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ABSTRACT This paper presents an efficient fuzzy logic control system for charging and discharging of
the battery energy storage system in microgrid applications. Energy storage system can store energy during
the off-peak hour and supply energy during peak hours in order to maintain the energy balance between the
storage and microgrid. However, the integration of battery storage system with microgrid requires a flexible
control of charging-discharging technique due to the variable load conditions. Therefore, a comparative
evaluation of the developed model is analyzed by considering controllers with fuzzy only and optimized
fuzzy algorithms. In this paper, backtracking search algorithm based fuzzy optimization is introduced to
evaluate the state of charge of the battery by optimizing the input and output fuzzy membership functions
of rate of change of the state of charge and power balance. Backtracking search algorithm is chosen due to
its high convergence speed, and it is good for searching and exploration process with exploiting capabilities.
To validate the performance of the developed controller, the obtained results are compared to the results
obtained with the particle swarm optimization based fuzzy and fuzzy only controllers, respectively. Results
show that the backtracking search algorithm based fuzzy optimization outperforms the other control methods
in terms of effectively manage the charging-discharging of the battery storage to ensure the desired outcome
and reliable microgrid operation.

INDEX TERMS Fuzzy controller, state of charge, battery energy storage, optimization, charging-
discharging, microgrid, load.

I. INTRODUCTION
Fossil fuel-based conventional energy sources such as coal,
oil, natural gas have strong negative impact on the envi-
ronment. Moreover, the availability of these fossil fuels is
decreasing day by day. Hence, extracting energy from renew-
able sources such as solar, wind, biomass etc. and their stor-
age systems are becoming the new paradigm to overcome the
shortcomings of energy development [1]. These renewable
energy technologies have long term benefit of clean and sus-
tainable energy production. Energy Storage Systems (ESS)
manages the decent power balance during the power crisis,
thus has a significant impact to stabilize the overall power
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system by mitigating the intermittent nature of renewable
generation. ESS can store energy during off-peak hours and
release them in peak hours. This trend of integrating renew-
able sources with ESS and loads is utilizing in microgrid
applications. A simplified conceptual framework of this inter-
connected system is shown in Fig. 1 [2]. Here, the distributed
sources, loads and storage are connected to the main grid with
point of common coupling (PCC).

Microgrid (MG) is capable of operating in both grid-
connected and islanded mode. In grid-tied system, power
balance between MG and main grid protect the system from
frequency instability. However, in islanded mode MG oper-
ates with off-grid network, hence primary frequency con-
trol becomes crucial. Different researches have been carried
out with the application of the battery storage system in
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FIGURE 1. Conceptual framework of the interconnected system.

TABLE 1. Specification of different types of ESS [7].

MG applications. Although there are many storage devices,
battery storage has attracted the researchers due to its control-
ling, maturity and efficiency. The principal advantage of bat-
teries is that, they can be used as the single storage or may be
developed as hybrid storage integrating with other batteries or
non-batteries storage device [3]. Batteries may be of different
kinds such as lead-acid, lithium-ion, sodium sulphur (NaS),
redox flow etc. [4]. Table 1 shows the different parameter
values of various ESS based on the life time, efficiency and
related merits and demerits. From this table, it shows that,
lithium-ion battery has high storage capacity with longer life
cycle and high efficiency. On the other hand, the non-batteries
ESS such as supercapacitors have high power density, low
cost and longer life cycle. However, the performance of
supercapacitors mostly depends on the improved electrode
conductivity with increased accessible area of electrolytes
ions. In [5], facile method has been proposed to improve the
performance of supercapacitors by one step electrochemical
deposition. However, the self-discharge rate of supercapaci-
tors is still very high and needs to be improved for the MG
applications. Addressing these issues, in [6], to improve the
performance of batteries and supercapacitors, metrics for the
evolution of these storages have been extensively described

FIGURE 2. Trends of costs of lithium-ion battery [8].

considering the cell voltage, specific energy and operating
temperature.

Although the cost of battery was too high initially, the price
of the battery is gradually decreasing with the development
of technology. Fig. 2 shows the trends of decreasing cost
($/kWh) of lithium-ion battery, starting from the year 2010 to
2018 and the projected cost from 2022 to 2030 [8]. Research
shows that the integration of battery energy storage system
(BESS) faces the challenges of charging-discharging, effi-
ciency, power system stability, power electronic interfacing,
controlling voltage and frequency fluctuations and protection
from damages [9]. Moreover, optimal renewable energy pen-
etration and autonomous coordination of multiple PV/battery
hybrids technology for isolated MG have gained the attention
of the researchers [10].

The aforementioned applications of BESS require the
controlling of charging and discharging to ensure the high
performance, long life expectancy and high reliability of
the storage systems. Numerous researches on charging-
discharging control have been carried out by the researchers.
Qian et al. in [11] developed a high-efficient grid connected
BESS to evaluate the state of charge (SOC) and state of
health (SOH) of the storage, respectively. An increase the life
expectancy of the battery charge equalization technique was
adopted in this research to balance the charge of all the cells
from 0% to 100%. Traditional controlling techniques such as
constant-current and constant-voltage (CC-CV), pulse charg-
ing (PC), reflex charging, trickle charging (TC) and float
charging (FC) have been discussed by different researchers.
In [12], CC-CV method was used for controlling the battery
charging-discharging. However, the efficiency of this tech-
nique is comparatively low. Besides, due to the temperature
rise, life cycle of the battery decreases. Pulse chargingmethod
have been illustrated in [13]. This technique is useful to
protect the long-term damage of the battery. Reflex charging
for DC microgrid was studied in [14], however, the charging
efficiency of this method is low. Trickle charging and float
charging [15] methods also were investigated for battery.
However, trickle charging method has the overcharging prob-
lems and thus can damage the cell. Model predictive control

159358 VOLUME 7, 2019



M. Faisal et al.: Backtracking Search Algorithm-Based Fuzzy Charging–Discharging Controller

for charging-discharging was used in [16]. Morstyn et al.
developed an MPC based d-q control model for BESS based
MG to describe the optimal power flow in distributed energy
system [17]. Voltage and converter current constraints were
not considered in this research. PI controller was used to con-
trol the charging-discharging of the battery, however, it lacks
the feature of fast charging-discharging [18]. Overall, the
traditional charging-discharging controller topologies have
the limitation of complexity, charging time, efficiency, tem-
perature rise, over-charging or self-discharging problems.

Addressing these issues, fuzzy based controlling system
has been proposed by different researchers to control the
charging-discharging of battery energy storage device. The
main advantage of fuzzy logic controller (FLC) is that,
it requires no mathematical calculation, making it easier
to be implemented for battery charging-discharging control.
A fuzzy based charging and discharging control of lithium-
ion battery has been investigated separately considering the
different SOC limit [1]. In [2], fuzzy based BESS was intro-
duced to control the battery SOC, where the SOC limit was
chosen from 50% to 100%. A similar strategy was followed
by Martinez et al. in [19], where 21 fuzzy rules were created
to control the SOC of the battery from 5 membership func-
tions (MFs). However, the main limitation of this research is
that only charging control method was developed considering
the SOC limit from 0% to 100%. Therefore, considering
the fuzzy inputs and outputs to control the battery charging-
discharging in MG applications is still now a great challenge
to limit the SOC within the operating region of 20% to
80%. Table 2 summarizes the different researches on fuzzy-
based charging-discharging controlling of BESS in tabular
format.

In recent years, optimization algorithms are attracting
the researchers to solve different problems of the system.
A fuzzy based PSO technique was introduced to optimize the
life expectancy of the battery through fuzzy MF optimiza-
tion [20]. Besides, this algorithm was used to optimize the
performance of hybrid PV/Wind battery storage system [21].
However, PSO can converges prematurely and can be trapped
into local minimum specially with complex problems. Opti-
mization of charging-discharging current to manage the SOC
of lead-acid battery has been investigated in [22]. PSO and
nonlinear programming model are used in this study. A novel
stochastic genetic algorithm (GA) is proposed to improve
the accuracy of the SOC evaluation, where parameters of the
model were optimized. However, it requires large population
size for accurate results, thus can be complex andmay require
more computational time. Some other optimization algorithm
such as gravitational search algorithm (GSA), firefly algo-
rithm (FA), NARX etc. are available to solve the aforemen-
tioned issues [23]. The drawbacks of these techniques are
easy trapping in local.Minima [29], [30] and reduce the diver-
sity of the population [31], resulting in missing situations and
longer computational time. It means not all these techniques
and their variants provide superior solution to some specific
problems. Although some of them are efficient, they still need

TABLE 2. Research on charging-discharging controller of ESS.

improvement to further enhance their performance. Based
on the analysis above, a comparative analysis among the
optimization techniques has been depicted in table 3.

Study shows that the performance of the fuzzy logic con-
troller depends on the parameter values of the membership
functions. The best value for these MFs can be derived by
using optimization technique. Addressing all these issues,
in this research, backtracking search algorithm (BSA) has
been studied to optimize the MFs of FLC for the microgrid
application. BSA dominates the value of the search on the
best population and is good for searching the exploration
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TABLE 3. Comparative analysis of various optimization algorithm and
their application.

process with exploiting capabilities [39], and it is advan-
tageous in mutation and crossover strategies. Besides, this
algorithm was used to design the power system stabiliz-
ers [40] and to solve the power flow problems in HVDC sys-
tems [41]. Thus, the significant contribution of this research
is to develop a new optimized fuzzy logic controller which
can effectively control the charging-discharging of the bat-
tery. It is also seen that, optimized fuzzy performs better
than the non-optimized configuration with the same plant.

In this paper, an optimal fuzzy controller has been devel-
oped to control the charging and discharging of the battery
and SOC evaluation. Initially, fuzzy model for charging-
discharging of BESS is developed. Then the input and output
membership functions of the fuzzy controller are optimized
using BSA to evaluate the performance of the developed
controller.

II. FUZZY BASED BATTERY STORAGE SYSTEM IN MG
Simplified topology of the fuzzy-based battery storage sys-
tem is shown in Fig. 3, which incorporates the microgrid,
grid, load, battery storage, buck-boost converter, and fuzzy
logic controller. Five distributed sources such as diesel, PV,
wind, fuel cell and biomass constitute the microgrid system.
Loads are varied from 4 kW to 90kW based on the user
demand. A 276V, 400Ah lithium-ion battery is used as the
storage. To control the ESS charging-discharging, a bidirec-
tional buck-boost converter is used with the fuzzy controller
as shown in Fig. 3, where, S1 and S2 are the IGBT switches,
Lb and Cb are the inductor and capacitor of the bidirec-
tional converter. Both the switches enable the bidirectional
flow of power through the battery. The duty cycle of the
IGBT switches are controlled by the command of the Fuzzy
controller. Besides, when the grid is ON, it will supply the
power to the load and charge the battery. Battery discharges
through the load based on the capacity and current SOC of
the battery. Thus, the complete charging-discharging of the
battery is controlled through the developed FLC considering
the available power, load demand and battery SOC.

Charging-discharging of the battery is controlled by FLC
which consists of two inputs and one output. Five member-
ship functions for each input and output variables were graded
for this FLC. They are: VS (very small), MS (Medium small),
N (normal), ML (medium large), and VL (very large) as
shown in Fig. 4. Fuzzy rules have been created based on these
MFs. All the boundaries of the MFs are arranged such that,
no one can overlap each other. All input and output MFs are
normalized within the range [−1, 1]. Thus, MFs of output
current (I) are selected as VS [-1 −0.4], MS [−0.8 0], N
[−0.4 0.4], ML [0 0.8], and VL [0.4 1]. In the fuzzification
step, the crisp value is transformed into fuzzy value by means
of the membership function of the FLC makes a decision
for the system by means of the fuzzy rules. Finally, in the
defuzzification step, the output MF is shown which will
further control the duty cycle of the bidirectional converter
for charging or discharging. In this research, Pbalance and
1SOC are chosen as the inputs as shown in Fig. 3 and Fig. 4.
Pbalance is the power difference between available power
and the load demand. 1SOC is evaluated from the current
battery SOC and reference SOC (SOCreference). SOCreference
is used to limit the battery SOC beyond the certain limit
and thus prevents the battery from over-discharging. Pbalance
and 1SOC are selected as the parameters. Then, the fuzzy
inference system describes how battery charging-discharging
are directly related and can be clearly evaluated by using these
parameters. Thus, to develop the fuzzy rules, the minimum
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FIGURE 3. Simplified topology for the proposed Fuzzy based battery charging-discharging model.

FIGURE 4. Input and output membership functions of FLC.

and maximum SOC of the storage are chosen as 20% and
80% respectively, while the SOCreference is chosen as 20% to
extend the life of storage batteries [1].Moreover, the available
DG powers from the sources are varied from 12kW to 21kW.
Finally, optimization has been introduced to optimize the
membership functions of the fuzzy logic controller to get the
optimal charging-discharging output.

III. FUZZY BASED CHARGING-DISCHARGING
MODEL OF THE BATTERY
The methodological framework for the proposed charging-
discharging controller is illustrated in Fig. 5. Firstly, the
lithium-ion battery is selected based on the capacity,

efficiency (>90%), size, cost, charging time, and life cycle
of the storage. high energy density and rapid response
time [42], [43].

The complete charging-discharging characteristics con-
sidering the battery SOC and Pbalance can be designed as
shown in Fig. 6. According to this figure, within the safe
operating region of 20% to 80%, the battery will be charged
or discharged based on the difference of current SOC and
reference SOC, load demand and availability of power of grid
and distributed sources. When SOC is equal to 20%, it will
definitely charge whatever the load demand and the SOCwill
not exceed the maximum threshold of 80%.

Fuzzy theory allows more flexible space in logic
formulation to create conceptual ideas and experience.
It creates a set of qualitative rules and thus differs from the
traditional controller. In this research, mamdani-type fuzzy
inference system (FIS) is used with two input and one output
parameters. Fuzzy controller has three steps of operation. The
first step is called fuzzification process where the real scalar
value is transformed into fuzzy value by means of the fuzzy
membership functions. Secondly, fuzzy rules are created with
some if-then statement to achieve the result from the control
system. The if-then statement is generated with both input
and output MFs. Finally, the controller operation ends with
the defuzzification process to recover the crisp or actual
output as it needs to be transmitting to operate the controller.
As stated, input parameters of the proposed fuzzy logic
controller are 1SOC and Pbalance. The output parameter is
current, I.
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FIGURE 5. Methodological framework for the proposed model.

Now, the FLC input,Pbalance, which is the power difference
between the load demand and total available power from the
distributed sources and grid (if grid is OFF, then no power
will be generated from grid). Thus, the equation for Pbalance
can be expressed as,

Pbalance = Pload − PDG,T − Pgrid_con. (1)

where, Pload is the power consumed by the load, Pgrid_con
is the power available after mitigating the load demand and
PDG,T is the total power from distributed sources. PDG,T can
be calculated as given below,

PDG,T = Pdiesel + Ppv + Pwind + PFC + Pbiomass. (2)

where, Pdiesel,Ppv,Pwind , PFC and Pbiomass denote the power
from diesel generator, photovoltaic power, wind power,
power from fuel cell and biomass respectively. Therefore,
finding the total generated power (PGen,T ), from the battery
power (Pbat ), and distributed sources it can be written as,

PGen,T = Pbat + PDG,T . (3)

Now, the total required grid power Pgrid,T can be deduced
from the following equation,

Pgrid, T = Pload, T − PDG,T − Pbat, T . (4)

Other input of FLC is 1SOC which denotes the
state of charge difference between the current SOC and

FIGURE 6. Complete charging-discharging architecture of battery
considering the SOC and Pbalance.

reference SOC. Power variables involved in Fig. 1 are consid-
ered as positive when power flows according to the direction.

Now, the input variable1SOC of the FLC can be expressed
as follow,

1SOC = SOCcurrent − SOCreference. (5)

Pbat depends on the battery SOC, which is limited between
a minimum (SOCmin) and maximum (SOCmax) value. It is
needed to preserve or extend the battery lifetime [26].
Therefore, the overall SOC can be measured by the following
constraints,

SOCmin ≤ SOC(n) ≤ SOCmax,

Pbalance,min ≤ Pbalance ≤ Pbalance,max. (6)

The objective of this proposed controller is to control the
SOC of the battery. General equation for SOC of the battery
can be expressed as,

SOC = 100

1−

t∫
0
Idt

Q

 . (7)

where, I is the current and Q is the nominal capacity of
the battery. Now, considering the inputs of fuzzy, Pbalance
and 1SOC, from equation (7), the equation of current I can
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TABLE 4. Fuzzy rules for charging-discharging of BESS.

further be derived as follows,

I =
(
Pbalance
E0

(
1−

1SOC
100

))
. (8)

where, E0 is the battery constant voltage.
To accomplish the overall charging-discharging controller

strategy, 25 rules are set to concurrently smooth the current
for controlling the battery charging-discharging. The rules
are set with the expert knowledge considering the impacts
of the inputs to control the charging-discharging behaviour
of the battery. Table 4 represents the conditions for the
controller.

From the analysis, if the total power from the renewable
sources is not enough for supplying power to the load, there-
fore, the battery should operate in discharging mode. If, load
demand becomes lower than the available power, then the
battery can operate in charging mode. Thus, the fuzzy rules
in the tabular format can be explained as,
Rule 1: If 1SOC is VS, Pbalance is VS then the output

current I is VS.
It means, if the 1SOC is low (when the current SOC of

the battery is low) and the load demand is high, so the battery
charges.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rule 8: If 1SOC is MS, Pbalance is N then the output

current I is N.
This rule states that, if the 1SOC is enough high to dis-

charge (when the current SOC is higher than the reference
high), and the demand of load also high, then, the battery can
operate in both charge or discharge mode.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rule 25: If 1SOC is VL, Pbalance is VL then the output

current I is VL.
The rule illustrates that, if 1SOC is very large (when the

battery current SOC is high), with the less load demand,
the battery will be discharged. The rules stated that, if the
SOC comes below the set range, it will surely chargewhatever
the load demand and protect the over-discharging. In contrast,
if the battery reaches at maximum limit, then it will not accept
the charge to protect the overcharging. Fig. 7 demonstrates
the surface of the fuzzy inference systems which shows that
current changes with the variation of Pbalance and 1SOC .
If SOC is low enough whatever the demand, battery will
absorb the current, and if SOC is high, then based on the
demand it can be discharged.

FIGURE 7. FIS current with variation of 1SOC and Pbalance.

IV. FUZZY BASED BSA OPTIMIZATION
As stated earlier, BSA is used to optimize the fuzzy MF to
get the optimal charging-discharging of the battery. BSA has
five steps of operation, initialization, selection - I, mutation,
crossover, and selection-II. Initialization is the primitive con-
figuration for the numerical values of population which can
be expressed as,

Xij = rand ·
(
upj − lowj

)
+ lowj. (9)

where, i = 1, 2, . . . . . . ,N , and j = 1, 2, . . . . . . ,D.N and D,
are the population size and problem dimension, respectively.
In selection-I, the search direction can be obtained from the
historical population

(
oldXij

)
. Therefore,

oldXij = rand ·
(
upj − lowj

)
+ lowj. (10)

Historical population randomly choose the population
from previous generation; thus, a new trial population is
generated. Now, conditions between the random values can
be written as,

if a < b then oldXij := Xij
oldXij = permuting

(
oldXij

)
. (11)

Mutation is the process of generating new population of the
initial and history population and thus can be derived by,

Mu tan t = Xij + F ·
(
oldXij − Xij

)
. (12)

where, F determines the amplitude of search direction matrix
and can be obtained as follows,

F = 3 · randn. (13)

BSA generates a trial population and then takes a partial
advantage of its experiences from previous generations. The
initial of trial population is taken from mutation as shown
in equation (12). The next step of BSA is crossover where
a binary matrix called mapij is generated and comparison
between initial and trial population takes place. This step
gives the update mapij. Besides, it controls the boundaries
for the trial population. Finally, in selection-II, objective
function is determined from the comparison of initial and
trial population. Optimisation process runs to obtain the
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best population as well as the objective value. An objec-
tive function is the required target of optimization tech-
niques to obtain the best output. Thus, the objective function
searches for the best value of the FLC output to control
the battery charging-discharging effectively. In this research,
the objective is the optimal control of battery SOC which
could ensure the smooth operation of the battery throughout
the time and could minimize the storage overcharging and
over-discharging. Therefore, the equation for the objective
function can be expressed as,

Objective function = min

[
N∑
i=1

U (ti) /ti

]
=min

[
N∑
i=1

I (ti)

]
(14)

where, I (ti) and U (ti) denote the current (A) and capac-
ity (Ah) of the battery at time ti. Here, I (ti) =

(Iest − Iactual)2
/
N is the function that used to determine

the optimal solution by obtaining the minimum value of
the objective function through iteration. Thus, the objective
function is calculated based on the estimated value (Iest ),
actual value (Iactual) and number of observations (N). The
estimated value can be monitored following the equation (7).
Moreover, the storage charging and discharging condition can
be seen from the battery SOC. If the current SOC goes below
or above the safe operating region, then it can be called as
over-discharging or over-charging.

Table 5 illustrates the pseudo code for BSA optimization.
From the table, BSA starts with the initialization of the pop-
ulation size and problem dimension. Then, to determine the
search direction, historical population is determined accord-
ing to the equation (10).

BSA can be redefined by if-then rule and update the
operation. The order of the individual historical population
can be rearranged by using the permuting function. Later,
the search direction matrix is generated to complete the
mutation process. The search direction matrix is controlled
by F , as shown in (13). Mutant is the initial trial population
value, while crossover is the final set of trial population (T ).
Crossover starts with the formation of binary integer-valued
matrix (map) of size N . The value of mixrate determines
the exact number of elements of individuals that will take
part in mutation in a trial. If the best individual of X (Xbest )
has the better objective value then the global minimum value
obtained by BSA, then the global minimizer and global min-
imum value both are updated to Xbest accordingly.

To achieve the desired fuzzy output, center of grav-
ity (COG) method is used in this study. Therefore, equation
for crisp output can be written as,

Outputcrisp =

n∑
i=1

Ii · µĪ (Ii)

n∑
i=1
µĪ (Ii)

(15)

where, outputcrisp represents the controller output, µT (Ii)
is the degree of membership of the aggregated fuzzy set

TABLE 5. Pseudo code for BSA optimization.

for output I, Ii is the output value of MFs for the corre-
sponding rule and n signifies the rule number. Hence, the

159364 VOLUME 7, 2019



M. Faisal et al.: Backtracking Search Algorithm-Based Fuzzy Charging–Discharging Controller

FIGURE 8. Objective function for BSA and PSO.

charging-discharging constraints can further be expressed as,
T∑
t=1

(
PDG, T (t)+Pgrid_con (t)−Pload (t)

)
≥

T∑
t=1

Pbat(t), (16)

for charging,
T∑
t=1

(
PDG, T (t)+Pgrid_con (t)−Pload (t)

)
≤

T∑
t=1

Pbat (t), (17)

for discharging.
Optimal solution is thus determined by choosing the best

value of the objective function. The objective function with
100 iterations using the BSA algorithm is shown in Fig. 8.
To prove the effectiveness, the optimization process is com-
pared with the particle swarm optimization (PSO) algorithm
of same population size and problem dimensions. Details
of the PSO algorithm has been illustrated in [24]. It shows
that, the objective reaches its minimum value faster in BSA
optimization (after 42 iterations) compare to PSO (81 iter-
ations). Thus, the optimal operation of FLC through opt-
ing the MFs is accomplished as shown in Fig. 9 which
is distributed with the same fuzzy subsets VS, MS, N,
ML and VL, for each input and output. Optimal range
of MFs for the output current (I) with BSA optimization
is VS[−1 −0.3132], MS[−0.3734 0], N[-0.3132 0.3531],
ML[0 0.5327] and VL[0.3531 1], while for PSO the values
are VS[−1 −0.4519], MS[−0.7120 0], N[−0.4519 0.7362],
ML[0 0.8191] and VL[0.7362 1]. Besides, Fig. 10 shows the
dc-link voltage which is maintained within the permissible
range of 600V during the operating conditions.

V. RESULT AND ANALYSIS
Matlab/Simulink software (Matlab 2017a with windows 10,
16GB RAM, 64-bit operating system, 3.4GHz processor) is
used to simulate and verify the performance of the proposed
controller. In this research, comparative analysis of with
fuzzy and with optimized fuzzy based charging-discharging
control of BESS has been investigated under various load
variation. Fig. 11 reflects the load variation and power from
the distributed sources at different time.

Battery output current and the SOC variation in both fuzzy
and optimized fuzzy control are depicted in Fig. 12 and

FIGURE 9. (a) BSA Optimized MFs for both input and output parameters.
(b) PSO Optimized MFs for both input and output parameters.

FIGURE 10. Waveshape for dc link voltage response.

Fig. 13, respectively. From Fig. 11 – Fig. 13, initially, the grid
was stopped and the grid is in operation within 17-22h.
Obtained results show that when the grid is OFF, from 0 to
6h, battery operates in discharging mode as the load demand
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FIGURE 11. Load demand, power from DGs and difference between load and DG power (Pbalance).

FIGURE 12. Comparative analysis of battery current output in both fuzzy and optimized fuzzy mode.

is higher than the available distributed power. From, 6 – 12h,
power from the distributed sources exceeds the load demand
and hence operates in charging mode. Between 12 – 17h,
the load demand is higher and thus battery discharges more
current in both fuzzy and optimized fuzzy mode. However,
when the grid is turned ON at 17 – 22h, the grid supplies
the required power to the grid and the rest power will go
to charge the battery. Between, 22 – 24h, the grid remains
OFF, but power from distributed sources is higher than the
load demand. Hence, the battery operates in charging mode.
SOC of battery varies starting from its initial level of 50%,
which is plotted in Fig. 13. Overall Fig. 12 and Fig. 13 demon-
strate that the fuzzy based BSA optimization outperforms the
fuzzy only controller and fuzzy-PSO controller in term of
efficient charging and discharging battery storage system as
well as their SOC performance, respectively. The segmen-
tal analysis of grid position, load demand, battery charging
and discharging mode and SOC performance of based on
Fig. 11 - Fig. 13 is shown in Table 6.

TABLE 6. Segmental representation of charging-discharging of BESS.

Besides, BSA requires less time (4628.4 minutes) for 42
iterations to reach the optimal solution compare to PSO
(6415.2 minutes) for 81 iterations. However, the optimization
time per iteration for BSA and PSO are 110.2 minutes and
79.2 minutes, respectively.
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FIGURE 13. Comparative analysis of SOC output with fuzzy and optimized fuzzy controller in grid connected mode of
operation.

VI. CONCLUSION
In this research, a low complexity fuzzy logic controlling
system for charging and discharging of lithium-ion battery
has been investigated. It is observed that battery gets charged
when there is available power and it gets discharged if the
load demand exceeds the generated power. The main purpose
of this research is to improve the performance of the battery
storage system and hence, ensure the reliable MG opera-
tion through proper controlling of the SOC of the battery.
The optimized fuzzy model is used to control the charging-
discharging of the battery which have 25 rules with two inputs
(1SOC and Pbalance) and one output (current). The obtained
results show that, the controller performs according to the
desire mechanisms to get the battery charged or discharged.
Furthermore, proposed controller has been investigated with
BSA optimization techniques. The MFs of the fuzzy con-
troller have been optimized to get the best controlling output.
The results demonstrate that the BSA technique performs
well to control the SOC of the battery and the outcome is com-
paratively better than the fuzzy only and fuzzy-PSO system,
respectively. It implies that the proposed optimized fuzzy
gives accurate output to control the charging-discharging of
the battery. Furthermore, the intended future scope of this
research is to implement the system for real time application
which is still in laboratory stage.
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