
Received September 21, 2019, accepted October 20, 2019, date of publication November 4, 2019,
date of current version November 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950884

A Model Driven Reverse Engineering Framework
for Generating High Level UML Models From Java
Source Code
UMAIR SABIR, FAROOQUE AZAM , SAMI UL HAQ, MUHAMMAD WASEEM ANWAR ,
WASI HAIDER BUTT , AND ANAM AMJAD
Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST),
Islamabad 44000, Pakistan

Corresponding author: Muhammad Waseem Anwar (waseemanwar@ceme.nust.edu.pk)

ABSTRACT Legacy systems are large applications which are significant in performing daily organizational
operations and cannot be upgraded easily especially in the absence of architectural and design documen-
tation. Software modernization is an emerging field of software engineering, which transforms the legacy
systems into new one according to the specified requirements of stakeholders. It mainly deals with improving
the architecture, features, rules and data sources of existing system. It always remained a challenging task
to achieve high-level representation of legacy systems. In order to achieve this high-level representation,
Reverse Engineering (RE) plays an integral role. The issues of traditional RE are overcome with the help of
Model Driven Reverse Engineering (MDRE) such as it generates model-based view of the legacy systems,
which is comprehensible and easy to understand for practitioners. MDRE is an active research area but it
provides limited tool support to extract and model both structural and behavioral aspects of legacy systems.
In this paper, a novel MDRE framework named as ‘‘Source to Model Framework (Src2MoF)’’is proposed
to generate Unified Modeling Language (UML) structural (class) and behavioral (activity) diagrams from
the Java source code. Src2MoF is based on the principles of Model Driven Engineering (MDE), which use
models as first-class citizens alleviating the complexity of software systems. The contributions of this paper
are as follows; first, an IntermediateModel Discoverer (IMD) is developed using source code parser to get the
intermediate representation of the system from the existing Java code. Second, an open source transformation
engine named ‘‘UML model generator’’ is implemented using Java, which takes these intermediate models
as input, and produce high-level UML models of the subject legacy system. Finally, the two benchmark case
studies are presented to depict the relevance and usability of Src2MoF.

INDEX TERMS Model driven reverse engineering, reverse engineering, UML models, legacy systems,
java code.

I. INTRODUCTION
Legacy systems are used by many organizations because
they execute critical operations and are non-negligible. More-
over, the high cost of replacing these systems limits the
productivity of these organizations. Software modernization
transforms legacy systems into modern systems based on the
stakeholder’s requirements of an organization. Reverse Engi-
neering (RE) plays an important role in software moderniza-
tion and its history as old as the computer itself. Initially,
it targeted computer hardware modernization but later, with

The associate editor coordinating the review of this manuscript and
approving it for publication was Xu Chen.

the increasing use of software in 80s, it was dedicated for
software systems. Reverse Engineering (RE) is a methodol-
ogy extensively used to extract the valuable information of
the underlying system at higher layer of abstraction using
existing legacy system artefacts such as requirements, design,
code [1]. By applying RE, it helps the practitioners to deal
with legacy systems in following manner: 1) It helps to
understand the key issues of an unsuccessful design and
subsequently improve the design. 2) It is used to perform
migration of systems from old platforms to new i.e. From ’as
is’ state into a ’to be’ state. Reverse engineering of system
can provide the most current documentation necessary for
understanding the existing state of the system. RE helps an

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 158931

https://orcid.org/0000-0002-7421-7400
https://orcid.org/0000-0002-1193-5683
https://orcid.org/0000-0002-1347-3662


U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

organization when a system is required to interface/work with
other systems or products.

Reverse Engineering (RE) is a time consuming and an
error-prone process. Model Driven Engineering (MDE) [2]
is a promising approach based on the principle ‘‘Every-
thing is a model’’. The combination of reverse engineering
and model driven engineering is known as Model Driven
Reverse Engineering (MDRE). It has gained significant pop-
ularity in the research community during past few years and
frequently practiced [3] to solve RE problems. Generally,
MDRE is a two-step process [4]; 1) Getting an abstract view
(i.e., a model) of the analyzed legacy system from source
artefacts. 2) Making use of this model to achieve a specific
goal, e.g., re-documenting or re-engineering.

Several issues of traditional RE approaches are resolved
using MDRE as follows; MDRE comprises of models to alle-
viate the complexity of traditional code-based software sys-
tems. Thus, structural complexity of these legacy systems is
reduced.Models inMDE symbolize information and usage of
meta-models [2] in order to define the target models. Techni-
cal heterogeneity of legacy system is reduced by introducing
homogenous models inMDRE [4]. MDRE solutions are scal-
able, adaptable, portable and reusable. MDRE directly bene-
fits from the genericity, extensibility, integration, coverage,
and automation expertise of MDE technologies to provide a
good assistance for reverse engineering. Additionally, Text-
to-Model (T2M) transformations [7] in MDRE is available
with the help of tools. The resultant models obtained using
MDRE can be used for all reverse engineering activities.

In Model Based System Engineering (MBSE), Unified
Modeling Language (UML) plays a central part of the design
phase. It is highly supportive to verify the design of given
system in initial development process [5]. This expedites
the system development by reducing the efforts in different
Software Development Life Cycle (SDLC) phases such as
implementation, testing and maintenance. With the increas-
ing use of UML models in software modeling and model
driven engineering, there is a need to obtain these mod-
els containing as much information as possible in order to
re-new legacy system. By considering the importance of
UML models, one of the challenges in MDRE is to provide
a framework for complete structural as well as behavioral
UML model extraction of legacy system. Several research
studies already exist such as tools like MoDisco [6] and
transformation languages like Gra2MoL [7] are developed to
carry out MDRE but the focus of these researches is only on
getting the structure of legacy systems from available source
code. Gra2MoL is aimed to extract Knowledge Discovery
Metamodel (KDM) from general-purpose languages but no
practical evaluation of this language is analyzed. However,
this research study guided the researcher to define Text-to-
Model (T2M) transformations. Similarly, MoDisco [6] does
not provide complete support to MDRE. This tool supports
Java, JSP and XML meta-models so generated artefacts are
not UML models. Authors intended to discover Java models
from Java source code. The most prominent approaches so

far, discussed the extraction and assessment of structural
aspects from the source artefacts but there is a limited support
of tooling [8]. Nevertheless, researchers aimed to cover the
gap of extraction and assessment of behavioral aspects from
the source artefact, yet there is no tool or technique available
for MDRE to facilitate both structural and behavioral aspects
of legacy system using UML models.

The objective of this research work is to provide a full
MDRE framework (Src2MoF) which overcome the above-
mentioned research gaps i.e. Capable of generating behav-
ioral models along with structural models from Java source
code. The major contributions of Src2MoF are:

1. Extraction of Structural aspects from source arte-
fact: Exploration of subject system and pulling out
the features related to static structure, elements and
relationships between multiple elements of existing
system’s design.

2. Extraction of Behavioral aspects from source arte-
fact: This contribution aims at exploration of function-
ality of the source code. It fetches the aspects regarding
operations, implementation of operations, functions
and the function behaviors from source artefacts of
existing system.

3. Discovery of Intermediate Model: To pile the
information extracted about structural and behavioral
aspects of source artefacts and make it utilizable, our
anticipated approach will be able to format this infor-
mation using Intermediate Model (IM), which is the
depiction of source artefact in XML modeling format.

4. Transformation: To illustrate the intermediate model
at some higher abstraction level, transformation engine
is developed names as ‘UML Model Generator’. It is
based on Text-to-Model (T2M) transformation imple-
mented in Eclipse using Java language.

To fulfill above mentioned research objectives, we have
implemented a complete model driven reverse engineering
framework’’ Src2MoF (Source to Model Framework)’’ as
shown in FIGURE 1. Proposed framework encompasses
two phases i.e. Discovery of Intermediate Model(s) and
Transformation to UML model(s). This leads to assemble
a framework comprises two components: 1) Intermediate
Model Discoverer (IMD) and 2) UMLModel Generator. IMD
is responsible for creation of textual model (i.e. XML) by
analyzing the source code. Source artefact i.e. Java code,
is examined by IMD to figure out a graphical view of textual
code. Inside IDM, a source code parser is implemented. This
parser interprets the source code in an easy to understand
format.We integrated this parser in such way that it creates an
Abstract Syntax Tree (AST) instead of parsed tree. In Model
Discoverer phase, information about structure and behavior
of legacy system is extracted fromAST, generated in previous
step. An intermediate model IM is generated by using this
extracted information.

UML Model Generator is a type of transformation engine
implemented in Model Development Tools which interprets
the Intermediate Model (IM) into a standardized format

158932 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 1. Overview of proposed framework.

i.e. UML. This engine takes templates (Transformation
Rules) to transform IMs into UML structural and behav-
ioral models. Src2MoF isolates information about design
and structure of that legacy system using Java source code
and then discover an Intermediate Model (IM) at Platform
Specific Model (PSM) level. Subsequently transfigure these
IMs using transformation engine into UML models consist-
ing of both structural (UML class diagram) and behavioral
models (UML activity diagram) at Platform Independent
Model (PIM) level.

Applicability of Src2MoF is demonstrated using two
benchmark case studies; ATM case study and Amadeus Hos-
pitality case study.

Rest of the paper is organized as follows; Section II
describes the literature review in the context of model driven
reverse engineering for generating high level UML models
from Java source code. In Section III, proposedmethodology
is described highlighting the architecture of proposed frame-
work. The implementation detail of transformation engine
using transformation rules is provided in Section IV. Con-
sequently, validation of Src2MoF is performed in Section V
using two benchmark case studies. Discussion and limitations
of this research work is carried out in Section VI. Finally,
the conclusion and future work is provided in Section VII.

II. LITERATURE REVIEW
With the emergence of Model Driven Engineering (MDE) in
software development [2], model driven methods in reverse
engineering become important. It is an active research area
from the past few years where many research studies have
been carried out on MDRE [3]. A concise description of
most prominent approaches is given in section II A. More-
over, state of the art for UML structural and behavioral

models from MDRE is presented in subsequent section II B.
In section II C, research gap is identified.

A. MODEL DRIVEN REVERSE ENGINEERING
APPROACHES
Different methods and techniques used for MDRE are
explored in this section. For example, MoDisco [6] is
an extensible and generic Eclipse plug-in for model
driven reverse engineering proposed and implemented by
H. Bruneliere et al. based on a) model discovery and
b) model understanding. MoDisco has three layered archi-
tecture i.e. infrastructure, technologies and use case layers.
It defines a basic metamodel approach for MDRE based on
Knowledge Discovery Meta-model (KDM) specification to
provide support for XML, JSP and Java. Model discoverer
injects initial views from subject system and then trans-
formations are performed to analyze and understand those
models on higher abstraction views. MoDisco can considered
a generic MDRE approach with an efficient tool support,
implementing OMG standards for reverse engineering and
applied on industrial case studies. However, MoDisco only
deals with structural aspects and does not support the MDRE
for behavioral aspects from source artefacts.

Often in RE, the only known source of knowledge
is source code. To get models from this textual source,
a text-to-model (T2M) set of transformations is require.
A T2M transformation approach is presented by Cáno-
vas Izquierdo and Garc ía Molina [7], defines transfor-
mation language for general purpose languages (GPLs).
Authors proposed and validated a domain specific lan-
guage (DSL) denominated as grammar to modeling language
‘Gra2MoL’. This is a T2M transformation language which
can be applied to any language conforming a grammar.

VOLUME 7, 2019 158933



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

The proposed approach is evaluated practically by trans-
forming a code written in ‘‘Delphi’’ into Abstract syn-
tax model. Object Management Group (OMG) defined a
standard for migrating legacy systems to new technologies
known as Architecture Driven Modernization ADM [9].
ADM defines a set of standard meta-models supportive in
reverse engineering under umbrella of ADM task force.
Abstract Syntax Tree Meta-model (ASTM) [10], Knowledge
Discovery Meta-model (KDM) [11] and Software Metrices
Meta-Model (SMM) [12] are standardized meta-models used
for extracting information from legacy systems. In another
research, Pérez-Castillo et al. [11] expressed the knowl-
edge discovery meta-model KDM in detail. The architecture,
working and implementations of KDM are disclosed in this
research. Likewise, objective of KDM [13] is to discover
a comprehensive representation from legacy artefact is pre-
sented in this research study. ASTM [14] is used to depict
programming language into an abstract syntax tree AST
which is used for model driven reverse engineering. Purpose
of SMM [15] is to create matrices of the system to analyze
the subject system easily for software modernization.

Favre et al. [16] defined a process for reverse engineer-
ing of source code according to Model Driven Architec-
ture (MDA) standards. Apart from model extraction, focus
of this study is on a formal proof of models with different
tools for testing and analyzing these models at unlike abstrac-
tion levels to get uniformity in reverse engineering process.
In another research [17], Favre et al proposed an MDA based
process for obtaining models from object-oriented code and
formal techniques at meta-model level to maintain consis-
tency in reverse engineering process. Authors anticipated
combining static and dynamic analysis to get UML mod-
els from code. A framework is proposed to perform these
semi-formal transformations at models and meta-models’
level in this study. Furthermore, this approach aims to spec-
ify MOF meta-models and meta-model transformations in
NEREUS MM language. This approach can be considered
as good support to MDRE. Some advantages of this semi-
automatic approach are: specification of well-known stan-
dards for defining models and meta-models i.e. UML and
MOF. Consequently, assimilation of both static and dynamic
analysis which can extract more aspects from legacy system
and lastly, gaining the consistency in RE by formal proof of
models. Authors presented a limited detail about techniques
and tools used for transformation between different artefacts
of legacy system.

A semi-automatic approach for MDRE is expressed in [18]
by S Warwas et al. Authors intended to reverse engineer the
PIM level design of BDI (Belief, Desire, Intention) form
multi-agent based systems. They used a domain specific
modeling language for multi-agent-systems (DSML4MAS)
to depict agent’s artifacts as models. RE method com-
prises: 1) Auto elicitation of ‘Jadex model and info model’
form Jadex project, 2) Remodeling of these models into
Jade4PIM4Agents level models, 3) By hand refinements
to indicate associations among agents. This approach is

supportive in MDRE of multi agent base legacy systems.
Another benefit is that this approach concerns model valida-
tion as semantics of Defined DSML are specified in Object-Z
and validated through OCL constraints. Feliu Trias at al. pro-
posed and idea towards the migration of legacy systems into
modern systems in research a study [19]. An Architecture-
Driven Modernization (ADM) based scheme for migration
of CMS based web applications WAs (only PHP code) is pro-
posed in this study. Abstract Syntax TreeMetamodel (ASTM)
and Knowledge Discovery Metamodel (KDM) are used to
view the source code in the form of models. The ADM
based scheme is based on methodology of MDRE. First,
T2M transformations are applied to get initial models and
then restructuring is applied through M2M transformations
to get higher level models. After that the new technology
code is generated by transforming these models. Another
approach [20] is defined by this research group for migration
of legacy WAs to CMS based WAs. A toolkit RE-CMS is
defined to automateMDRE of outdated applications to up-to-
date platforms. This toolkit assists in extraction of knowledge
from legacy web apps and then transforming these represen-
tations into CMS domain. Contribution of approaches defined
by F. Trias et al that they expel MDRE from object-oriented
domain to web applications domain. T2M transformation
techniques are specified which may considered as step for-
ward for new researchers in this field.

Rui Couto et al. defined an approach [21] for trans-
forming the source code into models through MDRE and
deduce the design pattern from these models. The main
objective of the study can be summarized as:1) Create high
level models (cf. PSM) from Java source code;2) Deduce
design patterns on these models; 3) PSM to PIM abstrac-
tion. This approach is aided with a tool (MapIt) to perform
this anticipated methodology. A semi-automatic approach for
MDRE to extract business rules from Java applications is
presented [22] by Normantas and Vasilecas et al. Authors
intended to aid software conception and diminish mainte-
nance expenditure by MD reverse engineering business rules
out of legacy systems. First, in this approach system analysis
is performed and then KDM based models are extracted
i.e. Inventory model and code model. Finally, Business logic
abstractions parts this code model into business logic imple-
mentations and infrastructure. As a further consideration,
this generic approach can be applied on numerous enterprise
systems.

We carried out a detailed overview of all the selected
researches, tools, techniques their applications, empirical
evaluations and future research proposals which are reported
during past decade. TABLE 1 illustrates the corresponding
outcomes of the prominent researches assessed in above
sections. In TABLE 1, we delimit eight ‘8’ parameters to
compare the most renowned researches. 1) Referenced
Approach column signifies the research papers(s) along with
its reference. 2) The scope column implies the scope of
MDRE approach anticipated in that paper which can be either
generic ‘G’ or specific ‘S’. Specific approach entails the

158934 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

TABLE 1. Comparison of MDRE approaches.

correspondence of MDRE to a limited technology, problem
domain or case-study, while a generic approach contrariwise
infers the definition of a new MDRE context or anticipating
the methods/techniques inMDREwhich assisted in extensive
ambition irrespective of a single technology or domain. 3) In
source artefact column, the targeted input of the proposed
approach is represented. Input may be some programming
language code, database or other legacy technology. 4) T2M
Technique column describes the adopted reverse engineering
method to get modeling descriptions from source antique.
To represent the textual input graphically, approaches used
some type of discoverers or open source parsers. Each of
those approaches which are discussed or used in relevant
research study are inspected. 5) Meta-Models: Adopted
meta-models by MDRE approaches are enlisted in this col-
umn. 6) Column labeled as ‘Tools’ discloses the tools used
for MDRE. Some researches intended and executed a tool
for MDRE specified in normal fonts i.e. H. Bruneliere et al
developed MoDisco and most of the researches used certain
co-existed tool e.g. L. Favre et al, enlisted in italics.7) The
attributes under Target Model outcome represents that every
single MDRE approach is some resultant model which is
achieved after performing MDRE. There are two types of
models are considered, a) Whichever proposed as the output

of approach/framework/tool specified in normal font and
b) whichever used anywhere between the whole process as
intermediate models are shown in italics. 8) In column Type,
stipulation on the type of evaluation fulfilled to expressed
MDRE approach is presented. The assessment can either for
inspection of static structure of the subject system ‘Struc-
tural’ or exploration of dynamic behaviour of subject system
‘Behavioural’. 9) ‘Validation’ indicates whether the antici-
pated approach is justified by means of some case study or
industrial application or not.

B. MDRE AND UML DIAGRAMS
From existing literature about MDRE, we found some
approaches aimed at generation of UML models from source
artefacts. UML class diagram, component diagram, use case
diagram, activity, sequence, and state machine diagram are
proposed outcomes of researchers for depicting interface and
workflow of the source technology. An overview of such
approaches forMDRE of structural and behavioural diagrams
is respectively given in subsequent sections.

1) MDRE AND UML STRUCTURAL DIAGRAMS
MoDisco [6] targeted at showing output as Java or JSP
model. Java model can also be depicted in UML model

VOLUME 7, 2019 158935



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

TABLE 2. Investigation of UML structural and behavioral studies using
MDRE.

editor as UML class diagram. Moreover, so far MoDisco is
the only contribution for MDRE at industry level, so this
tool has been used by researchers as for the implementation
of their proposed idea. Favre et al. [16] defined a process
for reverse engineering of source code according to MDA
standards. Authors aimed to recover UML models (i.e. Class
diagram) from Java code by combining static and dynamic
analysis. Similarly, Pereira et al. [1] presented a study about
recovery of Use Case diagrams from Java code by means of
MDRE spotlighting on conversions at model and MM levels.
To obtain MDA models through RE, old static and dynamic
analysis methods are incorporated along with formal specifi-
cations by transformations at MOF meta-model level. These
transformations are itemized as OCL constraints. Besides this
proposal there is no validation of this approach is observed.

Semantic web assists in automation of discovery, invoca-
tion and integration of web-services by enriching them with
semantic descriptions. In a research study [25], Djamel et al.
proposed a model driven approach to assemble OWL-s spec-
ifications from web services. In their approach authors antic-
ipated to use MDRE to get UML models from WSDL (Web
semantics Description Language) documents and then trans-
form these models into OWL-S specs by using different
ontologies. In RE phase, authors introduce a UML profile to
build representations from WSDL. UML class diagram and
UML activity diagram are proposed result of this phase for
modelling of interface and workflow of WSDL respectively.

2) MDRE AND UML BEHAVIOURAL DIAGRAMS
In [23] L. Martinez et al. anticipated an approach for MDRE
ofUML sequence diagram from Java source code usingADM
standards and MoDisco platform. Methodology of MoDisco
approach is used to discover Abstract models. Authors antic-
ipated to enrich the information extraction process i.e. KDM
implemented in MoDisco to extract knowledge about recov-
ering sequence diagram from Java source. This research
also aimed to contribute in MoDisco community by enrich-
ing MoDisco for MDRE of behavioral diagrams. However,
there is no such evidence found in MoDisco community and
this tool still lacks the MDRE of behavioral aspects from

source artefact. Benefit of this approach is that this study can
be considered as a good step for new research studies about
MDRE of sequence diagrams from Java source code.

Bergmayr et al. [24] proposed a framework to RE the
executable behavior of source code. The framework known
as fREX aims to give support to extract model for behavior
embedded in Java code. The proposed framework mainly
relies on the use of Foundational UML(FUML) as a pivot
language for representing application behavior.

Djamel et al. [25], proposed a model driven approach to
assemble OWL-s specifications from web services. In their
approach authors anticipated to use MDRE to get UMLmod-
els (Activity Diagram) from WSDL to specify the behaviour
of analysed system. II-C illustrates the relevant research stud-
ies which have focused on model driven reverse engineer-
ing to obtain structural or behavioural UML diagrams from
source artefacts.

C. RESEARCH GAP
We carried out a detailed overview of all the selected
researches, tools, techniques, their applications, empirical
evaluations and future research proposals which are reported
during past decade. TABLE 1 illustrates the corresponding
outcomes of the prominent researches assessed in above
sections. We further narrow down our scope on MDRE of
UML diagrams from legacy systems. II-C illustrates such
researches along type of UML model supposed to be out-
come of that approach. Case study used and its appliance on
analysis of system is observed. We found no evidence about
the experimental study of Pereira et al. [1], Favre et al. [16],
and Favre et al. [17]. Remaining approaches justified their
aim well for evaluation of static structure. Three approaches
claimed the MDRE of behavioral diagrams but there is
no evidence found for experimental evaluation of dynamic
behavior of source artefact(s). There had been a big focus
of researchers on the analysis of the structural aspects of the
system but too less work is done on the RE the behavior of
the system and this area is getting intentions of researchers.
Consequently, there is a big research gap on modeling the
behavior of a legacy system from available source artefact(s).
MDRE is challenged by:
• Limited Tool Support to extract and model structural
aspects of legacy system.

• Almost no support to extract and model behavioral
aspects of legacy system.

• There is no such framework, which provides the support
for the generation of both structural and behavioral mod-
els from Legacy system.

There is a need of complete MDRE process which
manipulated source artefacts structurally as well as func-
tionally as a whole. Our proposed approach uses the inte-
gration of both (Parser and Discoverer) accompanied by
a Text-to-Model (T2M) transformation technique based on
unified modeling language (UML2). The objective of this
proposal is to implement an MDRE framework which
extracts information from legacy systems to figure out

158936 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

intermediate representations (IR) and then convert these IRs
into UML models. The outcome of the proposed approach
is generation of high-level UML model showing structure
as well as behavior, which is justified through experiment,
formerly not done by any approach.

III. SOURCE-TO-MODEL FRAMEWORK (SRC2MOF)
In this section, we have developed a complete, open source
Model Driven Reverse Engineering (MDRE) framework
named as SRC2MOF in Eclipse facilitating extraction of
UML structural and behavioral models from Java source
code. Src2Mof intends to provide the capabilities for cre-
ating, analysis and use of these high-level UML models in
software development. Architecture of Src2MoF is described
in ‘subsequent section A′ providing the details of layout and
components involved.

A. ARCHITECTURE OF SOURCE TO MODEL
FRAMEWORK
Source to Model Framework (Src2MoF) enables the user to
get the modeler view of the legacy application with all its
structural aspects in class diagram, as well as the behavior
embedded in Java code into modeler view as an activity
diagram. Architecture of Src2MoF is shown in FIGURE 2.
It contains a user interface, intermediate model discov-
erer (IMD) and model generator.

FIGURE 2. Architecture of proposed framework.

User interacts with interface; input (source code) goes
to the IMD where a polished version of Abstract Syntax
Tree (AST) is processed and intermediate model is obtained.
We integrated source code parser in way that it creates an
AST instead of parsed tree from code. AST is a polished
version of parsed tree in which irrelevant implementation
information of subject system, is removed and a tree is formed
which contains only necessary information. Consequently,
we require the structural and behavioral aspects from source
code to model structure and behavior of subject system, so we
implement an information extractor and intermediate discov-
erer within IMD. Extractor pulls out required aspects from
each class of source code and passes it to discoverer where
an intermediate model of subject system is formed. After this

step, model generator transforms this intermediate model into
UML structural and behavioral models by using predefined
mapping rules. In our case we defined two templates i.e.
Class Diagram Creator and Activity Diagram Creator inside
model generator. Class diagram creator transforms structure
related parts of IM into a UML class diagram and Activity
diagram creator aids Generator to model behavioral aspects
into a UML activity diagram. Details of implementation is
given in subsequent sections.

1) USER INTERFACE
The user interface UI of our framework as illustrated in
FIGURE 2 executes the Main class. UI is the place where
interactions between users and framework occur.

The objective of this interaction is to allow effective oper-
ation and control of the framework from the user end. Gen-
erally, a good designed interface makes it easy, efficient, and
user-friendly to operate a system in the way which produces
the desired result. Keeping in view the importance of good
designed UI and consequences of poor designed interface,
our focus was to build a user friendly and simple UI. The
interaction between human and our framework is kept simple
and we have given the maximum information on UI.

2) INTERMEDIATE MODEL DISCOVERER (IMD)
It is one of the major components of Src2MoF as illustrated
in FIGURE 2. Implementation of this module is carried out
in Java language using eclipse IDE and mapping rules are
implemented for transforming the textual model into a UML
model. IMD implements classes like source code parser, IMD
dictionary and XMLparse. Source code parser uses an open
source tool ‘Java Parser’1. Main function of this parser is
to symbolize the source code into an abstract syntax tree, a
structure that represents the code in suchway, which is easy to
process. This parser typically analyzes the source into a series
of expressive tokens. This sequence is then passed through
semantic analysis in which tokens are scanned and a parsed
tree in formed. This parsed tree contains a lot of information
regarding tokens position, line number, column number and
unique id which is not used by our framework. In our frame-
work, we integrated this parser as a part of intermediatemodel
discoverer (IMD) FIGURE 4, such a way that it parses the
source code and passes an abstract syntax tree AST to model
discovery phase. Implemented IMD is generic and language
independent discoverer able to support the constructs of any
language to extract an intermediate model of source code.

In IMD dictionary FIGURE 3, information about extrac-
tion of features from parsed tree is stored. Inside IM discov-
erer, some meta-classes are implemented to extract features
from source code. For example, MetaDataMemeber class is
used to extract collection of attributes/properties of all classes
present in source code. Similarly, MetaMethod class is used
to extract collection of operations and MetaFunction class is
used for extracting function-behavior.

1https://github.com/javaparser/javaparser

VOLUME 7, 2019 158937



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 3. Depiction of IMD dictionary.

FIGURE 4. Input and output of IMD.

Extracted information about each class is stored in aMeta-
Class and all MetaClasses are combined to get intermediate
representation. This intermediate representation is an XML
like depiction of source code.

3) MODEL GENERATOR
The intermediate model obtained from IMD is passed to the
model generator which acts like a transformation engine.
Model generator implements the rules to transform interme-
diate models from IMD to UML models. Model generator

calls two templates i.e. class diagram creator and activity dia-
gram creator to create these models. Output of UML model
generator is a UML package which encompasses a class
diagram representing design and activity diagrams showing
operations and functions as implemented in Java source code.
Implementation of this model generator is carried out using
Eclipse tool.

Src2MoF is developed as a generic, reliable and an open
source MDRE framework. A pure separation of concerns is
addressed in our MDRE approach. Src2MoF combines the

158938 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

generalized use of MDE principles with reverse engineering
approaches to provide a complete and extensible solution to
MDRE challenges as discussed in section 2. User interface
of this framework is simple and user friendly. One can easily
select input and output files destinations with simple Browse
buttons. Other features of interface are self-explanatory i.e.
open output file, reset and generate buttons. Similarly, a status
bar is there for showing the status of output files i.e. suc-
cessfully generated or some errors found. The source code
of Src2MoF along with self-explanatory user manual and
sample case studies are available at [34].

IV. IMPLEMENTATION
This section defines transformation rules for translating Java
source code to UML models. These are two types of trans-
formations, 1) Transformation from source code (text) to
Intermediate model (textual model) and 2) transformation
of intermediate model to UML models. Rules for mapping
source code to intermediate models are written in Java and
implemented through a source code parser. On the other hand,
transformation rules to implement UML model generator are
written and implemented in UML2 platform.

A. TRANSFORMATION RULES FOR TRANSLATING
SOURCE-CODE TO INTERMEDIATE-MODEL-DISCOVERER
Transformation rules for transforming source code into IMD
are depicted in TABLE 3. Glimpse of outcome for each rule
is also given in the table. Each rule is also briefly described
in table. Translation of structural aspects of Java code into
intermediate model are easy to understand, as each class
transformed into a declaration block exactly with the name
of class along its access modifiers. Attributes of a class are
transformed into data-members with their return types.

Behavioral information contained in Java is translated into
IM as method declaration. We enriched IMD to correctly
extract behavioral information from existing code. It extracts
each method name along its return type and method call
(executable behavior) with the class needs to be executed
as its caller. FIGURE 4 presents graphical illustration of
Intermedia Model Discover. The IMD with the help of IMD
dictionary generates a machine interpretable representation
of Java code using source code parser.

B. TRANSFORMATION RULES FOR IMD TO UML
MODEL GENERATOR
TABLE 4 illustrates the mapping of intermediate model with
UML compliant model. IMD column shows parts of sys-
tem so as descripted in intermediate model discoverer. UML
Model column describes the program’s components in UML
diagram. By using given transformation rules, the intermedi-
ate models are transformed into resultant UMLmodels repre-
senting the structure and behavior of the subject system. Class
diagram describes structure in an easywaywhere information
about structural artefacts i.e. attributes, methods, primitive
types, and relationship among different entities are presented
in a single diagram. Class diagram is designed to correctly

express single system descriptions and the general structure
of a system [31]. As described inTABLE4, declaration blocks,
data-members and methods are translated into corresponding
UML classes, attributes and operations. Dynamic behavior
of operation is transformed into function behavior in the
same language in which it is written. UML Model generator
takes function behavior containing the complete information
of operation and creates a UML Activity model to illustrate
behavior of models. Among all UML behavioral diagrams,
the sequences of activities essential to carry out a functional
goal from start to finish can be graphically represented using
activity diagrams [32]. Activity diagrams appear to be more
appropriate for capturing behavioral aspects in a way that
they can be executed directly at model-level. Description
of structural and behavioral diagrams created as an output
of proposed Src2MoF is given in Validation section of this
article.

From the operational viewpoint, a methodwritten in Java is
represented as operation in UML. A description of mapping
of dynamic behavior between source code and UML model
given in TABLE 5. An activity is created against each method
with its formal activity nodes.

Execution of transformation rules presented in TABLE 3,
TABLE 4 & TABLE 5 is done through a sequence of opera-
tions. Transformation rules are easy to understand. However,
an algorithm presented FIGURE 5 explains the TABLE 5

more precisely. In this algorithm a process of modeling the
extracted behavioral aspects in intermediate model to UML
model is presented.

For each operation in Java, and activity with the name of
that operation is created in UML with syntax Act_operation
name. Return type of operation is transformed into Activity
output pin and object flow. An Object Action is created for
instance declaration of operation and Call Operation Action
to show Operation Invocation method. Operation’s body is
translated into Opaque Action in activity model.

C. OVERVIEW OF TOOLS AND TECHNOLOGIES
Tools and technologies used to develop Src2MoF are pre-
sented in this section.

1) TOOLS
Eclipse and Source code parser are used to carry out
implementation of Src2Mof. Eclipse [26] is an Integrated
Development Environment (IDE), widely used for develop-
ing Java-based applications. It also supports other languages
such as C, C++, Python, C#, COBOL.

Eclipse provides rich client platforms e.g. Workbench
and SWT for development of general-purpose applications.
It is a de-facto standard platform to facilitate the modeling
and transformations in Model Driven Engineering (MDE).
In Src2MoF, Eclipse tool is used, which facilitates the
Intermediate Model Discoverer (IMD) implementation and
UML2 modeling. Our model generator is using Text-to-
model transformations which is also implemented in Eclipse.
Source code parser is an open source tool developed in Java.

VOLUME 7, 2019 158939



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

TABLE 3. Source code to intermediate model (IM) mapping rules.

We have implemented source code parser [27] as a part of our
IMD as it transforms source code in easy to process form.

2) LANGUAGES
Java language and Unified modeling languages (UML) are
used to develop Src2MoF framework. Java [28] is a multi-
paradigm language developed by Oracle Corporation. It is
simple, robust and object oriented. We have used Java lan-
guage for the development of Intermediate Model Discov-
erer (IMD) and source code parser used in Src2MoF.

UML2 [29] is an Eclipse Modeling Framework (EMF)
based implementation of UML 2.x for eclipse. It contains
two main categories to generalize diagrams i.e. Structural
diagrams and Behavioral diagrams. We have used UML2 to
implement the UML model generator in our framework.
Transformation templates i.e. class diagram creator and activ-

ity diagram creator are written for UML2. In other words,
high-level UML models from intermediate model are gener-
ated using UML2.

V. VALIDATION
The validation is done through software engineering experts,
who tested this framework on 5 benchmark case studies. The
strategy used to evaluate the reliability of tests for proposed
framework consists of two steps. 1) First, experts have man-
ually performed modeling (designed models) of case studies
using class diagram and activity diagram by means of dif-
ferent software design tools i.e. Eclipse, papyrus, starUML,
rationalrose, 2) Second, same case studies are applied to the
Src2MoF (proposed framework). A comparison is performed
by the output of our framework and manually designed mod-
els by design experts. Two of those benchmark case studies

158940 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

TABLE 4. Transformation rules for intermediate model (IM) to UML model.

are given in this article; 1) Automated Teller Machine (ATM)
case study and 2) Amadeus Hospitality case study.

A. ATM CASE STUDY
In this section, the complete description of the selected func-
tionality of the ATM is provided. Total of eight classes are
implemented in Java source code to design an ATM system.
The description of each class is as follows:
ATM:
This class depicts and manages the overall ATM system,

its operations and all ATM parts. It is required to perform the
‘Startup operation, run the ATM, servicing customers, until
the switch is turned off.
ATM Classes:
Classes like keypad, screen, cash-dispenser and deposit-

slot builds the parts of an ATM Machine. Keypad.Java class
signifies the keyboard fromwhich user inputs the information
to ATM machine. This class has one attribute and has one
method getInput to return an integer value input by user.

Class screen.Java denotes the screen of ATM machine. Out-
put and messages are shown on screen. Screen.Java class
has one method displaymessage to show the message, mes-
sage line or currency amount to the customer. Cashdispenser
class signifies the part of ATM which consist of cash and is
responsible for dispensing cash. Two methods in this class,
i.e. dispensecash checks whether IsSufficientCashAvailable
and then returns the message. Class DepositSlot represents
the ATM’s deposit slot. This class has no properties and
only one method isEnvelopeReceived which directs whether
a deposit envelope was received or not.
Class Account:
This section declares the class that represents in the cus-

tomer’s account in bank, implementing the corresponding use
case. An account class consists of account number of users,
its PIN and information about balance in that account. It per-
forms the operation of validating the entered PIN. There are
methods for returning balance information and debit/credit in
Account class.

VOLUME 7, 2019 158941



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

TABLE 5. Description of mapping behavioral aspects between java and UML activity.

Class Transaction:
This abstract superclass expresses the display of an ATM

transaction. It comprises the common features of subclasses
Balance-Inquiry, Withdrawal and Deposit. Transaction class
has three public get methods getAccountNumber, get-Screen
and getBankDatabase. Transaction class inherits subclasses
and gives them access to class Transaction’s private attributes.
Class Bank Database:
This class describes and implements the database of the

bank in which information i.e. account number, PIN, Balance
about customer’s account(s) is saved. BankDataBase consists
of an array of accounts. It takes the account number of the
user, authenticates it and returned the complete information
about that account i.e. Balance, Transactions record, account
number, PIN.
Class Balance Inquiry:
Class BalanceInquiry extends Transaction and represents

a balance-inquiry ATM transaction. BalanceInquiry does
not have any attributes of its own, but it inherits Transac-
tion’s attributes account-Number, screen and bank-Database,
which are accessible through Transaction’s public, get
methods.

Class ATM Case study:
Class ATMCaseStudy is the main class that allows us to

start or ‘‘turn on,’’ the ATM and tests the implementation of
system.

RESULTS
The classes of ATM case study are written using Java pro-
gramming language. The input of ATM case study as Java
project is provided to the Src2MoF. Generated output of the
framework is in UMLmodel editor as depicted in FIGURE 6
and represented in Papyrus model editor in FIGURE 7.

a: CLASS DIAGRAM
By opening the generated output file, we get UML class
diagram. Generated UML class diagram is depicted in
FIGURE 6 in UML model editor. We select UML class
diagram to describe structure of analyzed legacy system.
Class diagram describes structure in an easy way where
information about structural artefacts i.e. attributes, methods,
primitive types, and relationship among different entities are
presented in a single model. In FIGURE 6, all ATM classes
i.e. Account, ATM, Screen, Keypad are present as generated

158942 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 5. Pseudo code for UML model generation algorithm.

FIGURE 6. Output model in UML model editor.

by Src2MoF. We can see that, there are primitive types in
output model which shows information about return types for
attributes of each class.

Internal structural aspects of every single class can be seen
by expanding that class as shown in FIGURE 8. There are

properties representing attributes of class and Operations
for describing functionality of that class. Function of each
operations is extracted and described in Function Behavior.
Therefore, we can conclude that, structure of ATM system
has been successfully generated by Src2MoF.

The information regarding a class can be checked by
expanding that class(s). We have expanded only one class
Account as shown in the FIGURE 8. By opening the gen-
erated model in papyrus modeling editor where, a class dia-
gram is generated with name in first compartment, properties
are placed in second compartment, operations and nested
classifiers are allocated to third and fourth compartment
respectively.

It can be seen that, Account class has four attributes and
six operations, which are same as in source code.

b: ACTIVITY DIAGRAM
MDRE of behavioral aspects of existing applications (source
code) is the main area of focus in our research. Many UML
models i.e. sequence, state-machine and activity diagrams are
being used to represent the functionality of system. We have

VOLUME 7, 2019 158943



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 7. Generated UML class mode.

FIGURE 8. UML model of account class.

selected activity diagram to illustrate behavior of system.
Among all UML behavioral diagrams, the sequences of activ-
ities essential to carry out a functional goal from start to finish
can be graphically represented using activity diagrams [32].
Moreover, activitymodels havemany options like conditional

nodes and loops to describe a function i.e. if-else statement
and switch statements. In FIGURE 9 and FIGURE 10,
the generated activity model for function AuthenticateUser of
class ATM are shown. The same activity diagram is depicted
in two separate notations. Representation of activity mod-
els in UML model editor (FIGURE 9) does not keep the
constructs of activity model in order. Therefore, graphical
representation along with structural and source code artefacts
is illustrated in FIGURE 10.
We have almost extracted all the aspects related to behavior

of source code and collected them to form an activity model.
Our framework has created all the necessary aspects to show
the behavior of the system in different modeling notation.
In UML classes operations inside classes has some function
behavior with a return caller. This behavior from source
code is mapped into a nested classifier ‘Function Behavior’.
An activity diagram against each function behavior is formed
which shows the behavior embedded in source code using
modeling notation.

In this article, we illustrate the generated activity dia-
gram for another operation ‘validatePIN’ of class Account in

158944 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 9. Activity model for operation ‘‘Authenticate User’’.

FIGURE 11. Each function behavior contains behavior
which conforms source code. Transformation of opera-
tion in Java code to function behavior and activity model
is graphically represented in FIGURE 11 (a, b and c)
respectively.

c: DESCRIPTION OF BEHAVIORAL MODEL GENERATION
Operation inside UML class diagram is transformed to func-
tion behavior and then for each function behavior an activity
model is generated which consist of sequence of operations
represented as nodes and edges. The behavior of each method
is completely described by the generated activity model and
the aspects of activities are extracted and modeled according
to mapping rules (TABLE 5).

Overview of different artifacts and models generated by
Src2MoF framework given a piece of java code is shown in
FIGURE 9. Notably, java source code and its corresponding
structural and behavior model in UML Editor and in the form
of activity diagram is presented. Structural aspects (e.g. ATM
class, Property) are depicted through UML Class elements
and behavior is illustrated using UML Activity.

To express the dynamic behavior of source code graphi-
cally, an activity model is generated against each operation
with operation’s name inside class model as a nested classi-
fier. As an activity explicitly defines control nodes at which
the execution starts and ends when it is invoked, those nodes,
i.e., InitialNode and FinalNode, are created by default for
each activity. A method invocation is mapped to UML as
CallOperationAction for operation calling. Respective Input
pins and Object Flows are also created with CallOperation-
Action for passing values to invoked methods and for show-
ing the target of invoked method respectively. An instance

variable is mapped in UML as CreateObjectAction. Addi-
tionally, an output pin is also generated to pass the object
at runtime.

There are Conditional Nodes to represent ‘if else state-
ments’ inside source code. The constraint inside conditional
node describes the condition for an action to be true or
false. There are two types of edges, control flow edge and
object flow edge (FIGURE 9). Control flow edge repre-
sents the flow of activity and mostly generated by following
sequential flow of source code or logical order in which
elements has to appear in activity diagram. Control flow
indicates one atomic statement or function call is executed
and control is transferred to another activity node. While the
object flow indicates the distribution of object to different
nodes. The same object can be possibly distributed to several
actions. The object flow connects the object to activity nodes
by action input pin and output pin. Object flow edge not
necessarily follow the control flow edge as objects may have
different life and scope than the nodes of an activity. Object
flow edges can be used to model input parameters of function
(see userPIN input pin FIGURE 11 (c)), object instantia-
tion, parameter passing and return values through input and
output pins. The source code of Src2MoF along with user
manual and ATM case study is available at [34] for further
evaluation.

B. AMADEUS HOSPITATLITY CASE STUDY
Amadeus [33] provides services of reservation and informa-
tion about Flights, hotels, stadiums, casinos and other loca-
tions for travelers and tourists. Amadeus helps in technology
modernization, which facilitates its clients at every step of the
journey.

In other words, it is cloud-based technology solutions for
global hospitality organizations.

1) DESCRIPTION
In this section an overview of the classes is given. Amadeus
package comprises of seven classes and few APIs.
a) Amadeus: This class initializes the API client. Com-

prises of three fields/attributes, two public methods and two
inherited methods.
b) Configuration: This class shows the configuration of

Amadeus API client. It has no attributes and 20 public
methods.
c) Constants: This class expresses all constant variables

used to implement this system.
d) HTTPClient: This class shows Amadeus API clients,

http part. It consists Resource, Response and Configuration
public methods.

2) RESULTS
In Src2MoF, input of Amadeus case study is browsed
for Java input project and destination folders is selected.
Consequently, generate button is clicked. Status bar shows
‘‘Successfully generated UML files’’.

VOLUME 7, 2019 158945



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 10. Activity model for operation ‘‘Authenticate User’’ in Papyrus Editor.

FIGURE 11. Detailed depiction of how behavior is mapped to activity (for operation ValidatePIN).

a: CLASS DIAGRAM
Output model is shown in FIGURE 12. A list of classes
as well as exceptions are generated as present in source
code. Attributes of each class have some return type value
i.e. int. string etc. Similarly, associations of classes have also
return types with the name of that associated e.g. < Primitive
Type > Shopping and Travel. Return types of each class are
presented as ‘‘Primitive Types’’ appended.

b: ACTIVITY DIAGRAM
We expand one class (FIGURE 13), Amadeus to illustrate
its properties, operations, and function behavior with corre-
sponding activity model for that function behavior.

The relationship of superclass and child class concept as
used in source code, is mapped to generalization in class
diagram.<Generalization> (see HTTPclient) element maps
the parent and child relationship between Amadeus and

158946 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 12. Output Model of Amadeus Program.

TABLE 6. Comparative analysis.

HTTPclient classes. Data members and operations of class
Amadeus are translated into < Property > and < Function
Behavior > respectively.

After checking results of all five case studies, it can be
analyzed that Src2MoF framework can correctly generate the
structure as well as behavior UMLmodels together from Java
source code. Generated artefacts are industry standard mod-
els, which conforms UML class diagram and UML activity
diagram meta-models.

VI. COMPARATIVE ANALYSIS
We have proposed Src2MoF to support model driven
reverse engineering. This framework is a complete MDRE

solution for reverse engineering of the structural as well
as behavioural aspects of legacy subject system. In this
section, we compare Src2MoF with renowned state-of-
the-art approaches in the area of MDRE. We utilized
five evaluation parameters for this comparison i.e. Input
artefact, proposed Output, type of analysis (structure or
behaviour), Tools (proposed/used) and Contribution in the
field of MDRE on the basis of experimental validation
of approach.

TABLE 6 gives a description of this comparison. In MDRE
approaches [6], [18], [20], [22], researchers focus on MDRE
of structures of source artefacts only. As we defined earlier,
the complete or fullMDRE approaches comprise of modeling

VOLUME 7, 2019 158947



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

FIGURE 13. Amadeus activity model for operation builder.

both structure as well as behavior from legacy system’s
source code are hard to find in the literature’. Therefore,
we consider all these researches as ‘‘Partial’’ contribution
to MDRE. Similarly, the approach at [24] discussed about
MDRE of behavior embedded in Java code but apart from
a single conference paper which proposes this approach,
the detailed overview of tool and its implementations is com-
pletely missing. Moreover, the proposed framework is only
for theMDREof behavior, sowe require some other approach
also to discover structure when we are dealing with fREX.
On the other hand, in Src2MoF, we implemented a complete
MDRE approach which deals with the RE of both structural
as well as behavioral aspects of legacy system. Therefore,
it can be concluded that ‘‘Src2MoF’’ is the first attempt which
gives the complete automated solution for modeling struc-
ture along with the behavior of legacy systems through Java
source code.

VII. DISCUSSIONS AND LIMITATIONS
We have proposed Src2MoF to support model driven reverse
engineering. This framework is a complete MDRE solution
for reverse engineering of the structural as well as behavioural
aspects of legacy subject system. Previously, a very few
researchers explore this area, as Brunelière et al. [6] imple-
mented a generic and extensible framework for MDRE
so-called MODISCO. However, it is only for modeling the
structure of the legacy systems and then analysis of that
extracted model. Pereira et al. [1] also contributed to MDRE
but their scope was only for structure of the legacy system
using MDRE. Martinez et al. [23] however anticipated to
get behavioral models like sequence diagram from object-
oriented code but there is no realistic evaluation of their work.
Similarly, Bergmayr et al. [24] presented a RE framework for
executable behavior of source code. The framework known
as fREX aims to give support to extract model of behavior
embedded in Java code, but still this work is also not well
validated through proper experiments or case studies. Apart
from these, no well-defined and precise research regarding

MDA based reverse engineering of behavioral aspects is hard
to find in literature.

Therefore, we can claim that ‘‘Src2MoF’’ is the first
attempt which gives the complete solution i.e. modeling
structure along with behavior of source code. Furthermore,
Src2MoF provides a complete tool support and its applica-
bility is demonstrated through industrial case-studies. The
following are the key features of Src2MoF:

Genericity: Src2MoF is generic approach that can be
used for MDRE of any type of object-oriented legacy sys-
tem. Before this, only MoDisco was available as a generic
framework for MDRE but it is not a complete solution
of MDRE.

Structural and behavioral modeling: Src2MoF automat-
ically extracts the structural information from source code
and model it into a UML class diagram. It also supports the
reverse engineering of behavior embedded in source code and
model it into an activity diagram.
Limitations: We have proposed a generic approach for

MDRE, and a source code parser is assembled in ‘‘Inter-
mediate Model Discoverer’. We have configured this parser
in a way that it makes IMD a generic and language inde-
pendent, while working with language other than Java. This
source code parser is an open source tool and IMD can
be enriched to limit the use of source code parser. Con-
sequently, to represent the behavior of the legacy system,
UML activity model is used. In UML activity diagram, some
constructs are facilitated such as operations and functions,
but some nodes are not facilitated such as merge node and
fork node.

VIII. CONCLUSION AND FUTURE WORK
This article presents Model Driven Reverse Engineer-
ing (MDRE) solution to generate the high-level models
of both structural as well as behavioral aspects of legacy
systems from Java source code. As a part of research,
an open source ‘‘Source to Model Framework (Src2MoF)
is developed. Particularly, an intermediate model discoverer
is developed by integrating source code parser to get the
intermediate model of system’s structure and behavior from
the existing Java code. Second, highly level UML mod-
els comprise of Class and Activity diagrams are generated
from intermediate model which represent system structure
and behavior respectively. To the best of our knowledge,
Src2MoF is the first attempt which gives the complete solu-
tion for MDRE i.e. modeling structure along with behavior
of legacy systems from source code. The broader applicabil-
ity of Src2MoF has been demonstrated through benchmark
case studies.

Currently, Src2MoF only deals with the Java source code.
In this regard, we intend to extend Src2MoF for other pro-
gramming languages like C# etc. Furthermore, we also plan
to represent the structure and behavior of system in differ-
ent other UML diagrams like sequence, component etc. for
detailed analysis of legacy systems.

158948 VOLUME 7, 2019



U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

REFERENCES
[1] P. Claudia, M. Liliana, and F. Liliana, ‘‘Recovering use case diagrams from

object oriented code: AnMDA-based approach,’’ inProc. 8th Int. Conf. Inf.
Technol. New Generations, Apr. 2011, pp. 737–742.

[2] P. L. Ferreira, S. Hammoudi, and B. Selic, Eds., Model-Driven Engineer-
ing and Software Development: 5th International Conference, MODEL-
SWARD 2017, Porto, Portugal, February 19–21, 2017, Revised Selected
Papers, vol. 880. New York, NY, USA: Springer, 2018.

[3] C. Raibulet, F. A. Fontana, and M. Zanoni, ‘‘Model-driven reverse engi-
neering approaches: A systematic literature review,’’ IEEE Access, vol. 5,
pp. 14516–14542, 2017.

[4] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, ‘‘MoDisco: A
generic and extensible framework for model driven reverse engineer-
ing,’’ in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2010,
pp. 173–174.

[5] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, ‘‘Model-based design
verification for embedded systems through SVOCL: An OCL extension
for SystemVerilog,’’ Des. Automat. For Embedded Syst., vol. 21, no. 1,
pp. 1–36, 2017, doi: 10.1007/s10617-017-9182-z.

[6] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, ‘‘MoDisco: A model
driven reverse engineering framework,’’ Inf. Softw. Technol., vol. 56, no. 8,
pp. 1012–1032, 2014.

[7] J. L. C. Izquierdo and J. G.Molina, ‘‘Extractingmodels from source code in
software modernization,’’ Softw. Syst. Model., vol. 13, no. 2, pp. 713–734,
2014.

[8] U. Sabir, F. Azam, and M. W. Anwar, ‘‘A comprehensive investigation of
model driven architecture (MDA) for reverse engineering,’’ in Proc. Int.
Conf. Softw. E-Bus., 2017, pp. 43–48.

[9] OMG. Architecture DrivenModernization. Accessed:May 2019. [Online].
Available: https://www.omg.org/adm/

[10] J. Canovas and J. G. Molina, ‘‘An architecture-driven modernization
tool for calculating metrics,’’ IEEE Softw., vol. 27, no. 4, pp. 37–43,
Jul./Aug. 2010.

[11] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini, ‘‘Knowledge
discovery metamodel-ISO/IEC 19506: A standard to modernize legacy
systems,’’ Comput. Standards Interfaces, vol. 33, no. 6, pp. 519–532,
2011.

[12] F. García, M. Serrano, J. Cruz-Lemus, F. Ruiz, andM. Piattini, ‘‘Managing
software process measurement: A metamodel-based approach,’’ Inf. Sci.,
vol. 177, no. 12, pp. 2570–2586, 2007.

[13] Object Management Group. Knowledge Discovery Metamodel
(kdm). Accessed: May 2019. [Online]. Available: http://www.omg.
org/%0Atechnology/kdm/index.htm

[14] I. Object Management Group. Abstract Syntax Tree Metamodel
(ASTM). Accessed: May 2019. [Online]. Available: http://www.omg.
org/spec/ASTM

[15] I. Object Management Group. Structured Metrics Meta-Model (SMM).
Accessed: May 2019. [Online]. Available: http://www.omg.org/
spec/SMM/

[16] L. Favre, L. Martinez, and C. Pereira, ‘‘MDA-Based reverse engineering
of object oriented code,’’ Enterprise, Business-Process and Information
Systems Modeling (Lecture Notes in Business Information Processing),
vol. 29. New York, NY, USA: Springer, 2009, pp. 251–263.

[17] L. Favre, ‘‘Formalizing MDA-based reverse engineering processes,’’
in Proc. 6th Int. Conf. Softw. Eng. Res. Manage. Appl., Aug. 2008,
pp. 153–160.

[18] S. Warwas and M. Klusch, ‘‘Making multiagent system designs reusable:
A model-driven approach,’’ Proc. IEEE/WIC/ACM Int. Conf. Web Intell.
Intell. Agent Technol., vol. 2, Aug. 2011, pp. 101–108.

[19] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos, ‘‘Reverse engineer-
ing applied to CMS-based Web applications coded in PHP: A proposal
of migration,’’ in Communications in Computer and Information Science,
vol. 417. New York, NY, USA: Springer, 2013, pp. 241–256.

[20] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos, ‘‘RE-
CMS: A reverse engineering toolkit for the migration to CMS-based
sWeb applications,’’ in Proc. 30th Annu. Symp. Appl. Comput., 2015,
pp. 810–812.

[21] R. Couto, A. N. Ribeiro, and J. C. Campos, ‘‘A patterns based reverse
engineering approach for java source code,’’ in Proc. 35th Annu. IEEE
Softw. Eng. Workshop, Oct. 2012, pp. 140–147.

[22] O. Vasilecas and K. Normantas, ‘‘Deriving business rules from the models
of existing information systems,’’ in Proc. 12th Int. Conf. Comput. Syst.
Technol., 2011, pp. 95–100.

[23] L. Martinez, C. Pereira, and L. Favre, ‘‘Recovering sequence diagrams
from object-oriented code: An ADM approach,’’ in Proc. 9th Int. Conf.
Eval. Novel Approaches Softw. Eng. (ENASE), Apr. 2014, pp. 1–8.

[24] A. Bergmayr, H. Bruneliere, J. Cabot, J. García, T. Mayerhofer, and
M. Wimmer, ‘‘FREX: FUML-based reverse engineering of executable
behavior for software dynamic analysis,’’ in Proc. 8th Int. Workshop
Modeling Softw. Eng., vol. 16, 2016, pp. 20–26.

[25] A. B. Djamel, B. Djamal, and M. Mimoun, ‘‘A reverse engineering
approach for specifying Semantic Web Service with respect to MDA,’’ in
Proc. 3rd Int. Conf. Inf. Commun. Technol. From Theory Appl., Apr. 2008,
pp. 1–8.

[26] Eclipse. Accessed: May 2019. [Online]. Available: https://en.
wikipedia.org/wiki/Eclipse_(software)

[27] D. van Bruggen. Java Parser. Accessed: May 2019. [Online]. Available:
http://Javaparser.org/

[28] Java. Accessed: May 2019. [Online]. Available: https://en.wikipedia.
org/wiki/Java_(programming_language)

[29] UML2. Accessed: May 2019. [Online]. Available: http://wiki.
eclipse.org/MDT/UML2

[30] Harvey Deitel—Deitel&Associates. ATM Case Study. Accessed:
May 2019. [Online]. Available: https://www.oreilly.com/library/view/
Javatm-for-programmers/9780137018529/aph.html

[31] A. Kästner, M. Gogolla, and B. Selic, ‘‘From (imperfect) object diagrams
to (imperfect) class diagrams: New ideas and vision paper,’’ in Proc.
21th ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst., vol. 18, 2018,
pp. 13–22.

[32] G. Chong and Z. Jun, ‘‘Analysis and design of Internet-based library
management system based on UML,’’ in Proc. 14th Int. Conf. Innov.
Manage. Cardiff, U.K.: Univ. of Wales, Sep. 2017, pp. 1077–1083.

[33] Amadeus Hospitality. Accessed: Dec. 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Amadeus_IT_Group

[34] Source to Model Framework–Src2MoF. Accessed: May 2019. [Online].
Available: https://ceme.nust.edu.pk/ISEGROUP/Src2MoF/index

UMAIR SABIR received the B.E. and M.S.
degrees in software engineering from the Mir-
pur University of Science and Technology and
National University of Sciences and Technology
(NUST), respectively. He is currently a Research
Scholar with the Department of Computer and
Software Engineering, College of Electrical and
Mechanical Engineering (CEME), National Uni-
versity of Sciences and Technology (NUST),
Islamabad, Pakistan. His current research interests

include model driven software development and model driven reverse engi-
neering.

FAROOQUE AZAM has been teaching vari-
ous software engineering courses, since 2007.
He is currently an Adjunct Faculty Member
with the Department of Computer and Software
Engineering, College of Electrical and Mechani-
cal Engineering, National University of Sciences
and Technology, Pakistan. His areas of interests
include model driven software engineering, busi-
ness modeling for web applications, and business
process reengineering.

SAMI UL HAQ received the B.Sc. degree in
computer science from the Virtual University of
Pakistan, in 2011, the M.Sc. degree in informa-
tion technology from Quaid-i-Azam University,
in 2013, and the M.S. degree in software engi-
neering from the National University of Sciences
and Technology, Pakistan, where he is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME.
His research interest includes analysis, design, and

development of model-based innovative solutions.

VOLUME 7, 2019 158949

http://dx.doi.org/10.1007/s10617-017-9182-z


U. Sabir et al.: MDRE Framework for Generating High Level UML Models From Java Source Code

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME,
National University of Sciences and Technology,
Pakistan. He is also a Senior Researcher and
an Industry Practitioner in the field of Model
Based System Engineering (MBSE) for embedded
and control systems. His major research interest
includes model based system engineering (MBSE)
for complex and large systems.

WASI HAIDER BUTT is currently an Assis-
tant Professor with the Department of Computer
and Software Engineering, College of Electrical
and Mechanical Engineering, National University
of Sciences and Technology, Pakistan. His areas
of interests include model driven software engi-
neering, and web development, and requirement
engineering.

ANAM AMJAD received the B.S. degree in com-
puter sciences and the M.S. degree in software
engineering from International Islamic University
and NUST, respectively. She is currently pursuing
the Ph.D. degree with the Department of Com-
puter and Software Engineering, CEME, National
University of Sciences and Technology (NUST),
Pakistan. Her area of research interests includes
business process automation through model driven
software engineering.

158950 VOLUME 7, 2019


