139.

[24] Y. Yang, P. A. Fasching, M. Wallwiener, T. N. Fehm, S. Y. Brucker, and
V. Tresp, ‘‘Predictive clinical decision support system with RNN encod-
ing and tensor decoding,’’ 2016, arXiv:1612.00611. [Online]. Available:
https://arxiv.org/abs/1612.00611

[25] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, ‘‘Patient
subtyping via time-aware LSTMnetworks,’’ inProc. ACMSIGKDD, 2017,
pp. 65–74.

[26] L. Li, H. Jing, H. Tong, J. Yang, Q. He, and B. Chen, ‘‘NEMO: Next
career move prediction with contextual embedding,’’ in Proc. WWW, 2017,
pp. 505–513.

[27] C. Yang, M. Sun, W. Zhao, Z. Liu, and E. Y. Chang, ‘‘A neural network
approach to jointly modeling social networks and mobile trajectories,’’
ACM Trans. Inf. Syst., vol. 35, no. 4, pp. 36:1–36:28, 2017.

[28] Q. Liu, S. Wu, and L. Wang, ‘‘Multi-behavioral sequential prediction with
recurrent log-bilinear model,’’ IEEE Trans. Knowl. Data Eng., vol. 29,
no. 6, pp. 1254–1267, Jan. 2017.

[29] A. Mnih and G. Hinton, ‘‘Three new graphical models for statistical lan-
guagemodelling,’’ inProc. 24th Int. Conf.Mach. Learn. (ICML), Corvallis,
OR, USA, Jun. 2007, pp. 641–648.

[30] Y. Liu, C. Liu, B. Liu, M. Qu, and H. Xiong, ‘‘Unified point-of-interest rec-
ommendation with temporal interval assessment,’’ in Proc. ACM SIGKDD,
2016, pp. 1015–1024.

[31] Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘Predicting the next location:
A recurrent model with spatial and temporal contexts,’’ in Proc. AAAI,
2016, pp. 194–200.

[32] H. Ying, F. Zhuang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu, ‘‘Sequen-
tial recommender system based on hierarchical attention networks,’’ in
Proc. IJCAI, 2018, pp. 3926–3932.

[33] A. Graves, ‘‘Generating sequences with recurrent neural networks,’’ 2013,
arXiv:1308.0850. [Online]. Available: https://arxiv.org/abs/1308.0850

[34] T. Kohonen, ‘‘The self-organizing map,’’ Proc. IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning repre-
sentations by back-propagating errors,’’ Nature, vol. 323, pp. 533–536,
Oct. 1986.

HAIQUAN WANG received the Ph.D. degree
in computer science from Beihang University,
in 2013. He is currently an Associate Profes-
sor with Beihang University, Beijing, China. His
research interests include intelligent transport sys-
tems and software engineering. He has been con-
ducting studies on intelligent transport systems
in recent years, hosting, or participating in many
national projects including the National Nature
Science Foundation of China, National High

Technology Research and Development Program of China.

XIN WU received the B.E. degree from the Col-
lege of Science, Beijing Forestry University, Bei-
jing, China, in 2016. She is currently pursuing
the master’s degree with the School of Software,
Beihang University. Her research interests include
sequence prediction, behavior analysis, data min-
ing, andmining regulations hidden in travel behav-
ior sequences and use them to guide people to a
better life with intelligent transportation.

LEILEI SUN received the B.S. and M.S. degrees
from the School of Control Theory and Con-
trol Engineering, Dalian University of Technol-
ogy, in 2009 and 2012, respectively, and the Ph.D.
degree from the Institute of Systems Engineering,
Dalian University of Technology, in 2017. He is
currently an Assistant Professor with the State Key
Laboratory of Software Development Environ-
ment and Big Data Brain Computing Laboratory
(SKLSDE and BDBC Lab), Beihang University,

Beijing, China. He was a Postdoctoral Research Fellow of the School of
Economics and Management, Tsinghua University. He has published in the
ACMSIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). He has published many articles in the IEEE TRANSACTIONS ON

DATA AND KNOWLEDGE ENGINEERING (TKDE) and Knowledge and Information
Systems (KAIS). His research interests include machine learning and data
mining.

BOWEN DU received the Ph.D. degree in com-
puter science and engineering from Beihang Uni-
versity, Beijing, China, in 2013. He is currently an
Assistant Professor with the State Key Laboratory
of Software Development Environment, Beihang
University. His research interests include smart
city technology, multisource data fusion, and traf-
fic data mining.

157882 VOLUME 7, 2019


