
Received October 7, 2019, accepted October 25, 2019, date of publication October 30, 2019, date of current version November 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950424

Resource Aware Chaining and Adaptive
Capacity Scaling for Service Function
Chains in Distributed Cloud Network
JIACHEN ZU , GUYU HU, YANG WU , DONGSHENG SHAO, AND JIAJIE YAN
Institute of Command and Control Engineering, Army Engineering University, Nanjing 210007, China

Corresponding author: Guyu Hu (huguyu@189.cn)

ABSTRACT With the development of network technology such as software-defined network (SDN) and
network function virtualization (NFV), Internet service providers (ISPs) are increasingly placing the virtual
network function(VNF) instances at the network edge to provide network service. However, there are some
issues to be tackled in the distributed SDN/NFV enabled cloud. Firstly, VNF instances require to be chained
in predefined order to provide network services. It is a challenge to optimally select and chain VNF instances
from the multi-instances. Moreover, due to the capacity limitation of the distributed edge nodes. The capacity
of the Virtual Machines (VMs) that host VNFs should be proactively adjusted to cope with traffic demands.
Since most existing works ignore the vertical capacity scaling problem in routing commodities with Service
Function Chain (SFC) requests. In this paper, a fine-grained scheduling scheme at VM-level is proposed.
Firstly, we formulate the SFC chaining problem as an Integer Linear Programming (ILP) model aiming to
embed SFC requests with minimum estimated latency cost. Furthermore, we formulate the adaptive VNF
resource allocation (VNF-AR) problem as a convex optimization. The theoretical optimal capacity for each
VM can be derived from the Karush-Kuhn Tucker (KKT) conditions. At last, a novel joint optimization
approach of VNF chaining and adaptive scaling (VNF-CAS) is proposed to efficiently embed the SFC
requests. Performance evaluation shows that VNF-CAS can achieve better performance in SFC requests
acceptance rate, average effective throughput, average load utilization and VM load balancing when it is
compared with other algorithms in existing works.

INDEX TERMS Network function virtualization, service function chain, distributed cloud network, resource
optimization.

I. INTRODUCTION
In traditional, the Internet service providers (ISPs) use the
dedicated hardware equipment to offer different network
functions such as Firewalls, Proxies, Network Address Trans-
lators (NATs) and Intrusion Detection Systems (IDSs), this
can result in high cost and inflexible management of ISP’s
network. To reduce the Operating Expenditures (OPEX)
and Capacity Expenditures (CAPEX), network function vir-
tualization (NFV) [1] was proposed to migrate network
functions from the hardware-based equipment to software-
defined instances and allow scalable and flexible deployment
of network functions. In NFV, different network functions
are executed in virtual machines (VMs) or containers on

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Xu .

standardized servers. In general, the NFV architecture [2]
is composed of three main components, Virtual Network
Functions (VNF), Network Function Virtualization Infras-
tructure (NFVI), management and orchestration architectural
framework (NFV MANO). The VNFs are controlled and
managed by MANO according to software-defined network-
ing (SDN) paradigm [3]. Typically, NFV is used in the data
center network, which brings great advantages in flexibility
and cost-efficiency. However, the centralized orchestration of
a large number of VNFs becomes a problem. To reduce the
complexity of orchestration, the ISPs can place a fewVNFs in
distributed Micro-Data Centers (MDCs) [4] with the network
edge computing technology [5]. These distributed MDCs can
be deployed in buildings or neighbors near users to achieve
better QoS and lower latency. In addition, NFV is applied
to 5G network slice technology, which provides diversified

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 157707

https://orcid.org/0000-0003-1798-7051
https://orcid.org/0000-0001-9809-3572
https://orcid.org/0000-0003-4245-5989

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

FIGURE 1. VNF selection and chaining in distributed cloud network.

and customized network services to users through on-demand
network slicing [6].

In fact, there are several issues to be investigated on the
orchestration of VNFs. Firstly, how to concatenate differ-
ent VNFs effectively within the ordering constraints. In real
scenarios, the service requests from clients often consist of
several network functions. Network flows need to traverse
through a series of VNFs in sequence to achieve the specific
objective. The interconnection of VNFs which provide end-
to-end Internet service is defined as a service function chain
(SFC) [7], [8]. As different chain composition affects the
performance of the network service. Authors in [9] defined
a model for formalizing the chaining of network functions
using a context-free language. In [10], a topological depen-
dence sorting method was used to jointly optimize the pro-
cesses of SFC designing and deployment. Secondly, a lot
of researchers have focused on how to deploy the SFC
optimally to achieve a good network performance. In [11],
an approximation algorithm based on GAP (Generalized
Assigned Problem) was applied to solve the NFV location
problem of small distributed cloud nodes. The work in [12]
studied the joint problem of VNF placement and path selec-
tion to better utilize network resource, it was verified to
serve more demands by optimizing the VM reuse factor and
path length. Besides, Energy-aware SFC placement strategy
was proposed to reduce power consumption in data center
scenarios [13], [14].

Since the different stages of SFC orchestration are rele-
vant to each other. (e.g. SFC chaining and SFC placement).

A growing number of studies are trying to consider many
stages together and jointly optimize them. Therein, the opti-
mal steering and resource allocation of NFV has attracted
attention from both academia and industry [15]. Once given
the available locations of VNF instances, there are usually
multiple instances to choose from. How to optimally select
the VNF instance and construct the routing path without
violating constraints becomes a problem, especially in the
distributed network. Fig.1 shows a simple instance of the SFC
in the distributed cloud system: a client needs to get social
network service (e.g. logging in Facebook server through
an SFC). This SFC is composed of 3 types of VNFs, the Web
Proxy, the Firewall (FW) and the Load Balancer (LB). There
are 3 switch nodes and 4MDCnodes in the substrate network.
And four types of VNFs are deployed on MDC nodes B,
C, D, E respectively. Each type of VNF usually has multi-
ple instances located in different MDC nodes. In that case,
there are many paths that can satisfy the predefined order
for the orchestrator to choose. For example, Path I: Switch
A ⇒ MDC B ⇒ Switch B ⇒ MDC D ⇒ Switch C ⇒
MDC E⇒ Switch C⇒ Facebook server or Path II: Switch
A ⇒ MDC C ⇒ Switch B ⇒ MDC E ⇒ Switch C ⇒
Facebook server. Path I traverses VNFs in different MDCs,
which may result in much bandwidth usage and many hop
counts. Path II traverses VNFs by sharing MDC node C,
which may be helpful to reduce hop counts and bandwidth
usage. However, it can lead to load imbalance when too many
phsical resources are occupied in a single node. Therefore,
due to the limited physical resources (i.e. CPU, memory and

157708 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

bandwidth) in the substrate network, it is a challenge to find
the best compromise routing path to achieve load balancing
and reduce resource bottlenecks.

On the side of the client’s needs, the clients want to get
better Internet QoS such as low end-to-end delay and low
packet loss rate. Different network services also have dif-
ferent preferred network metrics. For example, the real-time
video service typically requires more bandwidth whereas the
VoIP service is more sensitive to latency. There is a need to
design a resource-aware VNF chaining algorithm related to
clients’ demand. On the other side of the network provider’s
requirements, the network is ought to accommodate flows as
many as possible under the capacity constraints to achieve
throughput-optimal. There should be a mechanism to dynam-
ically adjust resource allocation to balance the load based on
the historical traffic. But little research has been done in the
joint optimization of VNF chaining and scaling. In this paper,
a joint VNF chaining and adaptive scaling optimization in the
distributed cloud system is proposed. There are mainly two
problems in the following to be solved: (1) How to optimally
select and concatenate VNF instances based on the resource
information of the substrate network. (2) How to dynam-
ically adjust resource allocation of VMs according to the
traffic demand. The contributions of this paper are listed as
follows:

• We formulate the VNF chaining (VNF-C) problem as
an ILP model aiming at minimizing the estimated delay
cost. Taking the bandwidth of links, the load of VMs into
account, a Service Function Graph method is proposed
to chain VNFs in a fine-grained VM level.

• Instead of simply allocating resources fairly to VMs
of different VNFs (e.g. in [12]), we first formulate the
adaptive VNF resource allocation (VNF-AR) problem
into a convex optimization and give the optimal capacity
in theoretical analysis.

• Furthermore, by combining the optimization results
above. We design a novel VNF chaining and adap-
tive scaling (VNF-CAS) algorithm. The joint VNF-CAS
algorithm is proven to provide good performance guar-
antees by real trace-driven simulation. The performance
evaluation results show that our proposed algorithm
achieves better performance in acceptance rate, effective
throughput, average load utilization and load balanc-
ing than the existing algorithms [16]–[18] in different
topologies.

The rest of the paper is organized as follows: The related
work is presented in Section II.We explain the detailed model
in Section III and formulate it into an ILPmodel in Section IV.
Section V gives the description of the proposed algorithms
including VNF-C, VNF-AR, and VNF-CAS. In section VI,
we validate our proposed algorithm through real trace-driven
simulation and compare it with other existing algorithms in
different topologies. Finally, Section VII gives the conclusion
of the paper.

II. RELATED WORK
To solve virtual network function chaining and routing prob-
lem. Bari et al. [18] formulated this problem as an ILPmodel,
the costs of VNF deployment, energy, and Service Level
Objective (SLO) violation are considered with the aim of
minimumOPEX and fragmentation. A heuristic-based on the
Viterbi algorithm was proposed to embed SFC requests in a
multi-stage graph.Mechtri et al. [19], [20] proposed amatrix-
based approach, using eigendecomposition of adjacency
matrices to cope with the VNF placement and chaining prob-
lem in distributed cloud environments. Khebbache et al. [21]
also adopted matrix-based optimization and multi-stage
graph method to find solutions in polynomial times. Using
perfect 2 matching method at the VNF chain placement stage
is helpful to enhance resolution time and guarantee scala-
bility. Nevertheless, studies in [18]–[20] select VNFs in a
greedy way at each stage of the multi-stage graph. Though
the heuristic method may be conducive to reduce the exe-
cution time of solution and improve scalability. These algo-
rithms can lead to a sub-optimal solution for the routing of
SFC flows.

Tang et al. [22] raised a dynamic queuing model
to deal with the VNF placement in 5G access net-
work. With Lyapunov optimization technique, a genetic
algorithm-based heuristic SFC scheduling and mapping
algorithm (QDPVNF) was presented. In addition, other
methods like dynamic programming (DP) [23], Col-
umn Generation (CG) [24], Monte Carlo Tree Search
(MCTS) [25] are also applied in the VNF placement and
chaining.

Different from the research works above, some studies
formulate the SFC placement problem from the perspective
of multi-path routing (MRP). Cao et al. [16] proposed a
novel algorithm named Competitive Online Algorithm for
Traffic Steering (COATS) based on segmentation and lazy
dual. In COATS, the flows are given one by one and the
objective is to steer the flows to maximize the total amount of
traffic. Dwaraki et al. [26] proposed an adaptive service rout-
ing algorithm to solve the online problem. In the algorithm,
the network graph is transformed into a layered graph. The
author proposed a way to calculate end-to-end delay from
utilization measurement on links and servers. Conventional
SP algorithm is executed to get the optimal solution and the
feasibility of this approach is verified through an emulated
prototype implementation.

Based on the research method of [16], [26], Pei et al. [17]
proposed a differentiated routing algorithm aiming to mini-
mize resource consumption costs of flows with SFC requests.
In this algorithm, the flows are classified into different kinds
based on resource preference. The costs of different flows
are defined differentially to balance resource consumption.
In [27], Sallam et al. proposed a transformation of the
network graph which can reduce the computational com-
plexity of works in [16], [26]. Then they formulated this
SFC-constrained maximum flow problem as a fractional

VOLUME 7, 2019 157709

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

multicommodity to achieve throughput-optimal routing.
Similarly, Pei et al. [28] designed a routing scheme based
on deep learning to reduce the routing computation time of
the layered method. Performance evaluation shows that the
deep learning method can get almost the same performance
in acceptance rate and end-to-end delay, but enhance time
efficiency dramatically.

Considering the more complicated scenario, due to the
highly dynamic of resource usage and limited duration time
of SFC requests. The SFC requests are dynamic and result in
the variation of network load. Zhou [29] proposed a primal-
dual placement scheme that makes on-spot decisions upon
the arrival of SFC. Pei et al. [30] studied the SFC embedding
problem to optimize the number and placement of VNF
instances according to the dynamic load in geo-distributed
cloud system. A novel SFC embedding approach (SFC-MAP)
and a VNF dynamic release algorithm (VNF-DRA)
were proposed to efficiently embed SFC requests and opti-
mize the number of placed VNF instances. Furthermore, with
the traffic history, the upcoming traffic can be predicted.
VNF instances should be dynamically scaled up or down.
Fei et al. [31] employed an efficient online method
called follow-the-regularized-leader (FTRL) to minimize
the error in predicting SFC demands. With the pre-
diction results, the processing capacity can be derived
to adaptively assign VNF instances. The joint online
algorithm is proven to provide good performance guar-
antees by both theoretical analysis and trace-driven
simulation.

Nevertheless, most of the mentioned works neglect the
fact that different VNFs are segregated in different VMs
to share the processing-resource. Each VM has a limited
computational capacity and the load imbalance of VMs will
cause network performance degradation. In that case, there
should be an efficient processing-resource allocation mecha-
nism to accommodate VNF demands. Buh et al. [32] defined
a novel adaptive traffic distribution among multi-core archi-
tectures, this method was experimentally validated by tests
on Linux Bridge networking devices. Savi et al. [33] consid-
ered two penalties include context switching costs (causing
by repeated context loading/saving on the same CPU) and
upscaling costs (causing by load-balancing needs of VNFs
among multiple CPU cores). Both of them were verified to
affect the embedding of SFCs. Kulkarni et al. [34] proposed
a VNF scheduling and service chain management framework
named VNFnice to achieve fair resource allocation of CPU.
In their work, the VNF load was calculated as the product
of the arrival rate and estimated service time. An extending
backpressure approach at packet granularity was applied to
manage congestion. A DPDK based platform [35] that runs
VNFs in containers was used to facilitate deployment. In this
paper, we mainly focus on the optimal selection and chaining
problem of SFC in the distributed system. A joint optimiza-
tion method of SFC chaining and VNF adaptive scaling is
proposed.

III. SYSTEM MODEL
A. SUBSTRATE NETWORK
The network is generally modeled as an undirected graph
G = (V, E), where V is the node set and E is the link
set. The node number |V| and the link number |E | are both
limited. Here, we assume two kinds of nodes in the distributed
cloud network, V = Vse ∪ Vsw where Vse is the server
node set and Vsw is the switch node set. Switch nodes are
responsible to forward data to neighbors. Server nodes are
not only responsible to forward data but also to process the
traffic of SFC demands. Both of switches and servers work
under the control instructions of the orchestrator. Since the
switches do not need to process the flows, we neglect the
communication cost on switch nodes. In the NFV MANO
network architecture, the NFV orchestrators can be seen as
a kind of SDN controllers responsible to collect the network
status and manage the VNF orchestration.

For each link (v,w) ∈ E , its bandwidth capacity is Cvw.
We use ηvw to represent the relative bandwidth utilization
of link (v,w) ∈ E . For each node v ∈ Vse, we use Cv
to represent the computational capacity. While Cv = 0 for
v ∈ Vsw. In most NFV scenarios, the CPU capacity
is regarded to be the most important metric to evaluate
computational resources in MIPs (million instructions
per second), whereas other hardware resource like memory
is relatively sufficient. Multiple VMs can be installed to hold
VNF instances on each server node. We use ηmv to represent
the relative load utilization of the mth VM on server node
v ∈ Vse and ηv to represent the load utilization of the server
node. In NFV-enabled network, the network can support a
set of VNFs F (with maximum number |F |). Each f ∈ F
is associated with a specific kind of VNF like the firewall.
We assume that every VM is able to execute one VNF f ∈ F .
The VNF types in different servers can be the same, but the
VNF types of VMs on the same server must be different from
each other. In addition, since the orchestrators have no aprior
knowledge of the traffic distribution of VNF instances. At the
Initial phase, we assume the CPU capacity of each VMCm

v on
the same server is allocated equally according to server’s Cv
and VM number Mv.

B. SERVICE FUNCTION CHAIN REQUESTS
In this network model, all data that enter the network are
associated with a particular commodity with SFC request.
A seven-tuple is defined to symbolize the SFC Si ={
oi, di, ϕi,R

cpu
i ,Rbwi ,R

D
i , G̃i

}
. Given a set of SFC commodi-

ties, we use |S| to represent the total number of the existed
commodities in the network. Let oi and di represent the
source and destination address of Si respectively. Each Si is
composed of a series of VNFs in a specific order which
is defined as ϕi = {ϕi1, ϕi2, . . . , ϕil}. ϕij represents the jth

VNF request of Si, where j = 1, 2, 3, . . . l, l = |ϕi| is the
maximum VNF number of Si. For each Si, the CPU demand,
bandwidth consumption and maximum tolerated delay are
defined as Rcpui ,Rbwi ,R

D
i . Both of these metrics depend on the

157710 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

specific demand of SFC. It’s important to note that since there
exsit non-prioritized flows like IoT traffic, these traffic can be
delayed and their tolerated delay is assumed to be infinite. For
each SFC commodity, to simplify its complexity, we assume
the bandwidth consumption and CPU demand of VNFs to
be the same value. As for G̃i =

(
Ṽi, Ẽi

)
, it is a directed

graph to describe the available routing path of Si. Ṽi is the
set of available virtual nodes that can host the required VNF
and Ẽi is the set of virtual links to connect adjacent VNFs.
The direction of links must satisfy the constraints in ϕi and
the weight of links represents the resource consumption cost
between adjacent nodes. Routing graph G̃i =

(
Ṽi, Ẽi

)
is the

subset of the Service Function GraphGi = (Vi,Ei), which is
described in detail in Section V.

To better utilize resources, we allow different flows to
share the same VNF instance if its capacity Cm

v is sufficient.
In addition, any two different VNFs in one SFC can be served
on the same server, so that the communication between them
becomes intra-node. In this case, the bandwidth consumption
of the corresponding virtual link is regarded to be zero. It is
beneficial to reduce the end-to-end latency. Last but not least,
though service function chains can greatly enrich the diversity
of NFV, the actual form of the SFC is usually not arbitrary
in the real scenario. Taking the Web service as an example,
the requests of a user usually need to sequentially go through
the web proxy, the load balancer and the firewall to access to
the Internet. Therefore, It is assumed that there is a set � to
cover all the SFC forms, and we merge the service function
chains that have the same ingress node oi, egress node di and
the same VNF forms into one group �k .

IV. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
In this paper, once the network topology G = (V, E) and
a set of SFC commodities � are given. To realize the SFC
optimal routing in distributed cloud network, the network
sevice provider needs to (1) collect the VNFs’ location and
resource usage status of the substrate network (2) construct
a multi-layer graph for each SFC and calculate the weights
of corresponding edges (3) select a path and judge whether
the required VNFs can be placed or not. The optimal VNF
selection and chaining problem can be seen as a multi-path
routing problem (MRP) with SFC constraints. From another
perspective, the relationship between server nodes and SFCs
can be compared to the facilities and clients. This problem
can also be formulated as a facility location problem (FLP),
which is aiming at minimizing the total cost of matching the
facilities to clients.

B. DETAILED FORMULATION
In this section, we formulate the optimal VNF selection and
chaining problem into an ILP model, which can be seen as
the combination model of MRP and FLP. The main notions
are listed in TABLE 1.

There are many constraints for SFC in the NFV enabled
network. Firstly, the routing path of Si starts from oi and ends

TABLE 1. Symbol and variables.

at di, it can not be split. If Si is accepted and placed, then it
should origin from oi to di as:

∑
v∈V

∑
(v,w)∈Ei

(
zv,wi,wv − z

v,w
i,vw

)
=


1 w = oi
−1 w = di
0 otherwise

(1)

Here, we use binary variable zv,wi,vw to indicate whether
virtual link (v,w) ∈ Ei traverses through the link (v,w) ∈ E .
The selected routing path πi must be able to traverse through
VNFs following the specified order in Si, i.e. I

(
ϕi,j
)
≤

I
(
ϕi,j+1

)
∀i, j.I

(
ϕi,j
)
indicates the sequence index of the

node in selected path πi.

VOLUME 7, 2019 157711

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

Secondly, the total bandwidth consumption on each phys-
ical link (v,w) ∈ E would not exceed bandwidth capacity as:

|S|∑
i=1

∑
(v,w)∈Ei

Rbwi · z
vw

i,vw ≤ Cvw ∀(v,w) ∈ E (2)

As for the capacity constraints of nodes, the required com-
putational resources on each VM of node would not exceed
its CPU capacity. Secondly, the total capacities of VMswould
not exceed their server’s CPU capacity. Here, y

ϕij
v,m is symbol-

ized to indicate whether the VNF ϕij of Si is hosted on themth

VM of server node v ∈ Vse.
|S|∑
i=1

|ϕi|∑
j=1

Rcpui · y
ϕij
v,m ≤ Cm

v ∀m, ∀v ∈ Vse (3)

Mv∑
m

Cm
v ≤ Cv ∀v ∈ Vse (4)

For any server nodes in the network, the VM of a server
node is assumed to host only one type of VNF f ∈ F . Here,
x fv,m is symbolized to judge whether the VNF f ∈ F is hosted
on the mth VM of server node v ∈ Vse.∑

f ∈F

x fv,m = 1 ∀m, ∀v ∈ Vse (5)

The VNF types of VMs on the same server node are
supposed to be different from each other as:∑

f ∈F

x fv,m · x
f
v,m′ = 0 ∀m 6= m′, ∀v ∈ Vse (6)

If different SFCs traverse the same VM in a server node,
they must request the same type of VNF:

y
ϕij
v,m = y

ϕi′j′
v,m = 1 if ϕij = ϕi′j′ ∀m, ∀i, i

′, ∀j, j′, ∀v ∈ Vse
(7)

For each Si, (8) ensures that different VNFs in Si can be
served on one server, but the VNF instance number can not
exceed the maximum VM number. So there may be some
loops in the routing path.

Mv∑
m=1

|ϕi|∑
j=1

y
ϕij
v,m ≤ Mv ∀i, v ∈ Vse (8)

At last, the end-to-end delay of selected path must be
smaller than SFC’s maximum tolerated delay. In this paper,
we consider the end-to-end delay of Si consists of three
components: queuing delay Dqueuevw , processing delay Dprocv,m
and propagation delay Dpropvw .

∑
(v,w)∈Ei

∑
v∈Vse

Mv∑
m=1

Dprocv,m · z
v,w
i,v,m

+

∑
(v,w)∈Ei

∑
(v,w)∈E

(
Dpropvw + D

queue
vw

)
· zvwi,vw ≤ R

D
i ∀i (9)

C. DEFINITION OF THE RESOURCE COST
From a multi-path routing perspective, we define the objec-
tive function of the optimal VNF chaining as the resource
cost. In order to meet the requirements of network ser-
vice providers and clients, the resource cost is ought to
be relevant to bandwidth utilization and load utilization.
In addition, we hope to balance the workload and reduce
the resource bottlenecks by minimizing the defined resource
cost. So we consider using the definition of estimated end-
to-end delay in [26] to represent the cost of a routing
path.

D̃propvw =
Dis(v,w)
cmedium

(10)

D̃queuevw =
ηvw

1− ηvw
· dtx (11)

D̃procv,m =
ηmv

1− ηmv
· tproc (12)

The resource cost for traversing a link consists of two
components: estimated propagation delay D̃propvw as in (10)

and estimated queuing delay D̃queuevw as in (11). The resource
cost for traversing a VM consists of the estimated processing
delay D̃procv,m as in (12).

The estimated propagation delay is calculated by the phys-
ical length Dis(v,w) of link and propagation speed of signals
in that medium. cmedium is generally measured to be 5µs/km
in optical fiber.

The estimated queuing delay is dependent on the band-
width utilization ηvw of link. Using a simple M/M/1 queuing
model with an expected service time, dtx represents the trans-
mission delay which is dependent on the transmitted packet
size and link bandwidth. Similarly, the estimated processing
delay of VM is depending on its load utilization ηmv . tproc is
the per packet processing time.

The resource costs defined in (11) and (12) are closely
relevant to the load of links and nodes. Both of them are
increasing and convex functions of load utilization. This
kind of function captures nearly linear growth in latency
at light traffic load, but it witnesses a sharp increase
when the resource consumptions are nearly approaching
the maximum capacity. It is noted that the estimated pro-
cessing delay in (12) is only considered on the server
node v ∈ Vse.

In our hypothesis, the resource cost is calculated by the
estimated end-to-end delay. However, the real end-to-end
delay is dynamic and stochastic in the network. It is difficult
to evaluate with the resource usage information. But the
resource utilization of network can be a way to estimate the
delay cost. Furthermore, this method is tested to be effective
to match with dynamic network data as in [26]. So in this
paper, we use the sum of estimated delay on the routing path
to indicate the resource cost. The objective function of each

157712 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

SFC request is:

min
∑

(v,w)∈Ei

∑
v∈Vse

Mv∑
m=1

ηmv

1− ηmv
· tproc · z

v,w
i,v,m

+

∑
(v,w)∈Ei

∑
(v,w)∈E

(
Dis(v,w)
cmedium

+
ηvw

1− ηvw

)
· zvwi,vw

Subject to Eq.(1)− Eq.(9) (13)

The aim of the ILP model is to find the optimal solutions
of zv,wi,v,m and zv,wi,vw to minimize the estimated end-to-end delay
cost. Because the objective function defined in (13) can
reflect the load status of links and nodes on the path. If the
resource cost is a very big number, we can infer that some-
thing bad happens on the routing path. Maybe the resources
are exhausted in some bottleneck links or nodes. Maybe the
end-to-end delay of the flow is beyond its tolerated upbound.
In this way, an optimal routing path can be found to achieve
load balance and avoid congestion.

V. PROPOSED ALGORITHM
In this section, we propose the novel optimal VNF chaining
and adaptive scaling algorithm (VNF-CAS). It is composed
of two parts, the first part is the optimal VNF chaining
algorithm (VNF-C). When executing VNF-C, for each SFC
flow, the candidate VNFs are selected and rearranged in order.
The original network graph is transformed into a multi-layer
graph. Based on the defined latency cost on each virtual
link of multi-layer graph, the optimal path can be obtained
through a modified shortest path (SP) algorithm. Consid-
ering the capacity limitation in the distributed cloud edge
node. The second part is a VNF resource allocation scheme
(VNF-AR) to adjust the capacity of VMs according to dif-
ferent traffic demands, We formulate the resource alloca-
tion problem as a convex optimization model. The optimal
allocated capacity of different VMs can be derived by the
KKT conditions. Orchestrators are responsible to give
instructions to re-allocate the CPU resource of each
VM based on the optimal result. In this algorithm, the net-
work traffic is assumed to be steady without huge fluctua-
tions, every SFC request is handled one by one. Details of
VNF-CAS are presented in the following subsections.

A. OPTIMAL VNF CHAINING ALGORITHM (VNF-C)
1) CONSTRUCTING SERVICE FUNCTION GRAPH
In order to solve the optimal selection and chaining prob-
lem of SFC, instead of finding exact numerical solutions
by an analytical method which suffers from combinatorial
complexity and high time complexity, we consider using
the approach of constructing the Service Function Graph.
It is modified from the Route Segmentation [16] in finer
granularity at VM-level. For each SFC flow Si, the Service
Function Graph is constructed as a multi-layer directed graph
Gi = (Vi,Ei), where Vi is the set of virtual nodes and Ei is
the set of virtual links.

FIGURE 2. Service function graph.

Definition 1 (Service Function Graph): The Service Func-
tion Graph Gi = (Vi,Ei) associated with an SFC flow is
constructed as follows:
1. The ingress node oi is selected and arranged in the 1st layer
as the 1st virtual node of the Graph.
2. According to theVNF types inϕi = {ϕi1, ϕi2, . . . , ϕil}. The
VMs that host the jth type of VNF ϕij are selected and placed
in the (j + 1)th layer sequentially. The operation is repeated
until the VMs hold the final VNF ϕil have been placed.
3. The egress node di is selected and arranged in the (l + 2)th

layer as the last virtual node of the Graph.
4. There are arcs between every virtual node in adjacent
layers which represent the virtual links. The arc direction is
from virtual node in the last layer to virtual node in the next
layer.

Figure 2 shows the example of Service Function Graph
with a service function chain Si. The substrate network of
the example is the same in Fig.1. It can be seen that there
are 4 available routing paths for the SFC flow composed of
the Proxy, FW and LB. The Routing Graph G̃i =

(
Ṽi, Ẽi

)
is

the path with the least cost in Gi = (Vi,Ei). Assuming the
virtual routing path with minimum resource cost is Switch
A ⇒ Node C VM1 ⇒ Node C VM2 ⇒ Node E VM1 ⇒
Switch C. It can bemapped in Switch A⇒MDCC⇒ Switch
B⇒ MDC E⇒ Switch C in the substrate network if all the
constraints are satisfied.

Considering using SP to solve the objective function
in (13). The estimated latency cost of substrate network
should be transformed into the weight of virtual links in the
Service Function Graph. For each SFC flow Si, the weight
of the virtual link from v(j) to w(j+ 1) is denoted as
Ci,v(j),w(j+1) in (14). Here, v(j) represents virtual node v ∈
Vi in the jth layer andw(j+ 1) represents virtual nodew ∈ Vi

in the next (j + 1)th layer. The binary variable zv(j),w(j+1)
i,vw

indicates whether virtual link (v(j),w(j+ 1)) ∈ Ei traverses

VOLUME 7, 2019 157713

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

through link (v,w) ∈ E . Noting that since there exists special
case when adjacent required VNFs are mapped into one
server node. (e.g. Path: Switch A⇒Node C VM1⇒Node C
VM2⇒Node E VM1⇒Switch C). zv(j),w(j+1)

i,vw is assumed to
be zero when adjacent virtual nodes v(j) and w(j + 1) are
mapped into the same server node. Furthermore, a mapping
function F(·) is defined in (15) transforming the virtual node
v(j) to its corresponding VM’s load utilization.

Ci,v(j),w(j+1) =
∑

(v,w)∈E

(
Dis(v,w)
cmedium

+
ηvw

1− ηvw

)
.

zv(j),w(j+1)
i,vw +

1
2
· tproc ·

(
F[v(j)]

1−F[v(j)]
+

F[w(j+ 1)]
1− F[w(j+ 1)]

)
(14)

F[v(j)] =

{
ηmv 2 ≤ j ≤ l + 1
0 otherwise

(15)

Based on the weight of virtual links, the virtual path with
the minimum resource cost can be obtained by executing
the shortest path algorithm in the Service Function Graph.
Therefore, the Service Function Graph has the benefit of
simplifying the substrate network topology, which improves
the efficiency of path computation. The pseudocode of VNF-
C is presented in Algorithm 1.

Algorithm 1 VNF-C
Input: Network topology: G = (V, E);

Network utilization: ηmv , ηvw;
Commodity with SFC request: Si;

Output: Service Function Graph Gi = (Vi,Ei);
1 Initialize: k = 2 ;
2 vi,1 = oi;
3 for j = 1 : l do
4 for each v ∈ Vse do
5 v,m← find VMs on v that holds the same type

of ϕij;
6 if v,m 6= ∅ then
7 vi,k ← {v,m};
8 k = k + 1;

9 vi,k = di;
10 for j = 1 : l + 1 do
11 for each virtual node w in (j+ 1)th layer do
12 for each virtual node v in jth layer do
13 (v,w)← Connect v to w;
14 Ci,v(j),w(j+1)← Calculate the link weight of

Gi according to Eq.(14)-(15);

15 return Service Function Graph Gi = (Vi,Ei)

2) COMPLEXITY ANALYSIS
In VNF-C, Firstly the complexity of calculating the resource
cost on nodes and links is at most O(|V| + |E |). Since the
construction of the Service Function Graph needs to copy the

FIGURE 3. CPU resource allocation among VNFs.

avaliable function nodes at each layer. Considering the worst
case, all types of VNFs can be deployed on every server node.
Therefore, there are no more than lmax |Vse|+ 2 virtual nodes
and 2 |Vse| + (lmax − 1) |Vse|2 virtual links on the Service
Function Graph. lmax indicates the maximum number of the
VNFs in the SFC commodity. In general, the time complexity
of the SP algorithm (e.g. Dijkstra algorithm) is O(|E | +
|V| log |V|) on G = (V, E). In the Service Function Graph,
the weight of virtual links are calculated through the SP with
complexity of O

(
|Vse|2 (|E | + |V| log |V|)

)
. So the complex-

ity of VNF-C is at most O
(
|Vse|2 (|E | + |V| log |V|)

)
.

B. ADAPTIVE VNF RESOURCE ALLOCATION (VNF-AR)
Due to the processing resource sharing of hardware
among different VNFs, the unbalanced resource sharing
results in congestion and additional processing latency.
VNF-AR focuses on the efficient CPU resource allocation on
VMs according to the traffic demands.

1) OPTIMAL RESOURCE ALLOCATION FORMULATION
In each server node v ∈ Vse, the CPU cores are shared among
VNFs hosted by different VMs. Fig.3 shows a simple example
of a 4-core CPU are shared by 2 different VNFs. Alterna-
tively, if the VNF2 requires more computational resources,
while the VNF1 requires few computational resources. The
server node should have an adaptive resource allocation
scheme to balance the load, which can adjust capacity allo-
cation for different VMs according to VNF’s traffic demand.
(i.e. Re-allocating the CPU resources of VNF1 from 2 cores
to one core, but increasing the CPU resources of VNF2 from
2 cores to 3 cores).

VNF-AR formulates this problem into a convex optimiza-
tion with nonlinear programming. The objective function is
defined to minimize the estimated processing delay cost for
each server node v ∈ Vse:

min
C1
v ,C2

v ,...,C
Mv
v

Dprocv =

Mv∑
m=1

D̃procv,m
(
Cm
v
)

(16)

157714 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

Subject to: D̃procv,m
(
Cm
v
)

=
Cm
v

Cm
v − Cm

v
· tproc 1 ≤ m ≤ Mv (17)

0 ≤ ηmv < 1, ηmv =
Cm
v

Cm
v

1 ≤ m ≤ Mv

(18)
Mv∑
m=1

Cm
v = Cv (19)

In VNF-AR, We use Cm
v to represent the possessed CPU

resource of the mth VM on server node v ∈ Vse. It is a
visible metric that can be measured and collected on each
node. This optimization problem is a convex optimization,
the reason is as follow: Firstly, the objective function D̃procv,m is
a convex function which is already proved and used in [36].
The sum of D̃procv,m over VMs is also a convex function. Sec-
ondly, Inequality constraint function in (18) is convex. And
the equality constraint in (19) is affine. According to the
theorems in convex optimization, considering the dual to this
problem, we associate dual variablesµ for the constraint (17),
λ1 and λ2 for the constraint (18). The Lagrange dual function
is defined as follow:

g (λ1, λ2, µ) = inf
Cmv


∑Mv

m=1

Cm
v

Cm
v − Cm

v
· tproc−∑Mv

m=1

[
λ1mCm

v + λ2m
(
Cm
v − Cm

v
)]

+µ ·

(∑Mv

m=1
Cm
v − Cv

)


(20)

For any convex optimization, the KKT conditions pro-
vide necessary and sufficient conditions for optimality.
In VNF-AR, Cm∗

v and
(
λ∗1, λ

∗

2, µ
∗
)

that satisfy the
KKT conditions are primal and dual optimal, and have zero
duality gap. By applying the KKT condition:

It can be derived that Cm∗
v is optimal if it does not violate

the constraints in (17)-(19) and there exist λ1, λ2 ∈ RMv and
µ ∈ R satisfy:

λ1 ≥ 0, λ2 ≥ 0 (21)

λ1m · Cm∗
v = 0 1 ≤ m ≤ Mv (22)

λ2m

(
Cm∗
v − Cm

v

)
= 0 1 ≤ m ≤ Mv (23)

Cm
v · tproc(

Cm∗
v − Cm

v
)2 + λ1m + λ2m = µ (24)

Considering the practical definition of Cm
v should be a

positive number, λ∗1 m and λ∗2 m are assumed to be 0. Thus,
the optimal Cm∗

v is given by:

Cm∗
v = Cm

v +

√
Cm
v · tproc
|µ|

(25)

Combining the capacity constraint in (19), the optimal µ∗

can be derived as well.

µ∗ =

∑Mv
m=1

√
Cm
v · tproc

C −
∑Mv

m=1 C
m
v

2

(26)

In the end, the final optimal Cm∗
v can be obtained if we

substitute µ∗ for µ in (25).

2) COMPLEXITY ANALYSIS
The interior-point method is applied to calculate the optimal
allocated capacity. For each server node, the time complexity
of computation is O

(√
Mv log (Mv)

)
. During every update

of the network status, the complexity of the VNF resource
optimal allocation is at most O

(
|Vse|
√
M log(M)

)
where

M indicate the maximum VM number.

C. OPTIMAL VNF CHAINING AND ADAPTIVE SCALING
ALGORITHM(VNF-CAS)
In VNF-CAS, based on the mentioned two parts (i.e. VNF-C
and VNF-AR), an efficient resource-aware and load balanc-
ing VNF embedding algorithm is proposed. For each SFC,
Service FunctionGraph gives a simple perspective to describe
the SFC constraints. A modified shortest path algorithm can
be executed to obtain the optimal path with the minimum
resource cost. Furthermore, by accumulating a number of
traffic requests, the capacity of VMs on the server node can
be scaled after serving every batch of traffic T.

1) ALGORITHM DESCRIPTION
The pseudocode of VNF-CAS is described in Algorithm 2.
In general, given the network parameters and SFC commodi-
ties, VNF-CAS finds a path for every SFC to chain required
VNFs. Firstly, we initialize the capacity scaling batch size T
and re-routing threshold coefficient σ . After accumulating
every batch of traffic, the server node can scale its VMs’
capacity to accommodate new SFC requests. Line 3 is to
prune the nodes and links that can’t accommodate the new
incoming SFC request. In line 4, VNF-C is used to construct
corresponding Service Function Graph Gi = (Vi,Ei), the
resource cost Ci,v(j),w(j+1) of each virtual link is calculated.
In line 5, the SP algorithm(e.g. Dijkstra algorithm) based on
the above weights is executed to obtain the Routing Graph
G̃i =

(
Ṽi, Ẽi

)
. Considering the objective function with mini-

mum embedding cost, the optimal solutions of variables zv,wi,ν,m
and zv,wi,vw are obtained by transforming the Routing Graph
G̃i =

(
Ṽi, Ẽi

)
into the substrate network G = (V, E) in line 6.

From line 7 to line 12, the selected path must be checked
whether it satisfies all the constraints in equation (1)-(9). If all
the constraints are satisfied in the physical path, this SFC
request is accepted successfully and occupies the resource in
the substrate network. Then the network resource utilization
status (i.e. ηv, ηmv and ηvw) are updated after the SFC being
embedding in line 8. Otherwise, if the solutions violate any
constraints, the SFC request is denied to be accepted in

VOLUME 7, 2019 157715

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

Algorithm 2 VNF-CAS
Input: Network topology: G = (V, E);

Network capacity: Cv,Cm
v ,Cvw;

Network utilization: ηv, ηmv , ηvw;
Commodity with SFC request: Si;

Output: Selected path πi of every Si ∈ �;
1 Initialize: T, σ ;
2 for each Si in � do
3 G = (V ,E)← Pruning the nodes, links with fewer

resources than the demand of Si;
4 Gi = (Vi,Ei)← Construct Service Function Graph

of Si according to VNF-C;.
5 G̃i =

(
Ṽi, Ẽi

)
← Execute the shortest-path

algorithm on Gi;
6 πi← Transform G̃i from Gi to G = (V, E);
7 if πi satisfy the constraints of Eq.(1)-(9) then
8 |S| = |S| + 1← Si is accepted successfully;
9 ηv, η

m
v , ηvw← Update the network resource

utilization;
10 return πi;

11 else
12 return Si routing failed;

13 if |S| == p · T (p = 1, 2, 3, . . .) then
14 for each v ∈ Vse do
15 for m = 1 : Mv do
16 Cm

v ← Adjust Cm
v according to

VNF-AR;

17 ηv, η
m
v ← Update the resource utilization;

18 for each Si in |S| do
19 if Esitimated latency of Si ≥ σRDi then
20 πi← Repeat procedures of line 3 to 6;
21 if πi satisfy the constraints of Eq.(1)-(9)

then
22 Si is accepted successfully;
23 Update πi;

24 else
25 |S| = |S| − 1;
26 return Si routing failed;

27 ηv, η
m
v , ηvw← Update the resource

utilization;

line 12. In lines 13-17, when the number of existed SFC
requests |S| reaches the capacity scaling batch size, VNF-AR
is applied in line 16 to find the optimal capacity for each VM.
During the same time, Lines 18-27 are aimed to re-calculate
the routing path πi for the existed SFC requests whose
estimated delay exceeds the threshold. There is a threshold
cofficient σ in view of the gap between the estimated delay
and the actual delay. In this paper, we assume the capacity
scaling batch size T as a fix number chosen by network
operators. Furthermore, Adjusting T dynamically according

to the fluctuations of traffic volumes is an interesting research
challenge beyond the scope of this work. Maybe we will
pursue to solve it in the future work.

2) COMPLEXITY ANALYSIS
VNF-CAS is composed of VNF-C and VNF-AR.For each
SFC flow, the complexity of constructing Service Function
Graph in VNF-C is O

(
|Vse|2 (|E | + |V| log |V|)

)
. Then the

SP is executed to obtain the optimal path, the complexity
of the VNF chaining is thus O

(
lmax |Vse|2

)
. lmax indicates

the maximum number of the VNFs in the SFC commod-
ity. The complexity of transformation and resource update
isO(1). Because lmax is quite a small number when compared
with |E |. Taking the total number of the SFC commodities �
into account. The complexity of the VNF chaining and
re-routing part is at most O

(
|�| |Vse|2 (|E | + |V| log |V|)

)
.

As for the adaptive resource allocation, the update times is
at most

⌊
|�|
T

⌋
. During every update of the network status,

the complexity of VNF resource optimal allocation is at most
O
(
|Vse|
√
M log(M)

)
, where M represents the maximum

VM number. Therefore, the complexity of the adaptive scal-
ing is O

(⌊
|�|
T

⌋
|VSe|
√
M log(M)

)
. Finally, by combaining

the two parts, the complexity of VNF-CAS at the worst situa-
tion isO

{
|�||| |Vse|

[√
M log(M)+|Vse| (|E |+|V| log |V|)

]}
.

In addition, the complexity of VNF-C can be further
reduced by merging the SFCs that belong to the same�k into
one group. During the construction of the Service Function
Graph, the service function chains that have the same ingress
node oi, egress node di and VNF forms usually belong to the
same Service Function Graph. There is no need to calculate
Gi = (Vi,Ei) for every SFC and it can be just calculated one
time for each group.

VI. PERFORMANCE EVALUATION
In this section, we demonstrate the performance of our pro-
posed algorithms. Firstly, the simulation configuration is
illustrated. Then, we compare the performance of VNF-CAS
with modified VNF-C without adaptive scaling and three
other existing algorithms [16]–[18]. All the simulations are
implemented with MATLAB 2018A and performed on a
computer with Intel(R) Core(TM) i5-8250 CPU@ 1.60 GHz
and 8 GB RAM.

A. SIMULATION CONFIGURATION
In our simulation, the network topology that we use is two
WAN topologies in SNDlib [37] and a data center net-
work [38]. (1) Abilene is a small-sized network topology
with 12 nodes and 15 links. (2) Germany50 is a middle-
sized network topology which is composed of 50 nodes and
88 links. (3) EDU1 is a university data center network with
22 device nodes and 41 links.

Similarly in [30], the server nodes in WAN topologies are
selected according to the node degree. In Abilene topology,
we select the top 40% nodes as the server nodes with the

157716 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

TABLE 2. Network parameters settings.

number of 5. And inGermany topology, we select the top 30%
nodes as the server nodes with the number of 15. For the data
center network, we attach each edge/ToR device to a server
node. For simplicity, the CPU capacity of each server node
v ∈ Vse is set uniformly as 15000 MIPs. The VM numbers
which are activated on the server nodes are all set to be 4.
Therefore, the initial CPU capacity of each VM on server
node is set as 3750 MIPs. Besides, the bandwidth capacity
of each link is uniformly set as 1000 Mbps.

Considering the latency and processing parameters of the
estimated delay cost, the transmission delay dtx in Eq.(11) is
set as 10µs and the per packet processing time in Eq.(12) is
set as 1 ms [39]. In addition, the propagation speed of links is
set to be 5µs/km. The propagation delay D̃propvw of each link
is derived from the real length Dis(v,w) in the used dataset.
During the updated re-allocation of the capacity, the scaling
batch size T is set as 50. All the network parameters used in
the simulation are presented in TABLE 2.

In this simulation, all the node pairs generate traffic accord-
ing to the avaliable traces in [37], [38], which means the
ingress and egress nodes of the SFC request is the same as the
distribution in real traces. Moreover, we consider six different
VNFs that can be chained to provide four different network
services [40], [41] as in TABLE 3 (i.e. Web Service, VoIP,
Video Streaming and Online Gaming) And they are generated
according to the corresponding probability in [41]. TABLE 3
shows the performance requirements in terms of bandwidth
consumption Rbwi and maximum tolerated latency RDi for
each SFC. In our performance evaluation, for simplicity,
we assume every link of the SFC’s path occupies the same
bandwidth. As for the CPU demands of VNFs, we assume the
CPU demands of different VNFs in one SFC are the same.

TABLE 3. SFC parameters settings [41].

For each SFC, we set Rcpui = 10 · Rbwi with probability
90% and Rcpui = 10 · Rbwi lnRbwi with probability 10%
which is used in [12]. By combining the synthetical generated
SFC types and real traffic traces, we get the final experimental
data in our performance evaluation.

B. INTRODUCTION OF THE COMPARED ALGORITHM
In the simulation, the performance of VNF-CAS is compared
with four other algorithms. All of the three algorithms are
executed by constructing the multi-layer graph. The first one
is the modified VNF-C algorithm without capacity scaling
which is already introduced in this paper. The second one
is the algorithm named Competitive Online Algorithm for
Traffic Steering (COATS) proposed in [16]. In COATS,
the resource cost is calculated based on the remaining band-
width on the link. With the lazy dual update, COATS selects
the shortest path with the lowest cost to route a flow with
SFC request.

The third algorithm named Resource Aware Routing Algo-
rithm (RA-RA) is introduced in [17]. In RA-RA, the flows
are classified into different kinds based on the bandwidth and
CPU consumptions. Different kind of flow has different rel-
ative cost defined on the virtual link. Different from the fine-
grained VM-level schedule in VNF-CAS, the resource cost
in is only defined at the node-level. Considering the experi-
mental data in our paper, we choose the bandwidth threshold
as 1 Mb/s and CPU consumption threshold as 10 MIPs to
differentiate flows. Therefore, the SFC commodities in the
simulation are classified into four kinds. And their relative
costs are defined according to the corresponding equations.
Finally, a modified K-shortest path algorithm is used to find
the available path.

The fourth algorithm named ProvisionTraffic is proposed
in [18]. ProvisonTraffic adopts the Viterbi algorithm to
place and steer VNF instances to minimize the OPEX and
resource fragmentation. Based on amulti-stage graph (similar
to Service Function Graph), the link cost is related to the
VNF deployment cost, server’s energy consumption, traffic
forwarding cost and penalty for Service Level Objective
violation. We use the server data in [18] to caculate the
corresponding cost.

VOLUME 7, 2019 157717

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

FIGURE 4. The performance evaluation of acceptance rate in different topologies.

FIGURE 5. The performance evaluation of average effective throughput in different topologies.

C. SIMULATION RESULTS
1) COMPARISON OF ACCEPTANCE RATE, AVERAGE
EFFECTIVE THROUGHPUT AND AVERAGE LOAD UTILIZATION
Based on the above simulation configuration, we first
compare VNF-CAS with VNF-C, COATS, RA-RA and Pro-
visionTraffic in terms of average acceptance rate, load utiliza-
tion and effective throughput in different topologies.

Figure 4 provides an overview of the acceptance rate
evaluation of these algorithms in different topologies. The
acceptance rate reflects the served flow number accounting
for the total arriving flow number. It is an important metric
to evaluate system capacity. We record the actual acceptance
rate after handling every new SFC request. In Fig.4(a), It can
be seen from the chart that VNF-CAS achieves the high-
est acceptance rate among the five algorithms, which is
about 7 % higher than VNF-C, 15% higher than Provi-
sionTraffic, 18% higher than RA-RA and 20% higher than
COATS in heavy traffic load. Similarly, VNF-CAS also per-
forms best in Fig.4(b) and Fig.4(c). The acceptance rate of

RA-RA is close to ProvisionTraffic in light traffic load. After
handling a number of SFC requests, RA-RA performs bet-
ter than ProvisionTraffic in Germany but performs worse
than ProvisionTraffic in Abilene and EDU1. The COATS
performs worst among these algorithms, the main reason is
that though COATS can balance the consumption of band-
width. But it neglects the consumption of server node and
latency, which can result in the resource exhaustion on the
node with few remaining CPU resources. While RA-RA,
ProvisionTraffic, and VNF-C all consider the CPU con-
sumption on the server node. RA-RA mainly considers the
load of server node when serving the dense flow. Provi-
sionTraffic considers the server’s energy consumption and
VNF-C considers the VM load to balance the consumption
of CPU. As for VNF-CAS, since it is built on VNF-C and
further adjusts the VM’s capacity periodically. This algorithm
can accommodate more SFC flows and performs best.

Figure 5 describes the performance evaluation of the
average effective throughput among the five algorithms in

157718 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

FIGURE 6. The performance evaluation of average load utilization in different topologies.

FIGURE 7. The performance evaluation of load balance in different topologies.

different topologies. The average effective throughput is the
total occupied bandwidth of flows received successfully in the
network. Since accepting more flows will take up more band-
width, the average effective throughput is related to the accep-
tance rate of the SFC requests. As shown in Fig.5(a)(b)(c),
the maximum throughput of VNF-CAS is nearly more than
twice of COATS, which can reach nearly 6500 Mbps in
Abilene, 24000Mbps in Germany and 57000Mbps in EDU1.
Under light traffic load condition, the average effective
throughput of VNF-C is more than that of VNF-CAS. The
reason may be the adaptive capacity scaling causes the choice
of shorter path in VNF-CAS which results in less consump-
tion of the bandwidth. RA-RA and ProvisonTraffic basically
achieve similar effective throughput under different loads,
although there are small differences in the three topologies.

Figure 6 presents an evaluation of the average load uti-
lization among these algorithms in different topologies. The
average load utilization shows the average CPU utiliza-
tion of all server nodes, which can reflect the maximum
processing capacity of the network. In light traffic load

condition, the performance of different algorithms can be
the same because all the flows are accepted successfully.
In extreme case, it’s obvious that VNF-CAS ranks first with
the average load utilization of 90% in the three topologies.
Due to the lack of effective resource re-allocationmechanism,
VNF-C, RA-RA, ProvisonTraffic, and COATS are just able
to reach under 80% CPU utilization.

2) COMPARISON OF LOAD BALANCE RATIO
AND VM LOAD UTILIZATION
Secondly, we compare VNF-CAS with COATS, RA-RA,
VNF-C and ProvisionTraffic in regard to the node load bal-
ance ratio and VM load utilization of a specific node in
different topologies.

In Fig.7, we evaluate the load balance ratio’s variation
when the SFC requests increase in different topologies. The
load balance ratio σ is calculated as in Eq.(27). It reflects
the load difference between different server nodes. The lower
the load balance ratio is, the better the load balance of the
algorithm. It can be seen in Fig.7(b)(c) that VNF-CAS goes

VOLUME 7, 2019 157719

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

FIGURE 8. The performance evaluation of VM load utilization in different topologies.

through an up-down fluctuation and gets the lowest σ in Ger-
many and EDU1. In fact, all of the five algorithms have the
ability to balance the load. However, COATS performs worst
since it only considers the bandwidth consumptions. The per-
formance of RA-RA outperforms that of VNF-C. The reason
is that the relative cost defined in RA-RAmainly indicates the
resource conditions on nodes and links. If the CPU resources
on nodes are going to be exhausted, the relative resource
costs will surge dramatically to avoid to be used. So RA-RA
can achieve a good load balance at node-level. As for
VNF-CAS, because the adaptive capacity scaling approach
can achieve fine-grained load balance on VMs. VNF-CAS
has the best performance in load balance under the heavy
traffic load condition. But the performance of VNF-CAS
in Fig.7(a) seems not better than ProvisionTraffic, Provision-
Traffic can balance the load based on the server’s energy
status. When the SFC forms are generated in proportion,
the balance ratio may be related to the network topology and
traffic volumes.

σ =

√√√√√ 1
|Vse| − 1

|Vse|∑
i=1

Cvi · ηvi − 1
Vse

|Vse|∑
j=1

Cvj · ηvj

2

∀vi, vj ∈ Vse (27)

The performance of VM load utilization is evaluated
in Fig.8. Since there are many VMs to choose from the net-
work. Referring to TABLE 3, we choose the server nodes that
host the VNFWOC in different topologies, which is prone to
reflect the imbalance of VM load due to this VNF is rarely
used. In Fig.8(a), we record the VM load utilization when
400 SFC requests are accepted. WOC is deployed in VM1 in
advance. The utilization of VM1 is always around 1% among
VNF-C, RA-RA, COATS and ProvisionTraffic, but VM2’s
load utilization comes close to 95% of these algorithms. Only
in VNF-CAS, the utilization of VM1 is around 10%. Simi-
larly in Fig.8(b)(c), the VM load utilization is depicted when
1000 SFC requests are accepted. With the help of VNF-AR,

the utilization of VM3 that hosts WOC can reach 10% or so.
While the other VMs’ load utilization can witness a moderate
decrease, which is conducive to avoid capacity bottlenecks.
The performance evaluation proves that VNF-CAS has the
ability to migrate the resources from the inactive VM to the
frequently used VM. (i.e. In EDU1 topology, it migrates the
residual resources from VM3 to other VMs so that the load
utilization of VM1, VM2 and VM4 can be reduced).

3) COMPARISON OF ESTIMATED END-TO-END DELAY AND
REMAINING BANDWIDTH
In the end, we compare VNF-CAS with COATS, RA-
RA, VNF-C and ProvisionTraffic in the field of estimated
end-to-end delay and remaining bandwidth in different
topologies.

Figure 9 illustrates the CDF of the estimated end-to-end
delay when 400 SFC requests are accepted in Abilene,
1000 SFC requests are accepted in Germany and EDU1.
Among the five algorithms, VNF-CAS gets the best
performance with the estimated latency under 10 ms
in EDU1, 20 ms in Germany and 50 ms in Abilene.
VNF-C also gets a good latency performance under 100 ms
in different topologies. This is because the objective func-
tions of VNF-CAS and VNF-C are both the estimated
end-to-end delay when solving the SFC chaining problem.
RA-RA also pays attention to avoid bottlenecks to reduce
the queuing delay and processing delay. But COATS can
only balance the bandwidth consumption which is benefi-
cial to reduce a part of latency, so it performs worst in the
simulation.

In Fig.10, the CDF of the average remaining bandwidth
among the five algorithms is depicted. When receiving 400
SFC requests in Fig.10(a), the proportion of the links with
remaining bandwidth less than 700Mbps is around 7% for
COATS, 10% for RA-RA and ProvisionTraffic but around
27% for VNF-CAS and 30% for VNF-C. When receiving
1000 SFC requests in Fig.10(b), the proportion of the links

157720 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

FIGURE 9. The performance evaluation of estimated end-to-end delay in different topologies.

FIGURE 10. The performance evaluation of remaining bandwidth in different topologies.

with remaining bandwidth between 800Mbps to 1000Mbps is
about 90% for VNF-CAS and VNF-C, but 95% for the other
algorithms. Only VNF-CAS and VNF-C have the remain-
ing bandwidth less than 600Mbps in Germany. Similarly
in Fig.10(c), only VNF-CAS and VNF-C have remaining
bandwidth less than 550Mbps with a proportion of 10% in
EDU1. It can be seen from the comparison that the pro-
portion of the bottleneck links in VNF-CAS and VNF-C is
higher than the other three algorithms. The distribution of
the remaining bandwidth is more balanced in RA-RA and
COATS. Because COATS mainly consider the bandwidth
consumption to avoid congestion, RA-RA also considers to
balancing the bandwidth consumption for elephant flows.
While in VNF-C and VNF-CAS, more resource elements like
latency are taken into account. They sacrifice the performance
in bandwidth balance to get a better performance in the load
balance. Our proposed method is more helpful to solve the
load imbalance problem under the condition of high traffic
volumes.

VII. CONCLUSION
In this paper, we study the optimal VNF chaining and
resource allocation problem in the distributed cloud net-
work. Based on the fine-grained VM scheduling in the multi-
layer graph, the VNF-C algorithm is proposed to embed
SFC requests with minimum estimated delay. Since the esti-
mated delay cost is relevant to the resource status in the net-
work. The NFV orchestrators are able to calculate the optimal
path for each SFC request depending on the resource utiliza-
tion. Moreover, considering the on-demand VNF placement
is usually proactive and dynamic. The VNF-CAS algorithm
with a fine-tune in VM capacity at each service provision
time is proposed to efficiently make use of the CPU resource
on server nodes. Performance evaluation results show that
VNF-CAS can achieve approximately 90% average load
utilization, and obtain performance improvement in accep-
tance rate, average effective throughput, VM load balance
and estimated end-to-end delay compared with the existing
algorithms in other literatures.

VOLUME 7, 2019 157721

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

In the future, we plan to extend our work from the offline
mechanism to onlinemechanismwhich is adapted to dynamic
work loads. In the more complicated situation, the duration
time of the SFC and the VM migration for VNF should
be considered. In addition, In view of the high computation
complexity to embed the SFC requests. A heuristic approach
in the large-sized network should be designed to improve the
network scalability.

REFERENCES

[1] Network Functions Virtualization. Accessed: Oct. 17, 2014.
[Online]. Avaliable: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV_White_Paper3.pdf

[2] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
‘‘Network function virtualization: State-of-the-art and research chal-
lenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 236–262,
1st Quart., 2016.

[3] SDN Architecture Overview. Accessed: Oct. 11, 2014. [Online].
Avaliable: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-111120-
14.02.pdf

[4] W. Xiao, W. Bao, X. Zhu, and L. Liu, ‘‘Cost-aware big data processing
across geo-distributed datacenters,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 11, pp. 3114–3127, Nov. 2017.

[5] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, ‘‘Zenith: Utility-aware
resource allocation for edge computing,’’ in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), Jun. 2017, pp. 47–54.

[6] D. Zhao, J. Ren, R. Lin, S. Xu, and V. Chang, ‘‘On orchestrating
service function chains in 5G mobile network,’’ IEEE Access, vol. 7,
pp. 39402–39416, 2019.

[7] Service Function Chaining (SFC) Architecture. Accessed: Oct. 2015.
[Online]. Available: http://www.rfc-editor.org/info/rfc7665

[8] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, ‘‘Traffic steering for
service function chaining,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 487–507, 1st Quart., 2018.

[9] S. Mehraghdam, M. Keller, and H. Karl, ‘‘Specifying and placing chains
of virtual network functions,’’ in Proc. IEEE 3rd Int. Conf. Cloud Netw.
(CloudNet), Oct. 2014, pp. 7–13.

[10] M. Jalalitabar, E. Guler, D. Zheng, G. Luo, L. Tian, and X. Cao, ‘‘Embed-
ding dependence-aware service function chains,’’ IEEE/OSA J. Opt. Com-
mun. Netw., vol. 10, no. 8, pp. 64–74, Aug. 2018.

[11] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, ‘‘Near optimal place-
ment of virtual network functions,’’ inProc. IEEEConf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 1346–1354.

[12] T. W. Kuo, B. H. Liou, K. C. Lin, and M. J. Tsai, ‘‘Deploying chains of
virtual network functions: On the relation between link and server usage,’’
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, Aug. 2018.

[13] K. Yang, H. Zhang, and P. Hong, ‘‘Energy-aware service function place-
ment for service function chaining in data centers,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[14] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, ‘‘A green VNFs
placement and chaining algorithm,’’ in Proc. IEEE/IFIP Netw. Oper. Man-
age. Symp. (NOMS), Apr. 2018, pp. 1–5.

[15] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[16] Z. Cao, M. Kodialam, and T. V. Lakshman, ‘‘Traffic steering in software
defined networks: Planning and online routing,’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 44, no. 4, pp. 65–70, Aug. 2014.

[17] J. Pei, P. Hong, K. Xue, and D. Li, ‘‘Resource aware routing for service
function chains in SDN and NFV-enabled network,’’ IEEE Trans. Services
Comput., to be published.

[18] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
‘‘Orchestrating virtualized network functions,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[19] M.Mechtri, C. Ghribi, and D. Zeghlache, ‘‘VNF placement and chaining in
distributed cloud,’’ in Proc. IEEE 9th Int. Conf. Cloud Comput. (CLOUD),
Jun. 2016, pp. 376–383.

[20] M. Mechtri, C. Ghribi, and D. Zeghlache, ‘‘A scalable algorithm for the
placement of service function chains,’’ IEEE Trans. Netw. Service Manag.,
vol. 13, no. 3, pp. 533–546, Sep. 2016.

[21] S. Khebbache, M. Hadji, and D. Zeghlache, ‘‘Virtualized network
functions chaining and routing algorithms,’’ Comput. Netw., vol. 114,
pp. 95–110, Feb. 2017.

[22] L. Tang, H. Yang, R. Ma, L. Hu, W. Wang, and Q. Chen, ‘‘Queue-aware
dynamic placement of virtual network functions in 5G access network,’’
IEEE Access, vol. 6, pp. 44291–44305, Aug. 2018.

[23] C. Ghribi, M. Mechtri, and D. Zeghlache, ‘‘A dynamic programming
algorithm for joint VNF placement and chaining,’’ in Proc. ACMWorkshop
Cloud-Assisted Netw. (CAN), New York, NY, USA, 2016, pp. 19–24.

[24] A. Jarray and A. Karmouch, ‘‘Decomposition approaches for virtual net-
work embeddingwith one-shot node and linkmapping,’’ IEEE/ACMTrans.
Netw., vol. 23, no. 3, pp. 1012–1025, Jun. 2015.

[25] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, ‘‘An efficient
algorithm for virtual network function placement and chaining,’’ in Proc.
14th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2017,
pp. 647–652.

[26] A. Dwaraki and T. Wolf, ‘‘Adaptive service-chain routing for virtual
network functions in software-defined networks,’’ in Proc. Workshop
Hot Topics Middleboxes Netw. Function Virtualization (HotMIddlebox),
New York, NY, USA, 2016, pp. 32–37.

[27] G. Sallam, G. R. Gupta, B. Li, and B. Ji, ‘‘Shortest path and maximum
flow problems under service function chaining constraints,’’ in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 2132–2140.

[28] J. Pei, P. Hong, and D. Li, ‘‘Virtual network function selection and chaining
based on deep learning in SDN andNFV-enabled networks,’’ inProc. IEEE
Int. Conf. Commun. Workshops (ICC Workshops), May 2018, pp. 1–6.

[29] R. Zhou, ‘‘An online placement scheme for VNF chains in Geo-distributed
clouds,’’ in Proc. IEEE/ACM 26th Int. Symp. Qual. Service (IWQoS),
Jun. 2018, pp. 1–2.

[30] J. Pei, P. Hong, K. Xue, and D. Li, ‘‘Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179–2192, Oct. 2018.

[31] X. Fei, F. Liu, H. Xu, and H. Jin, ‘‘Adaptive VNF scaling and flow
routing with proactive demand prediction,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2018, pp. 486–494.

[32] T. Buh, R. Trobec, and A. Ciglič, ‘‘Adaptive network-traffic balancing
on multi-core software networking devices,’’ Comput. Netw., vol. 69,
pp. 19–34, Aug. 2014.

[33] M. Savi, M. Tornatore, and G. Verticale, ‘‘Impact of processing-resource
sharing on the placement of chained virtual network functions,’’ IEEE
Trans. Cloud Comput., to be published.

[34] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, ‘‘NFVnice: Dynamic backpressure
and scheduling for NFV service chains,’’ inProc. Conf. ACM Special Inter-
est Group Data Commun. (SIGCOMM), New York, NY, USA, Aug. 2017,
pp. 71–84.

[35] I. Cerrato, M. Annarumma, and F. Risso, ‘‘Supporting fine-grained net-
work functions through intel DPDK,’’ in Proc. 3rd Eur. Workshop Softw.
Defined Netw. (EWSDN), Sep. 2014, pp. 1–6.

[36] R. Gallager, ‘‘A minimum delay routing algorithm using distributed
computation,’’ IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73–85,
Jan. 1977.

[37] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, ‘‘SNDlib 1.0—
Survivable network design library,’’ Netw., Int. J., vol. 55, pp. 276–286,
May 2010.

[38] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. ACM SIGCOMM Conf. Internet Meas.,
Nov. 2010, pp. 267–280.

[39] R. Ramaswamy, N. Weng, and T. Wolf, ‘‘Characterizing network pro-
cessing delay,’’ in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),
vol. 3, Nov./Dec. 2004, pp. 1629–1634.

[40] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, ‘‘Cloud gaming: Architecture
and performance,’’ IEEE Netw., vol. 27, no. 4, pp. 16–21, Jul./Aug. 2013.

[41] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, ‘‘A scalable
approach for service Chain mapping with multiple SC instances in a wide-
area network,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 529–541,
Mar. 2018.

157722 VOLUME 7, 2019

J. Zu et al.: Resource Aware Chaining and Adaptive Capacity Scaling for SFCs in Distributed Cloud Network

JIACHEN ZU received the B.S. degree in elec-
tronic science and technology from Shanghai Jiao
Tong University, in 2017. He is currently pursuing
the Ph.D. degree with the Department of Network
Engineering, Army Engineering University, Nan-
jing, China. His research interests include NFV,
service function chain, and satellite networks.

GUYU HU received the B.S. degree in radio com-
munication from Zhejiang University, Hangzhou,
China, in 1983, and the M.Sc. degree in com-
puter application technology and the Ph.D. degree
in communications and information systems from
the Nanjing Institute of Communication, Nanjing,
China, in 1989 and 1992, respectively. In 1990,
he devotes to the research on network manage-
ment. Since 1997, he has been a Full Professor
with Army Engineering University, Nanjing. His

research interests include computer networks, maintenance and administra-
tion of the satellite networks, and intelligent network management.

YANG WU received the B.S. degree in computer
science and technology from the PLA Univer-
sity of Science and Technology, in 2015, and the
M.Sc. degree in computer science and technol-
ogy from Army Engineering University, Nanjing,
China, in 2017, where he is currently pursuing
the Ph.D. degree with the Department of Network
Engineering. His research interests include satel-
lite networks and computer networks.

DONGSHENG SHAO received the B.S. degree in
electronic science and technology from Shanghai
Jiao Tong University, in 2017. He is currently pur-
suing the master’s degree with the Department of
Network Engineering, Army Engineering Univer-
sity, Nanjing, China. His research interests include
satellite networks and network management.

JIAJIE YAN received the B.S. degree in the Inter-
net of Things from the Yunnan University of
Finance and Economics, in 2017. She is currently
pursuing the master’s degree with the Depart-
ment of Network Engineering, Army Engineering
University, Nanjing, China. Her research interest
includes network management and simulation.

VOLUME 7, 2019 157723

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	SUBSTRATE NETWORK
	SERVICE FUNCTION CHAIN REQUESTS

	PROBLEM FORMULATION
	PROBLEM DESCRIPTION
	DETAILED FORMULATION
	DEFINITION OF THE RESOURCE COST

	PROPOSED ALGORITHM
	OPTIMAL VNF CHAINING ALGORITHM (VNF-C)
	CONSTRUCTING SERVICE FUNCTION GRAPH
	COMPLEXITY ANALYSIS

	ADAPTIVE VNF RESOURCE ALLOCATION (VNF-AR)
	OPTIMAL RESOURCE ALLOCATION FORMULATION
	COMPLEXITY ANALYSIS

	OPTIMAL VNF CHAINING AND ADAPTIVE SCALING ALGORITHM(VNF-CAS)
	ALGORITHM DESCRIPTION
	COMPLEXITY ANALYSIS

	PERFORMANCE EVALUATION
	SIMULATION CONFIGURATION
	INTRODUCTION OF THE COMPARED ALGORITHM
	SIMULATION RESULTS
	COMPARISON OF ACCEPTANCE RATE, AVERAGE EFFECTIVE THROUGHPUT AND AVERAGE LOAD UTILIZATION
	COMPARISON OF LOAD BALANCE RATIO AND VM LOAD UTILIZATION
	COMPARISON OF ESTIMATED END-TO-END DELAY AND REMAINING BANDWIDTH

	CONCLUSION
	REFERENCES
	Biographies
	JIACHEN ZU
	GUYU HU
	YANG WU
	DONGSHENG SHAO
	JIAJIE YAN

