
Chaos, Solitons and Fractals 119 (2019) 94–101 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Fractional logistic models in the frame of fractional operators 

generated by conformable derivatives 

Thabet Abdeljawad 

a , Qasem M. Al-Mdallal b , Fahd Jarad 

c , ∗

a Department of Mathematics and General Sciences, Prince Sultan University P. O. Box 66833, Riyadh, 11586 Saudi Arabia 
b Department of Mathematical Sciences, United Arab Emirates University P.O. Box 15551, Al Ain, Abu Dhabi, UAE 
c Department of Mathematics, Çankaya University Ankara, 06790 Turkey 

a r t i c l e i n f o 

Article history: 

Received 25 September 2018 

Revised 12 December 2018 

Accepted 13 December 2018 

Keywords: 

Conformable fractional derivatives 

Fractional-order differential equation 

Logistic equations 

Modified logistic model 

a b s t r a c t 

In this article, we study different types of fractional-order logistic models in the frame of Caputo type 

fractional operators generated by conformable derivatives (Caputo CFDs). We present the existence and 

uniqueness theorems to solutions of these models and discuss their stability by perturbing the equilib- 

rium points. Finally, we furniture our results by illustrative numerical examples for the studied models. 
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1. Introduction 

Fractional calculus is a branch of mathematical analysis that

takes into consideration the integration and differentiation of real

or complex order. In spite of the fact that this kind of calculus is

old, it gained popularity and started to catch the interest of sci-

entists only in the last 20 or 30 years because important results

were reported when fractional derivatives and integrals were ap-

plied to describe many real world phenomena [1–10] . A big virtue

of the fractional calculus is that there are many different fractional

derivatives or integrals. This virtue gives the opportunity to choose

the most appropriate derivative or integral in order to describe

complex systems of real world problems eligibly. Nevertheless, in

order to have better mathematical models of real world problems,

scientists started to disclose some new types of fractional integrals

and consequently fractional derivatives using two main methods.

The first method is the traditional method based on iterating to

find the n th order integral and then replacing n by any number

α. Hadamard, generalized fractional operators and the fractional

operators generated from conformable derivatives, can be consid-

ered as examples of fractional operators obtained using this ap-

proach [11–17] . These operators usually have singular kernels. The

second method is subject to the limiting process and using some

properties of the Dirac-Delta functions. Among these operators
∗ Corresponding author. 
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e advert Caputo-Fabrizio and Atangana-Baleanu fractional deriva-

ives [18,19] . These operators embodies nonsingular kernels. For

ore details on such operators and their applications we refer to

20–22] 

The literature reveals that the logistic equation in the frame

f fractional derivatives were tackled by many scientists (see

23–25] and the references therein). In this article we discuss

he fractional-order modified quadratic and cubic logistic models

iven, respectively, by 

( t 0 D 

α,ρx )(t) = rx (t)(1 − x (t)) , t > t 0 , x (t 0 ) = x 0 , (1)

nd 

( t 0 D 

α,ρx )(t) = rx (t ) 
(

1 − (x (t )) 

k 

)
(x (t ) − m ) , t > t 0 , x (t 0 ) = x 0 , 

(2)

∈ (0, 1], ρ > 0, and r, m, k > 0. Here, t 0 D 

α,ρ represents the left-

aputo conformable fractional derivatives (Caputo CFDs) generated

n [17] depending on an open problem raised in [26] . It is worth

entioning that physical reason for using conformable derivative

n the logistic models can be connected to the recent works of

27–30] . 

In this article, we present the existence and uniqueness theo-

ems for Eqs. (1) and (2) , followed by a detailed discussion of the

tability of these equations. Then, we furnish our results with some

umerical illustrative examples. 

This article is organized as follows: In Section 2 , some pre-

iminary results are presented. The existence and uniqueness of a

https://doi.org/10.1016/j.chaos.2018.12.015
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ertain initial value problems that embodies a fractional con-

ormable derivative are presented in Section 3 . In Section 4 , the

tability of models (1) and (2) are discussed. In Section 5 , numer-

cal discussion is presented. The last section is committed to the

onclusion. 

. Preliminary results 

Prior to presenting the main results, we recall and present some

efinitions and theorems which will be used intensively in our

tudy. 

The original definition of the conformable derivatives [26] is de-

ned by 

( t 0 T 
α f )(t) = lim 

ε→ 0 

f (t + ε(t − t 0 ) 
1 −α) − f (t) 

ε
, 

here f : [ t 0 , ∞ ) → R of order α ( α ∈ (0, 1]). If ( t 0 T 
α f )(t) exists on

 t 0 , b ) then ( t 0 T 
α f )(t 0 ) = lim t → t + 

0 
( t 0 T 

α f )(t) . 

If f is differentiable then one may deduce that 

( t 0 T 
α f )(t) = (t − t 0 ) 

1 −α f ′ (t) . (3)

he corresponding conformable left integral is defined as [26] 

 0 
I α f (x ) = 

∫ x 

t 0 

f (t) 
dt 

(t − t 0 ) 1 −α
, 0 < α < 1 . 

efinition 1 Jarad et al. [17] . The left-fractional conformable inte-

ral operator is defined by 

 0 
I α,ρ f (x ) = 

1 

�(α) 

∫ x 

t 0 

(
(x − t 0 ) 

ρ − (t − t 0 ) 
ρ

ρ

)
α−1 f ( t) 

dt 

( t − t 0 ) 1 −ρ
,

(4) 

here α ∈ C , Re (α) ≥ 0 . 

efinition 2 Jarad et al. [17] . The left-fractional conformable

erivative of order α ∈ C , Re (α) ≥ 0 in the Caputo setting is de-

ned by 

 0 
D 

α,ρ f (x ) = ( t 0 I 
n −α,ρ ) n t 0 

T ρ f (x ) 

= 

1 

�(n − α) 

∫ x 

t 0 

(
(x − t 0 ) 

ρ − (t − t 0 ) 
ρ

ρ

)
n −α−1 

× n 
t 0 

T ρ f (t) 
dt 

(t − t 0 ) 1 −ρ
, (5) 

here n = [ Re (α)] + 1 , n t 0 
T ρ = t 0 T 

ρ
t 0 

T ρ · · ·t 0 T ρ︸ ︷︷ ︸ 
n times 

and t 0 T 
ρ is the left

onformable differential operator presented in (3) . 

The following identity is essential to solve linear conformable

ractional differential equations [17] 

( t 0 I 
α,ρ (t − t 0 ) 

ρν−ρ )(x ) = 

1 

ρα

�(ν) 

�(α + ν) 
(x − t 0 ) 

ρ(α+ ν−1) , 

Re (ν) > 0 . (6) 

he following theorem is the main tool to obtain the solution rep-

esentation. 

heorem 1 Jarad et al. [17] . Let f ∈ C n α,t 0 
[ t 0 , b] = { f : [ t 0 , b] → R :

 −1 
 0 

T ρ f ∈ I ρ ([ t 0 , b]) } , n = [ α] + 1 . Then, 

( t 0 I 
α,ρ
t 0 

D 

α,ρ f )(t) = f (t) −
n −1 ∑ 

k =0 

k 
t 0 

T ρ f (t 0 )(t − t 0 ) 
ρk 

ρk k ! 
, (7)

here I ρ ([ t 0 , b ]) is the space defined in Definition 3.1 in [26] . 

More properties of the left-fractional conformable integrals and

erivatives can be found in [17] . 
. Existence and uniqueness theorems 

Consider the system 

 0 
D 

α,ρx (t) = f (t , x (t )) , x (t 0 ) = x 0 , t ∈ (t 0 , b] , (8)

here α ∈ (0, 1), f : [ t 0 , b ) × G, G an open subset of R or more gen-

rally of C , and 

g(t) = f (t , x (t )) ∈ C γ ,ρ [ t 0 , b] 

= 

{
y : (t 0 , b] → R : 

(
t ρ − t 

ρ
0 

ρ

)γ

y (t) ∈ C[ t 0 , b] 

}
, 

0 ≤ γ < 1 , ρ > 0 . 

The space C γ , ρ [ t 0 , b ] is a Banach space when it is endowed by

he norm 

 y ‖ = sup 

t 
| e −N(t−t 0 ) 

ρ
( 

t ρ − t 
ρ
0 

ρ
) γ y (t) | , N > 0 , (9)

hich is equivalent to the norm ‖ y ‖ γ ,ρ = sup t | ( t 
ρ−t 

ρ
0 

ρ ) γ y (t) | .
hen γ = 0 we accept that C γ ,ρ [ t 0 , b] = C[ t 0 , b] the space of con-

inuous functions on [ t 0 , b ] and when ρ = 1 we accept C γ ,ρ [ t 0 , b] =
 γ [ t 0 , b] (see [3] , page 4). 

efinition 3. A function x ( t ) is said to be a solution of the initial

alue problem (8) if 

1. (t, x (t)) ∈ D, D = [ t 0 , b] × B, B = { x ∈ R : | x | ≤ L } ⊂ G, L > 0 

2. x ( t ) satisfies (8) . 

heorem 2. The conformable fractional initial value problem (8) has

 unique solution in the space 

 

α, 0 
γ ,ρ [ t 0 , b] = { y (t) ∈ C[ t 0 , b] : aD 

α,ρy (t) ∈ C γ ,ρ [ t 0 , b] } , 
ith 0 ≤γ < 1 and γ ≤α, provided that 

A 

ραN 

α−1 
< 1 , (10) 

nd f satisfies the Lipschitzian condition 

 f (t, y 1 ) − f (t, y 2 ) | ≤ A | y 1 − y 2 | , A > 0 . (11)

roof. First let’s prove the existence of a unique solution y ( t ) in

he space C [ t 0 , b ]. Define the operator �: C [ t 0 , b ] → C [ t 0 , b ] by 

(�x )(t) = x 0 + t 0 I 
α,ρ f (t, x (t)) . (12)

here the space C [ t 0 , b ] is endowed with the norm ‖ y ‖ C =
up t | e −N(t−t 0 ) 

ρ
y (t) | , which is equivalent to the sup norm. For any

 1 , y 2 ∈ B , by the help of the Lipschitzian condition (11) we have 

| e −N(t−t 0 ) 
ρ
(�y 1 (t) − �y 2 (t)) | 

≤ Aρ1 −α

�(α) 

∫ t 

t 0 

e −N.K(t,s ) K(t, s ) α−1 (s − t 0 ) 
ρ−1 ds ‖ y 1 − y 2 ‖ C . (13) 

sing the change of variable u = K(t, s ) = (t − t 0 ) 
ρ − (s − t 0 ) 

ρ, it

ollows that 

 �y 1 − �y 2 ‖ ≤ Aρ1 −α

ρ�(α) 

∫ (t−t 0 ) 
ρ

0 

u 

α−1 e −Nu du ‖ y 1 − y 2 ‖ C , (14)

nd, hence, by using the definition of Gamma function we have, 

 �y 1 − �y 2 ‖ C ≤ A 

ραN 

α−1 
‖ y 1 − y 2 ‖ C . (15)

y the assumption (10) , the mapping � is a contraction and hence

y Banach fixed point theorem it has a unique fixed point x ∈ C [ t 0 ,

 ]. Moreover, 

lim 

 →∞ 

‖ T m x 0 − x ‖ C = 0 . (16)

rom the definition of � , x has the form 

 (t) = x 0 + t 0 I 
α,ρ f (t , x (t )) . (17)



96 T. Abdeljawad, Q.M. Al-Mdallal and F. Jarad / Chaos, Solitons and Fractals 119 (2019) 94–101 

 

 

 

 

 

 

 

 

 

 

 2 | . 

 

 

 

 

 

 

 

 

 

t  

 

 

 

P

x

T

x

P  

ρ

x  

T  

m  

a

R  

E

4

 

l  

A  

p

t  

S  

a  

a  

 

s

t

H

t  

4

(

 

c  

r

 

i

t  

U

θ

a

 

p

t  

T

θ

a

From Theorem 1 with n = 1 , it is clear that if x satisfies the initial

value problem (8) , then it has the representation (17) . Conversely,

if x has the representation (17) , then clearly x (t 0 ) = x 0 and by the

help of Theorem 3.6 and (57) of Definition 4.1 with n = 1 in [17] ,

x will satisfy the Eq. (8) . Hence, x has the representation (17) if

and only if it satisfies the initial value problem (8) . Finally, if ‖ . ‖
denotes the norm defined in (9) then we have 

‖ aD 

α,ρT m x 0 − D 

α,ρx ‖ ≤ A ‖ T m x 0 − x ‖ 

≤ A (b ρ − t 
ρ
0 
) γ ‖ T m x 0 − x ‖ C . 

From (16) , we conclude that lim m →∞ 

‖ aD 

α,ρT m x 0 − aD 

α,ρx ‖ = 0 .

That is a D 

α, ρx ∈ C γ , ρ [ t 0 , b ] and x ∈ C α, 0 
γ ,ρ [ t 0 , b] . �

Theorem 3. The initial value problem (1) has a unique solution in

the space C α, 0 
γ ,ρ [ t 0 , b] with 0 ≤γ < 1 and γ ≤α, provided that 

r(1 + 2 L ) 

ραN 

α−1 
< 1 . (18)

Proof. The proof follows by using Theorem 2 by taking f (t, x (t)) =
rx (t)(1 − x (t)) and noting that 

| f (t, y 1 ) − f (t, y 2 ) | = r| (y 1 − y 2 )(1 + y 1 + y 2 ) | ≤ r(1 + 2 L ) | y 1 − y

That is with the Lipschitz constant A = r(1 + 2 L ) . �

Theorem 4. The initial value problem (2) has a unique solution in

the space C α, 0 
γ ,ρ [ t 0 , b] with 0 ≤γ < 1 and γ ≤α, provided that 

r 
(
−m + (1 + 

m 

k 
)2 L + 

L 2 

k 

)
ραN 

α−1 
< 1 . (19)

Proof. The proof follows by using Theorem 2 by taking f (t, x (t)) =
rx (t)(1 − x (t) 

k 
)(x (t) − m ) and noting that 

| f (t, y 1 ) − f (t, y 2 ) | = r 

∣∣∣(y 1 − y 2 ) 
(
−m + 

(
1 + 

m 

k 

)
(y 1 + y 2 ) 

−1 

k 
[(y 1 − y 2 ) 

2 − y 1 y 2 ] 

)∣∣∣, 
and hence, since y 1 , y 2 ∈ B , that 

| f (t, y 1 ) − f (t, y 2 ) | ≤ r 

(
−m + 

(
1 + 

m 

k 

)
2 L + 

L 2 

k 

)
| y 1 − y 2 | . 

That is with the Lipschitz constant A = r(−m + (1 + 

m 

k 
)2 L +

L 2 

k 
) . �

Below we use successive approximation depending on

Theorem 2 to find the solution of the Caputo conformable

fractional linear differential equation with constant coefficient of

order α ∈ (0, 1). The obtained solution representation will be the

key for proceeding in the next stability analysis section. Consider

the initial value problem 

 0 
D 

α,ρx (t) = λx (t) + f (t) , t > t 0 , x (t 0 ) = x 0 , (20)

where α ∈ (0, 1), f real-valued function and ρ > 0. 

Theorem 5. The solution of the Caputo initial value problem (20) is

given by 

x (t) = E α

(
λ

ρα
(t − t 0 ) 

ρα

)
x 0 

+ 

∫ t 

t 0 

(
(t − t 0 ) 

ρ − (s − t 0 ) 
ρ

ρ

)α−1 

(21)

× E α,α

(
λ

(
(t − t 0 ) 

ρ − (s − t 0 ) 
ρ

ρ

)α)
f (s )(s − t 0 ) 

ρ−1 ds, 

where E α(.) and E α, α(.) are the Mittag-Leffler functions of 1 parame-

ter and 2 parameters, respectively [3] . 
roof. Upon Theorem 2 , consider the successive approximation 

 m 

(t) = x 0 + λt 0 I 
α,ρx m −1 (t) + t 0 I 

α,ρ f (t) , 

m = 1 , 2 , . . . , x 0 (t) = x 0 . 

hen, by (6) , by writing x 0 = x 0 (t − t 0 ) 
ρ(1) −ρ we have 

 1 (t) = x 0 + λ
�(1) 

ρα�(α + 1) 
(t − t 0 ) 

ραx 0 + t 0 I 
α,ρ f (t) . 

roceeding inductively and by making use of (6) and writing

kα = ρ(kα + 1 − 1) , we have 

 m 

(t) = x 0 

m ∑ 

k =0 

λk (t − t 0 ) 
kρα

ρkα�(kα + 1) 
+ 

m ∑ 

k =1 

λk −1 
t 0 

I kα,ρ f (t) . (22)

hen, we reach our claim by expanding t 0 I 
kα,ρ in the second sum-

ation, shifting the index k , interchanging the order of the integral

nd summation, and letting m → ∞ . �

emark 1. If ρ = 1 in Theorem 5 , then we obtain the results of

xample 4.9 in [3] . 

. Stability analysis for the logistic models 

In the following two subsections we discuss the stability of the

ogistic models (1) and (2) by perturbing the equilibrium points.

ssume α ∈ (0, 1], ρ > 0 and consider the fractional initial value

roblem 

 0 
D 

α,ρx (t) = f (x ) , x (t 0 ) = x 0 , t > t 0 . (23)

ince the Caputo CFD of the constant function is zero, then z is

n equilibrium point of the system (23) if f (z) = 0 . Assume z is

n equilibrium point and let x (t) = z + θ (t) . Then, t 0 D 

α,ρ (z + θ ) =
f (z + θ ) and hence t 0 D 

α,ρθ (t) = f (z + θ ) . By expanding in Taylor

eries in powers of θ it follows that 

 0 
D 

α,ρθ (t) = f (z + θ ) � f (z) + f ′ (z) θ + 

f ′′ (z) 

2 

θ2 + . . . � f ′ (z ) θ . 

ence, we get the perturbed system 

 0 
D 

α,ρθ (t) = f ′ (z) θ (t) , t > t 0 , θ (t 0 ) = x 0 − z. (24)

.1. Analysis of the fractional-order modified quadratic logistic model 

1) 

We see that model (1) has the equilibrium points z = 0 , 1 . The

orresponding right hand side function of model (1) is f (x ) =
x (1 − x ) and hence f ′ (x ) = r(1 − 2 x ) and f ′ (0) = r, f ′ (1) = −r. 

The perturbed system associated to the equilibrium point z = 0

s the fractional linear system 

 0 
D 

α,ρθ (t) = rθ (t) , θ (t 0 ) = x 0 . (25)

sing Theorem 5 , the solution of system (25) is given by 

(t) = E α

(
r 

ρα
(t − t 0 ) 

ρα
)

x 0 

= 

∞ ∑ 

k =0 

(
r 

ρα

)k (t − t 0 ) 
kρα

�(kα + 1) 
x 0 , 

nd hence the equilibrium point z = 0 is unstable. 

In addition, the perturbed system associated to the equilibrium

oint z = 1 is the fractional linear system 

 0 
D 

α,ρθ (t) = −rθ (t) , θ (t 0 ) = x 0 − 1 . (26)

he solution of system (26) is given by 

(t) = E α

( −r 

ρα
(t − t 0 ) 

ρα
)
(x 0 − 1) 

= 

∞ ∑ 

k =0 

( −r 

ρα

)k (t − t 0 ) 
kρα

�(kα + 1) 
(x 0 − 1) , 

nd hence the equilibrium point z = 1 is asymptotically stable. 
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Table 1 

Absolute errors of solution trajectories 

for Example 1 at α = 1 / 2 and ρ = 1 / 2 

for different values of initial point, x (0). 

x (0) E ( t ) 

0.1 1 . 35582 × 10 −14 

0.5 5 . 19429 × 10 −9 

0.9 6 . 82237 × 10 −13 

2.0 7 . 41072 × 10 −7 
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.2. Analysis of the fractional-order modified quadratic logistic model 

2) 

We see that the model (2) has the equilibrium points

 1 = 0 , z 2 = m and z 3 = k . The corresponding right hand side

unction of model (2) is f (x ) = rx (t )(1 − x (t) 
k 

)(x (t ) − m ) and hence

f ′ (x ) = r(1 − (x (t)) 
k 

)(x (t) − m ) + rx (t)(1 − (x (t)) 
k 

) − r 
k 

x (t )(x (t ) − m ) 

nd f ′ (0) = −rm, f ′ (m ) = rm (1 − m 

k 
) , and f ′ (k ) = −r(k − m ) . 

The perturbed system associated to the equilibrium point z = 0

s the fractional linear system 

 0 
D 

α,ρθ (t) = −rmθ (t) , θ (t 0 ) = x 0 , t > t 0 . (27)

sing Theorem 5 , the solution of system (27) is given by 

(t) = E α

(−rm 

ρα
(t − t 0 ) 

ρα
)

x 0 = 

∞ ∑ 

k =0 

(−rm 

ρα

)k (t − t 0 ) 
kρα

�(kα + 1) 
x 0 . 

ince r, ρ > 0 the equilibrium point z 1 = 0 is asymptotically stable. 

Also the perturbed system associated to the equilibrium point

 2 = m is the fractional linear system 

 0 
D 

α,ρθ (t) = rm 

(
1 − m 

k 

)
θ (t) , θ (t 0 ) = x 0 − m. (28)

he solution of system (28) is given by 

(t) = E α

(
rm (1 − m 

k 
) 

ρα
(t − t 0 ) 

ρα

)
(x 0 − m ) 

= 

∞ ∑ 

k =0 

(
rm (1 − m 

k 
) 

ρα

)k 
(t − t 0 ) 

kρα

�(kα + 1) 
(x 0 − m ) . 

ince r, m, k, ρ > 0 and m < k , then the equilibrium point z 2 = m is

nstable. 

Finally, the perturbed system associated to the equilibrium

oint z 3 = k is the fractional linear system 

 0 
D 

α,ρθ (t) = −r(k − m ) θ (t) , θ (t 0 ) = x 0 − k. (29)

he solution of system (29) is given by 

(t) = E α

(
−r(k − m ) 

ρα
(t − t 0 ) 

ρα

)
(x 0 − k ) 

= 

∞ ∑ 

k =0 

(
−r(k − m ) 

ρα

)k 
(t − t 0 ) 

kρα

�(kα + 1) 
(x 0 − k ) . 

ince r, m, k, ρ > 0 and m < k , then the equilibrium point z 3 = k is

symptotically stable. 

. Numerical discussion 

In this section we use the iterative power series method

31,32] for the numerical simulations of nonlinear problems

1) and (2) . This method proves to be a very effective tool for

olving nonlinear fractional differential equations. A brief descrip-

ion of this method is discussed below. We firstly subdivide the

nterval [ t 0 , T ] into N uniform subintervals I n = [ t n , t n +1 ] , for n =
 , · · · , N − 1 with t n = t 0 + nh and h = (T − t 0 ) /N. Assume that the

xact solution of Eq. (1) subject to condition (2) can be approxi-

ated by a function X n ( t ) on I n represented by 

 n (t) = 

n max ∑ 

j=0 

c n, j (t − t n ) 
krα, t ∈ I n . (30)

he coefficients c n, j can be obtained by minimizing the residual 

 n (t) = ( t 0 D 

α,ρX n )(t) − rX n (t)(1 − X n (t)) . 

n the following examples, we used h = 0 . 01 and n max = 3 . For

ore details, the reader is referred to [31,32] . 
xample 1. Consider the following modified quadratic logistic

odel 

( t 0 D 

α,ρx )(t) = rx (t)(1 − x (t)) , t > 0 , x (0) = x 0 , (31)

here r = 1 / 2 . 

Obviously, this equation has two equilibria given by x 1 = 0 and

 2 = 1 . Our aim in this example is to discuss the effect of α, ρ , and

 0 on the solution trajectories. Fig. 1 shows the solution trajecto-

ies as the initial point, at t 0 = 0 , changes in the set {0.1, 0.5, 0.9, 2}

hen α = 1 / 2 and ρ = 1 / 2 . One can clearly see that the solution

rajectories converge to x 2 = 1 asymptotically for any x 0 . Thus, we

onclude that x 2 = 1 is asymptotically stable equilibrium solution

hereas x 1 = 0 is unstable equilibrium solution. Notice that the

ate of convergence of solution trajectories to the equilibrium so-

utions is strongly dependent on the initial points. Obviously, the

ate of convergence to a steady state is higher as the initial point

loser to the value of the steady state, x 2 = 1 . 

It should be noted that, since the exact solution of problem

31) is unknown, we measure the error bound using the residual

o Eq. (31) as follows: 

(t) = max 
t∈ I 

| Res (t) | , (32)

here I := [ t 0 , T ] is the considered time domain and Res ( t ) is the

esidual to Eq. (31) defined by 

es (t) = ( t 0 D 

α,ρx )(t) − rx (t)(1 − x (t)) . (33)

able 1 displays the error bounds, E ( t ), for different initial points

f the solution trajectories which clearly indicates the accuracy of

he present results. 

The effect of changing α on the behaviour of solution trajecto-

ies is displayed in Fig. 2 at fixed values of x (0) = 0 . 5 and ρ = 1 / 2 .

e consider three values for α: 0.5, 0.75 and 1.0. It is clearly seen

hat the required time for the solution trajectories to reach the

quilibrium point x 2 = 1 decreases as α increases. In other words,

he rate of convergence to the steady state solution is proportional

ith α for the considered choice of ρ . This is obvious because of

he fact that the Mittag-Leffler function is completely monotonic. 

Fig. 3 shows the solution trajectories at α = 1 / 2 and x (0) = 4 ,

hile ρ is changing from 1/2 to 3/2. It is obvious that the rate of

onvergence to the steady state solution, x 2 = 1 , is inversely pro-

ortional with ρ . In addition, the value x ′ (0) is increasing as ρ de-

reases. 

xample 2. Consider the following modified cubic logistic model

( t 0 D 

α,ρx )(t) = rx (t ) 
(

1 − (x (t )) 

k 

)
(x (t ) − m ) , t > 0 , x (0) = x 0 , 

(34) 

here r = 1 / 2 , m = 1 and k = 10 . It can be easily verified that this

quation has three equilibria given by x 1 = 0 , x 2 = 1 and x 3 = m . 

Fig. 4 shows the solution trajectories as the initial point, at t =
 , changes in the set {0.5, 1.2, 4, 8, 12} when α = 1 / 2 and ρ = 1 / 2 .

ne can clearly guess that the solution trajectories converges to
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Fig. 1. Graphs of the solution trajectories for Example 1 at α = 1 / 2 and ρ = 1 / 2 for different values of initial condition: , x (0) = 0 . 1 ; , x (0) = 0 . 5 ; , 

x (0) = 0 . 9 ; , x (0) = 2 . 0 . 

Fig. 2. Graphs of the solution trajectories for Example 1 at x (0) = 4 and ρ = 1 / 2 for different values of α: , α = 0 . 5 ; , α = 0 . 75 ; , α = 1 . 0 . 

 

 

 

 

 

 

 

 

 

 

Table 2 

Absolute errors of solution trajectories 

for Example 2 at α = 1 / 2 and ρ = 1 / 2 

for different values of initial condition, 

x (0). 

x (0) E ( t ) 

0.5 1 . 82939 × 10 −11 

1.2 1 . 98952 × 10 −12 

4.0 1 . 23030 × 10 −9 

8.0 8 . 01894 × 10 −10 

12.0 7 . 08892 × 10 −8 

 

b  

c  

q  

p 3  
x 1 = 0 asymptotically for 0 < x 0 < 1, while they converge to x 3 = 10

asymptotically for x 0 > 1. Thus, we conclude that x 1 = 0 and x 3 =
10 are asymptotically stable equilibrium solutions whereas x 2 = 1

is unstable equilibrium solution. Similar to the findings of the pre-

vious example, the rate of convergence of solution trajectories to

the equilibrium solutions depends on the initial points. In other

words, the rate of convergence to a steady state is higher as the

initial point closer to the value of the steady state. 

Table 2 displays the error bounds, E ( t ), for different initial

points of the solution trajectories which clearly indicates the ac-

curacy of the present results. Notice that E ( t ) in this example is

defined by 

E(t) = max 
t∈ I 

| Res (t) | , 
where 

Res (t) = ( t 0 D 

α,ρx )(t) − rx (t) 

(
1 − x (t) 

k 

)
(x (t) − m ) . 
Fig. 5 displays the effect of changing the value of α on the

ehaviour of solution trajectories at x (0) = 4 and ρ = 1 / 2 . We

onsider three values for α: 0.5, 0.75 and 1.0. Obviously, the re-

uired time for the solution trajectories to reach the equilibrium

oint x = 10 decreases as α increases. In other words, the rate of
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Fig. 3. Graphs of the solution trajectories for Example 1 at α = 1 / 2 and x (0) = 4 for different values of ρ: , ρ = 0 . 5 ; , ρ = 0 . 75 ; , ρ = 1 . 0 ; , ρ = 1 . 5 . 

Fig. 4. Graphs of the solution trajectories for Example 2 at α = 1 / 2 and ρ = 1 / 2 for different values of initial condition, x (0): , x (0) = 0 . 5 ; , x (0) = 1 . 2 ; , 

x (0) = 4 . 0 ; , x (0) = 8 . 0 ; , x (0) = 12 . 0 . 

Fig. 5. Graphs of the solution trajectories for Example 2 at x (0) = 4 and ρ = 1 / 2 for different values of α: , α = 0 . 5 ; , α = 0 . 75 ; , α = 1 . 0 . 
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Fig. 6. Graphs of the solution trajectories for Example 2 at α = 1 / 2 and x (0) = 4 for different values of ρ: , ρ = 0 . 5 ; , ρ = 0 . 75 ; , ρ = 1 . 0 ; , ρ = 1 . 5 . 
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convergence to the steady state solution is proportional with α. In

addition, the slope of the tangent line at t = 0 , x ′ (0), is dramati-

cally increasing with the decreasing of α. 

The solution trajectories at α = 1 / 2 and x (0) = 4 , while ρ is

changing from 1/2 to 3/2 are displayed in Fig. 6 . It is obvious that

the rate of convergence to the steady state solution, x 3 = 10 , is in-

versely proportional with ρ . In addition, the value x ′ (0) is increas-

ing as ρ decreases. 

6. Conclusion 

In this article, we analysed the logistic equation that contains

Caputo fractional operators generated by the conformable deriva-

tive. This fractional derivative involves two parameters: α, the

order of the derivative and ρ > 0 that emerges from the con-

formable derivative. Existence and uniqueness results and stability

were discussed. In addition, numerical examples were considered

to demonstrate these results. It was seen that even the fact that ρ
appears in the solution of the perturbed system, being positive, it

does not affect the stability of the models. To assert this numer-

ically, we gave examples when ρ < 1 and ρ > 1. When ρ = 1 , we

reobtain the results in [23,24] . It is worth mentioning that for the

sake of comparison we took the values of α considered in [23,24] . 
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